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1 Introduction

Recent work by several authors [1]-[7] has provided exact information about the

low-energy dynamics of N = 4 supersymmetric gauge theory in three dimensions.

In particular, an interesting connection has emerged between the quantum moduli

spaces of these theories and the classical moduli spaces of BPS monopoles in SU(2)

gauge theory [2]. Chalmers and Hanany [4] have proposed that the Coulomb branch

of the SU(n) gauge theory is equivalent as a hyper-K�ahler manifold to the centered

moduli space of n BPS monopoles. For n > 2 this correspondence is intriguing

because the hyper-K�ahler metric on the manifold in question is essentially unknown.

Subsequently, Hanany and Witten [6] have shown that the equivalence, for all n, is

a consequence of S-duality applied to a certain con�guration of D-branes in type IIB

superstring theory.

The case n = 2, which is the main topic of this paper, provides an important test

for these ideas because the two-monopole moduli space and its hyper-K�ahler metric
have been found explicitly by Atiyah and Hitchin [8]. We will refer to the four-

dimensional manifold which describes the relative separation and charge angle of two
BPS monopoles as the Atiyah-Hitchin (AH) manifold. In fact these authors e�ectively
classi�ed all four-dimensional hyper-K�ahler manifolds with an SO(3) action which
rotates the three inequivalent complex structures. Correspondingly, the moduli space
of the N = 4 theory with gauge group SU(2) was analysed by Seiberg and Witten

[2]. The e�ective low-energy theory in this case is a non-linear �-model with the
four-dimensional Coulomb branch of the SU(2) theory as the target manifold. The
N = 4 supersymmetry of the low-energy theory requires that the metric induced on
the target space by the �-model kinetic terms be hyper-K�ahler [9]. By virtue of its
global symmetry structure, the Coulomb branch of this theory necessarily �ts into

Atiyah and Hitchin's classi�cation scheme. Seiberg and Witten compared the weak
coupling behaviour of the SUSY gauge theory with the asymptotic form of the metric
on the AH manifold in the limit of large-spatial separation between the monopoles,
r � 1 1. They found exact agreement between perturbative e�ects in the SUSY
gauge theory, and the expansion of the AH metric in inverse powers of r. In fact,
as we will review below, there are an in�nite number of inequivalent hyper-K�ahler

four-manifolds with the required isometries which share this asymptotic behaviour.

However, Atiyah and Hitchin showed that only one of these, the AH manifold itself,
is singularity-free. Motivated by expectations from string theory [1], Seiberg and
Witten proposed that the Coulomb branch of the three-dimensional N = 4 theory

should also have no singularities. The correspondence between the two manifolds

then follows automatically.

1r is the separation between the monopoles in units of the inverse gauge-boson mass in the 3 +1
dimensional gauge theory in which the two BPS monopoles live.
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Clearly the arguments reviewed above come close to a �rst-principles demonstration

that the Coulomb branch of the SU(2) theory is the AH manifold. The only assump-

tion made about the strong coupling behaviour of the SUSY gauge theory which is

not automatically guaranteed by symmetries alone is the absence of singularities. In

this paper we will proceed without this assumption2. One must then choose between

an in�nite number of possible metrics with the same asymptotic form. By virtue of

the hyper-K�ahler condition and the global symmetries, the components of these met-

rics each satisfy the same set of coupled non-linear ODE's as the AH metric. In fact,

as we review below, there is precisely a one-parameter family of solutions of these

di�erential equations which have the same asymptotic behaviour as the AH metric

to all �nite orders in 1=r but di�er by terms of order exp(�r). Seiberg and Witten

showed that the exponentially suppressed terms correspond to instanton e�ects in

the weakly-coupled SUSY gauge theory. In this paper we will calculate the one-loop

perturbative and one-instanton contributions to the low-energy theory using stan-

dard background �eld and semiclassical methods respectively. The results of these

calculations su�ce to �x the boundary conditions for the di�erential equations which
determine the metric. We �nd that the resulting metric is equal to the AH metric,
thereby con�rming the prediction of Seiberg and Witten.

The paper is organised as follows. In Section 2, we introduce the model and re-
view its relation to N = 2 SUSY Yang-Mills theory in four dimensions. We also
review the classical form of the Coulomb branch and perform an explicit one-loop
evaluation of the metric. In Section 3 we discuss the properties of supersymmet-

ric instantons in three-dimensional (3D) gauge theory. The �eld con�gurations in
question themselves correspond to the BPS monopoles of the four-dimensional (4D)
gauge theory3. Much of Section 3 is devoted to obtaining the measure for integra-
tion over the instanton collective coordinates. The number of bosonic and fermionic
zero modes of the BPS monopole is determined by the Callias index theorem which

we briey review. Like their four-dimensional counterparts, the three-dimensional
instantons have a self-duality property which, together with supersymmetry, ensures
a large degree of cancellation between non-zero modes of the bose and fermi �elds.
However, unlike the four-dimensional case and despite supersymmetry, this cancel-
lation is not complete because of the spectral asymmetry of the Dirac operator in a

monopole background. We calculate, for the �rst time, the residual term which arises

from the non-cancelling ratio of determinants of the quadratic uctuation operators
of the scalar, fermion, gauge and ghost degrees of freedom. We apply the result-

2In the following, we will, however, retain the weaker assumption that the moduli space has at
most isolated singularities.

3To avoid confusion with the proposed connection to monopole moduli spaces, from now on, the
term `monopole' will always refer to the instantons of the three-dimensional SUSY gauge theory
unless otherwise stated.
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ing one-instanton measure to calculate the leading non-perturbative correction to a

four-fermion vertex in the low-energy e�ective action.

In Section 4 we show that the one-loop and one-instanton data calculated in Sec-

tions 2 and 3, together with the (super-)symmetries of the model, are su�cient to

to determine the exact metric on the Coulomb branch. We begin by reviewing the

arguments leading to the exact solution of the low-energy theory proposed by Seiberg

and Witten. We analyze the solutions of the non-linear ODE's which determine the

metric and exhibit a one-parameter family of solutions which agree with the metric

on the Coulomb branch determined up to one-loop in perturbation theory. We show

that each of these solutions leads to a di�erent prediction for the one-instanton ef-

fect calculated in Section 3 and precise agreement is obtained only for the solution

which corresponds to the AH-manifold: the singularity-free case. For the most part,

calculational details are relegated to a series of Appendices.

2 N = 4 Supersymmetry in 3D

2.1 Fields, symmetries and dimensional reduction

In this Section we will briey review some basic facts about the N = 4 supersym-
metric SU(2) gauge theory in three dimensions considered in [2]. It is particularly
convenient to obtain this theory from the four-dimensional Euclidean N = 2 SUSY
Yang-Mills theory by dimensional reduction. In discussing the 4D theory we will
adopt the notation and conventions of [10]: the N = 2 gauge multiplet contains the
gauge �eld

�
vm (m = 0; 1; 2; 3), a complex scalar �A and two species of Weyl fermion

��� and � � all in the adjoint representation of the gauge group. As in [10] we use un-

dertwiddling for the �elds in the SU(2) matrix notation, �X � Xa� a=2. The resulting

N = 2 SUSY algebra admits an SU(2)R � U(1)R group of automorphisms. In the
4D quantum theory, the Abelian factor of the R-symmetry group is anomalous due
to the e�ect of 4D instantons.

Following Seiberg and Witten, the three-dimensional theory is obtained by com-
pactifying one spatial dimension4, say x3, on a circle of radius R. In the following we
will restrict our attention to �eld con�gurations which are independent of the com-

pacti�ed dimension. This yields a classical �eld theory in three spacetime dimensions

which we will then quantize. Seiberg and Witten also consider the distinct problem

4For simplicity of presentation we choose x3 to be the compacti�ed dimension. In practice,
however, in order to ow from the standard chiral basis of gammamatrices in 4D to gammamatrices
in 3D one has to dimensionally reduce in the x2 direction. To remedy this one can always reshu�e
gamma matrices in 4D. See Appendix A for more details.
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of quantizing the N = 2 theory on R3 � S1. In this approach quantum uctuations

of the �elds which depend on x3 are included in the path integral and one can inter-

polate between the 3D and 4D quantum theories by varying R. We will not consider

this more challenging problem here. Integrating over x3 in the action gives,

1

g2

Z
d4x ! 2�

e2

Z
d3x (1)

where e = g=
p
R de�nes the dimensionful 3D gauge coupling in terms of the dimen-

sionless 4D counterpart g.

Compactifying one dimension breaks the SO(4)E ' SU(2)l � SU(2)r group of

rotations of four-dimensional Euclidean spacetime down to SO(3)E. Following the

notation of [2], the double-cover of the latter group is denoted SU(2)E. The 4D gauge

�eld
�
vm splits into a 3D gauge �eld

�
v�, and a real scalar ��3 such that

�
v� =

�
vm, for

m = � = 0; 1; 2 and ��3 =
�
v3. It is also convenient to decompose the 4D complex

scalar �A into two real scalars: ��1 =
p
2Re�A and ��2 =

p
2Im�A. The 4D Weyl

spinors ���, � � (��� _�, �
� _�) of SU(2)l (SU(2)r) can be rearranged to form four 3D

Majorana spinors of SU(2)E: ��
A
� for A = 1; 2; 3; 4. Correspondingly, the two Weyl

supercharges of the N = 2 theory are reassembled as four Majorana supercharges
which generate the N = 4 supersymmetry of the three-dimensional theory. Details of
dimensional reduction, �eld de�nitions and our conventions for spinors in three and

four dimensions are given in Appendix A.

While the number of spacetime symmetries decreases reducing from 4D down to 3D,

the number of R-symmetries increases. First, the SU(2)R symmetry which rotates
the two species of Weyl fermions and supercharges in the four-dimensional theory
remains unbroken in three dimensions. In addition, the U(1)R symmetry is enlarged
to a simple group which, following [2], we will call SU(2)N . Unlike U(1)R in the
4D case, this symmetry remains unbroken at the quantum level. The real scalars,

��i with i = 1; 2; 3, transform as a 3 of SU(2)N . The index A = 1; 2; 3; 4 on the

Majorana spinors ��
A
� introduced above reects the fact that they transform as a 4 of

the combined R-symmetry group, SO(4)R ' SU(2)R � SU(2)N .

2.2 The low-energy theory

The three-dimensional N = 4 theory has at directions along which the three

adjoint scalars ��i acquire mutually commuting expectation values. By a gauge ro-

tation, each of the scalars can be chosen to lie in the third isospin component:
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h��ii =
p
2vi�

3=2. After modding out the action of the Weyl group, vi ! �vi,
the three real parameters vi describe a manifold of gauge-inequivalent vacua. As we

will see below, this manifold is only part of the classical Coulomb branch. For any

non-zero value of v = (v1; v2; v3), the gauge group is broken down to U(1) and two

of the gauge bosons acquire masses MW =
p
2jvj by the adjoint Higgs mechanism.

At the classical level, the global SU(2)N symmetry is also spontaneously broken to

an Abelian subgroup U(1)N on the Coulomb branch. The remaining component of

the gauge �eld is the massless photon v� = Tr(
�
v��3) with Abelian �eld-strength v��.

For each matrix-valued �eld �X in the microscopic theory, we de�ne a corresponding

massless �eld in the Abelian low-energy theory: X = Tr(�X�
3). Hence, at the classi-

cal level, the bosonic part of the low-energy Euclidean action is simply given by the

free massless expression,

SB =
2�

e2

Z
d3x

h
1
4
v��v�� +

1
2
@��i@��i

i
(2)

The presence of 3D instantons in the theory means we must also include a surface
term in the action, which is analogous to the �-term in four dimensions. In the
low-energy theory this term can be written as,

SS =
i�

8�

Z
d3x "���@�v�� (3)

A dual description of the low-energy theory can be obtained by promoting the pa-
rameter � to be a dynamical �eld [11]. This �eld serves as a Lagrange multiplier for

the Bianchi identity constraint. In the presence of this constraint one may integrate
out the Abelian �eld strength to obtain the bosonic e�ective action,

SB =
2�

e2

Z
d3x 1

2
@��i@��i +

2e2

�(8�)2

Z
d3x 1

2
@��@�� (4)

The Dirac quantization of magnetic charge, or, equivalently, the 3D instanton topo-
logical charge,

k =
1

8�

Z
d3x "���@�v�� 2 Z ; (5)

means that, with the normalization given in (3), � is a periodic variable with period
2�. In the absence of magnetic charge � only enters through its derivatives and the

action has a trivial symmetry, � ! � + c where c is a constant. The VEV of the �-
�eld spontanteously breaks this symmetry and provides an extra compact dimension

for the Coulomb branch. Modding out the action of the Weyl group, the classical

Coulomb branch can then be thought of as (R3 � S1)=Z2.
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It will be convenient to write the fermionic terms in the low-energy action in terms of

the (dimensionally reduced) Weyl fermions. At the classical level, the action contains

free kinetic terms for these massless degrees of freedom,

SF =
2�

e2

Z
d3x

�
i�����@�� + i � ���@� 

�
(6)

The Weyl fermions in 4D can be related to the 3D Majorana fermions �A� by going

to a complex basis for the SO(4)R index. In Appendix A we de�ne a basis such

that the holomorphic components �a� are equal to �� _�
��
_� and �� _�

� 
_� for a = 1 and

a = 2 respectively. Similarly the anti-holomorphic components ��a
� are equal to the

left-handed Weyl fermions �� and  � for �a = �1 and �a = �2. In this basis, the e�ective

action (6) can be rewritten as,

SF = �2�

e2

Z
d3x �a�b�

a�@��
�b (7)

where � are gamma-matrices in 3D.

Perturbative corrections lead to �nite corrections to the classical low-energy theory
in powers of e2=MW . At the one-loop level several e�ects occur. First, there is a �nite
renormalization of the gauge coupling appearing in (4) and (6):

2�

e2
! 2�

e2
� 1

2�MW

(8)

This result is demonstrated explicitly in Appendix B. Second, there is a more subtle

one-loop e�ect discussed in [2]. By considering the realization of the U(1)N symmetry
in an instanton background, Seiberg and Witten showed that a particular coupling
between the dual photon � and the other scalars �i appears in the one-loop e�ec-
tive action. More generally the one-loop e�ective action will contain vertices with
arbitrary numbers of boson and fermion legs. However, as we will see in Section

4, the exact form of the low-energy e�ective action is essentially determined to all
orders in perturbation theory by the �nite shift in the coupling (8) together with the
constraints imposed by N = 4 supersymmetry. In the next Section we will turn our
attention to the non-perturbative e�ects which modify this description.

3 Supersymmetric Instantons in Three Dimensions

3.1 Instantons in the microscopic theory

The four-dimensional N = 2 theory has static BPS monopole solutions of �nite
energy [12], [13]. In the three-dimensional theory obtained by dimensional reduction,

6



these �eld con�gurations have �nite Euclidean action, S
(k)
cl = jkjScl for magnetic

charge k, with Scl = (8�2MW )=e2. For each value of k, the monopole solutions are

exact minima of the action which yield contributions of order exp(�jkjScl) to the

partition function and Greens functions of the theory at weak coupling. Hence BPS

monopoles appear as instantons in the N = 4 supersymmetric gauge theory in 3D.

In this Section (together with Appendix C), as well as presenting several general

results, we will provide a quantitative analysis of these e�ects for the case k = 1.

We begin by determining the bosonic and fermionic zero modes of the instanton and

the corresponding collective coordinates. We then consider the contribution of non-

zero frequency modes to the instanton measure which requires the evaluation of a

ratio of functional determinants. In subsection 3.2, we use these results to calculate

the leading non-perturbative correction to a four-fermion vertex in the low-energy

e�ective action.

To exhibit the properties of the 3D instantons, it is particularly convenient to work

with the (dimensionally-reduced) �elds of the four-dimensional theory and also with
the speci�c vacuum choice vi = v�i3. In this case, the static Bogomol'nyi equation sat-
is�ed by the gauge and Higgs components of the monopole can be concisely rewritten
as a self-dual Yang-Mills equation for the four-dimensional gauge �eld,

�
vm of Section

2.1 [14]5

�
vclmn =

�

�
vclmn (9)

Because of this self-duality, instantons in three dimensions have many features in
common with their four-dimensional counterparts. In the following, we will focus pri-
marily on the new features which are special to instanton e�ects in three-dimensional
gauge theories. One important di�erence is that instantons in 3D are exact solutions
of the equations of motion in the spontaneously broken phase. In four dimensions,

instantons are only quasi-solutions in the presence of a VEV and this leads to several
complications which do not occur in the 3D case.

Bosonic zero modes, �
�
vm = �Z

m, of the 3D k-instanton con�guration are obtained

by solving the linearized self-duality equation subject to the background �eld gauge
constraint (see Appendix C),

D[m
cl �Z

n] = �D[m
cl �Z

n] ; Dm
cl �Z

m = 0 : (10)

5Of course these is no loss of generality here, for any choice of three-dimensional vacuum vi it is
possible to construct an analogous four-dimensional Euclidean gauge �eld which is self-dual in the
monopole background: one simply needs to include the component vi�i of the scalar as the `fourth'
component of the gauge �eld. However, only if we choose vi = v�i3 does this correspond to the
four-dimensional gauge �eld of Section 2.1.
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where, Dm
cl is the adjoint gauge-covariant derivative in the self-dual gauge background,

�
vcl. As a consequence of self-duality, there is an exact correspondence between these

bosonic zero modes and the fermionic zero modes, which are solutions of the adjoint

Dirac equation in the self-dual background. The latter is precisely the equation of

motion for the 4D Weyl fermions in the monopole background,

=�D _��
cl ��

cl
� = 0 (11)

=D� _�
cl
���
cl

_�
= 0 (12)

Following Weinberg [15], we form the bispinor operators, �+ = =�Dcl =Dcl and �� =

=Dcl =�Dcl. In general, for a self-dual background �eld6,
�
vclm,

(�+)
_�

_� = D2
cl�

_�
_� + (��mn)

_�
_� �
vclmn = D2

cl�
_�

_� ;

(��)
�

� = D2
cl�

�
� + (�mn)

�

� �
vclmn (13)

�� can have normalizable zero modes, while �+ is positive and has none. Let the
number of normalizable zero modes of �� be q. Then correctly accounting for spinor
indices, the number of normalizable zero modes, �Zm

, of the gauge �eld
�
vclm is 2q [15].

Adapting the Callias index theorem [16] to the context of BPS monopoles, Weinberg
[15] showed that q could be obtained as the �! 0 limit of the regularized trace,

I(�) = Tr

"
�

�� + �
� �

�+ + �

#
(14)

de�ned for � > 0. It turns out that the only non-zero contribution to I(�) comes
from a surface term that can be evaluated explicitly for arbitrary k. Weinberg's result
is,

I(�) = 2kMW

(M2
W + �)

1
2

(15)

Setting � = 0 yields q = 2k. Another consequence of this analysis is that the adjoint

Dirac equation (11) has 2k independent solutions while (12) has none. Although the
index information is contained in the �! 0 limit of equation (15) we will need this
result for general � in the following.

The upshot of Weinberg's index calculation is the conventional wisdom that the

BPS monopole of charge k, or, equivalently, the 3D k-instanton, has 4k bosonic
collective coordinates. For k = 1 these simply correspond to the three components,

6We de�ne standard self-dual and anti-self-dual projectors, �mn = 1
4
�[m��n] and ��mn = 1

4
��[m�n].
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Xm, of the instanton position in three-dimensional spacetime and an additional angle,

� 2 [0; 2�], which describes the orientation of the instanton in the unbroken U(1)

gauge subgroup. In an instanton calculation we must integrate over these coordinates

with the measure obtained by changing variables in the path integral. Explicitly,

Z
d�B =

Z
d3X

(2�)
3
2

(JX)
3
2

Z 2�

0

d�

(2�)
1
2

(J�) 12 (16)

In Appendix C, we calculate the Jacobian factors, JX = Scl and J� = Scl=M
2
W .

Similarly the two species of Weyl fermions, �� and � each have 2k independent

zero-mode solutions in the instanton-number k background. For k = 1 these four

modes correspond to the action of the four supersymmetry generators under which

the 3D instanton transforms non-trivially. As in the four-dimensional case, the modes

in question can be parametrized in terms of two-component Grassmann collective

coordinates �� and �0� as

��
cl
� = 1

2
��(�

m��n) �
� �
vclmn

� 
cl
� = 1

2
�0�(�

m��n) �
� �
vclmn (17)

The corresponding contribution to the instanton measure is,Z
d�F =

Z
d2� d2�0(J�)�2 (18)

In Appendix C we �nd that J� = 2Scl.

As usual in any saddle-point calculation, to obtain the leading-order semiclassical
result it is necessary to perform Gaussian integrals over the small uctuations of the
�elds around the classical background. In general these integrals yield functional de-
terminants of the operators which appear at quadratic order in the expansion around
the instanton. A simplifying feature that holds for all self-dual con�gurations is that

each of the uctuation operators for scalars, spinors gauge �elds and ghosts are re-
lated in a simple way to one of the operators �+ or ��. This standard connection
is as follows. In the chiral basis for 4D Majorana fermions (see Appendix A), the

quadratic uctuation operator is

�F =

 
0 =Dcl

=�Dcl 0

!
(19)

Performing the Grassmann Gaussian integration over �� yields

Pf(�F )

Pf(�
(0)
F )

=

 
det0(�2

F )

det(�
(0)2
F )

! 1
4

=

 
det0(��)det(�+)

det(�(0))2

! 1
4

(20)

9



where det0 denotes the removal of zero eigenvalues and the superscript (0) denotes the

uctuation operator for the corresponding �eld in the vacuum sector. In particular

we de�ne the operator �(0) = =�D(0) =D(0)
= =D(0) =�D(0)

, formed from the vacuum Dirac

operators =D(0)
and =�D(0)

. Integrating out the � �eld yields a second factor equal

to (20). For the bose �elds we introduce the gauge �xing and ghost terms using

the 4D background gauge, Dcl
m��v

a
m = 0, and expand the action around the classical

con�guration. Quadratic uctuation operators for the complex scalar, �A, the gauge
�eld,

�
v, and the ghosts,

�
c and �

�
c are

�A = �c = D2
cl = 1

2
Tr(�+)

�v = �D2
cl�mn + 2

�
vclmn = �1

2
Tr(��n���

m) (21)

where Tr is over the spinor indices. The bosonic Gaussian integrations now give,

 
det0(�v)

det(�
(0)
v )

!� 1
2
 
det(�A)

det(�
(0)
A )

!�1  
det(�c)

det(�
(0)
c )

!+1

=

 
det0(��)

det(�(0))

!�1
(22)

Combining the fermion and boson contributions, we �nd that the total contribution
of non-zero modes to the instanton measure is given by,

R =

"
det(�+)

det0(��)

# 1
2

(23)

In any supersymmetric theory the total number of non-zero eigenvalues of bose
and fermi �elds is precisely equal. This corresponds to the fact that, for any self-dual
background, the non-zero eigenvalues of �+ and �� are equal [17]. Naively, this
suggests that the ratio R is unity. As the spectra of these two operators contain a
continuum of scattering states in addition to normalizable bound states, this assertion

must be considered carefully. For the continuum contributions to the determinants of
�+ and �� to be equal, it is necessary not only that the continuous eigenvalues have
the same range, but that the density of these eigenvalues should also be the same.
Following the original approach of 't Hooft [18] in four dimensions, one can regulate
the problem by putting the system in a spherical box with �xed boundary conditions.

In this case the spectrum of scattering modes becomes discrete and the resulting

eigenvalues depend on the phase shifts of the scattering eigenstates. In the limit where
the box size goes to in�nity, these phase shifts determine the density of continuum
eigenvalues. For a four-dimensional instanton, 't Hooft famously discovered that the

phase shifts in question were equal for the small uctuation operators of each of the

�elds. As a direct result of this, the ratio R is equal to unity in the background
of any number of instantons in a 4D supersymmetric gauge theory. However, the

phase-shifts associated with the operators �+ and �� are not equal in a monopole
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background. In the four-dimensional theory, Kaul [19] noticed that this e�ect leads

to a non-cancellation of quantum corrections to the monopole mass. In our case, as

we will show below, it will yield a non-trivial value of R.

In fact the mismatch in the continuous spectra of �+ and �� can be seen already

from the index function I(�). Comparing with the de�nition (14), we see that the

fact that Weinberg's formula (15) has a non-trivial dependence on � and is not simply

equal to 2k precisely indicates a di�erence between the non-zero spectra of the two

operators. This observation can be made precise by the following steps. First, dividing

(14) by � and then performing a parametric integration we obtain.

Z 1

�

d�0

�0
I(�0) = Tr [log (�+ + �)� log (�� + �)] (24)

The amputated determinant appearing in the ratio R is properly de�ned as,

det0(��) = lim
�!0

"
det(�� + �)

�2k

#
(25)

The power of � appearing in the denominator reects the number of zero eigenvalues
of �� calculated above. Using the relation Tr log(Ô) = log det(Ô) in (24), we obtain
a closed formula for R:

R = lim
�!0

"
�2k exp

 Z 1

�

d�0

�0
I(�0)

!# 1
2

(26)

Evaluating this formula on (15) we obtain the result, R = (2MW )2k. For k = 1, we
can combine the various factors (16), (18) and (23) to obtain the �nal result for the

one-instanton measure,

Z
d�(k=1) =

Z
d�B

Z
d�F R exp(�Scl + i�)

=
MW

2�

Z
d3X d2�d2�0 exp(�Scl + i�) (27)

Here we have performed the integration over �, anticipating the fact that the inte-

grands we are ultimately interested in will not depend on this variable. The term i�

is the contribution of the surface term (3) which we will discuss further below.

3.2 Instanton e�ects in the low energy theory

Because of their long-range �elds, instantons and anti-instantons have a dramatic
e�ect on the low-energy dynamics of three-dimensional gauge theories. As they can
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be thought of as magnetic charges in (3 + 1)-dimensions, 3D instantons and anti-

instantons experience a long-range Coulomb interaction. In the presence of a massless

adjoint scalar, the repulsive force between like magnetic charges is cancelled. This

cancellation is reected in the existence of static multi-monopole solutions in the

BPS limit. However, in the case of an instanton and anti-instanton, there is always

an attractive force. In a purely bosonic gauge theory, Polyakov [11] showed that a

dilute gas of these objects leads to the con�nement of electric charge. The long-range

e�ects of instantons and anti-instantons can be captured by including terms in the

low-energy e�ective Lagrangian of the characteristic form,

LI � exp

 
�8�2j�j

e2
� i�

!
(28)

where j�j2 = �21+�
2
2+�

2
3. This is simply the instanton action of the previous section,

with the VEVs vi and � being promoted to dynamical �elds.

In the presence of massless fermions, the instanton contribution to the low-energy

action necessarily couples to n fermion �elds, where n is the number of zero modes
of the Dirac operator in the monopole background. In the three-dimensional N = 2
theory considered in [20], instantons induce a mass term for the fermions in the
e�ective action. In fact this corresponds to an instanton-induced superpotential which
lifts the Coulomb branch. In the present case, the e�ective action will contain an

induced four-fermion vertex due to the contribution of a single instanton [2]. This
vertex has a simple form when written in terms of the (dimensionally-reduced) Weyl
fermions of (6),

SI = �

Z
d3x ��2 � 2 exp

 
�8�2j�j

e2
+ i�

!
(29)

where the coe�cient � will be calculated explicitly below. In this case, N = 4
SUSY does not allow the generation of a superpotential and, as we will review below,
the four-fermion vertex is instead the supersymmetric completion of an instanton
correction to the metric on the moduli space.

Just like the vertex induced by (four-dimensional) instantons in the four-dimensional

N = 2 theory, self-duality means that the above vertex contains only Weyl fermions of

a single chirality. Equivalently, the vertex contains only the holomorphic components
of the 3D Majorana fermions in the complex basis of (7). In the 4D case, the chiral
form of the vertex signals the presence of an anomaly in the U(1)R symmetry. By

virtue of our dimensional reduction and choice of vacuum, the U(1)R symmetry of

the 4D theory corresponds to U(1)N de�ned in Section 1, the unbroken subgroup of
SU(2)N global symmetry in the 3D theory. More precisely the corresponding charges
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are related as QN = QR=2. Hence each of the right-handed 4D Weyl fermions car-

ries U(1)N charge �1=2, which suggests that the induced vertex (29) violates the

conservation of U(1)N by �2 units. However, as explained in [2], the symmetry is

non-anomalous in 3D due to the presence of the surface term i� in the instanton

exponent. Assigning � the U(1)N transformation,

� ! � + 2� (30)

under the action of exp(i�QN), the symmetry of the e�ective action is restored.

However, because the VEV of � transforms non-trivially, the symmetry is now spon-

taneously broken and hence SU(2)N has no unbroken subgroup. An equivalent state-

ment is that the orbit of SU(2)N on the classical moduli space is three-dimensional,

a fact that will play an important role in the considerations of the next Section.

In the following we will be interested in the instanton corrections to the leading

terms in the derivative expansion of the low-energy e�ective action. As in the four-
dimensional theory, this restricts our attention to terms with at most two derivatives
or four fermions. However, an important di�erence with that case is that the 3D

instantons are exact solutions of the equations of motion and there is no mechanism
for the VEV to lift fermion zero modes in a way that preserves the U(1)N symmetry 7.
It follows that the only sectors of the theory which can contribute to the leading terms
in the low-energy e�ective action are those with instanton number (magnetic charge)
�1, 0 or +1. Another important di�erence with the 4D case is that, because there

is no holomorphic prepotential in 3D, there can also be contributions to the e�ective
action from con�gurations containing arbitrary numbers of instanton/anti-instanton
pairs.

Finally we will compute the exact coe�cient of the four-anti-fermion vertex (29)
by examining the large distance behaviour of the correlator

G(4)(x1; x2; x3; x4) = h��(x1)��(x2) (x3) �(x4)i (31)

where the Weyl fermion �elds are replaced by their zero-mode values in the one-
instanton background. The explicit formulae for the zero-modes of the low-energy

fermions are straightforward to extract, via (17) from the long-range behaviour of the
magnetic monopole �elds. Using the formulae of Appendix C for the large-distance
(LD) limit of the fermion zero modes we �nd,

�LD� = 8� (SF(x�X)) �

� ��

 LD
� = 8� (SF(x�X)) �

� �0� (32)

7A more general analysis of this issue will be presented elsewhere.
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This asymptotic form is valid for jx�Xj � M�1
W where X is the instanton position

and SF(x) = �x�=(4�jxj2) is the three-dimensional Weyl fermion propagator. The

leading semiclassical contribution to the correlator (31) is given by,

G(4)(x1; x2; x3; x4) =
Z
d�(k=1)�LD� (x1)�

LD
� (x2) 

LD
 (x3) 

LD
� (x4) (33)

where d�(k=1) is the one-instanton measure (27). Performing the � and �0 integrations

we obtain,

G(4)(x1; x2; x3; x4) = 29�3MW exp(�Scl + i�)
Z
d3X ��

0�0SF(x1 �X)��0

� SF(x2 �X)��0�
0�0SF(x3 �X)0SF(x1 �X)��0 (34)

This result is equivalent to the contribution of the vertex (29) added to the classical

low-energy action (6). Our calculation shows that the coe�cient � takes the value,

� = 27�3MW

�
2�

e2

�4

(35)

where the four powers of (2�=e2) reect our choice of normalization for the fermion
kinetic terms in (6).

4 The Exact Low-Energy E�ective Action

In this Section, following the arguments of [2], we will determine the exact low
energy e�ective action of the N = 4 SUSY gauge theory in three dimensions. Below,
we will write down the most general possible ansatz for the terms in the low-energy
e�ective action with at most two derivatives or four fermions which is consistent with
the symmetries of the model. As we will review, the combined restrictions of N = 4

supersymmetry and the global SU(2)N symmetry lead to a set of non-linear ordinary
di�erential equations for the components of the hyper-K�ahler metric which in turn
determines the relevant terms in the e�ective action. We will �nd a one-parameter

family of solutions of these equations which agree with the one-loop perturbative
calculation of Section 2. Our main result is that the one-instanton contribution to

the four-fermion vertex, calculated from �rst principles in Section 3, uniquely selects
the metric of the Atiyah-Hitchin manifold from this family of solutions.

We begin by discussing the general case of a low-energy theory with scalar �elds
fXig and Majorana8 fermion superpartners f
�i g where i = 1; : : : ; d. As usual the

scalars de�ne coordinates on the quantum moduli space, M, which is a manifold of

8The 3D Majorana condition is �
 = i
, see Appendix A.

14



real dimension d. The low-energy e�ective action has the form of a three-dimensional

supersymmetric non-linear �-model with M as the target manifold,

Se� = K

Z
d3x

n
1
2
gij(X)

h
@mX

i@mX
j �
i =D
j

i
� 1

12
Rijkl(


i � 
k)(
j � 
l)
o

(36)

where K is an overall constant included for later convenience. The kinetic terms in

the action de�ne a metric gij on the moduli space M, and =D and Rijkl denote the

corresponding covariant Dirac operator and Riemann tensor respectively.

Following Alvarez-Gaume and Freedman [9], the supersymmetries admitted by the

above action are written in the form,

�Xi = �[1] � 
i +
NX
q=2

J
[q]j
i (X)�[q] � 
j (37)

The action (36) is automatically invariant under theN = 1 supersymmetry parametrized

by �[1]. However, N > 1 supersymmetry requires the existence of N � 1 linearly inde-
pendent tensors J

[q]j
i which commutewith the in�nitesimal generators of the holonomy

group H of the target. It is also necessary that these tensors form an su(2) algebra.
In general the holonomy group of a d-dimensional Riemannian manifold is a subgroup
of SO(d). For N = 4, the existence of three such tensors which commute with the

holonomy generators imply that d must divisible by 4 and that H is restricted to be
a subgroup of Sp(d=4). Such manifold of symplectic holonomy is by de�nition hyper-

K�ahler. The tensors J
[q]j
i (q = 2; 3; 4) de�ne three inequivalent complex structures on

M. An equivalent statement of the hyper-K�ahler condition is to require that these
complex structures be covariantly constant with respect to the metric gij .

In the case d = 4, the holonomy can be chosen to lie in the Sp(1) ' SU(2) subgroup
of SO(4) generated by the self-dual tensors �aij a = 1; 2; 3 (de�ned in Appendix A).

In fact the holonomy generators are components of the Riemann tensor Rijkl and a
su�cient condition for a hyper-K�ahler four-manifold is for this tensor to be self-dual9.
Correspondingly the complex structures J

[q]j
i (X) (q = 2; 3; 4) can be taken as linear

combinations of the anti-self-dual SO(4) generators ��aij. As indicated, the relevant

linear combinations appearing in (37) will vary as one moves from one point on the

manifold to another. Another restriction on the moduli space M comes from the
action of the global SU(2)N symmetry. As we have seen above, there is no anomaly

in this symmetry either in perturbation theory or from non-perturbative e�ects, hence
we expect that the exact quantum moduli space has an SU(2)N isometry. Further,

because of the non-trivial transformation of the dual photon described above, we

9The more conventional choice of an anti-self-dual Riemann tensor and self-dual complex struc-
tures is related to this one by a simple rede�nition of the �elds and the parameters �[q].
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know that SU(2)N will generically have three-dimensional orbits onM. It can also be

checked explicitly that the three complex structures onM introduced above transform

as a 3 of SU(2)N .

Remarkably, the problem of classifying all the hyper-K�ahler manifolds of dimen-

sion four with the required isometry has been solved in an entirely di�erent physical

context. As discussed in Section 1, these are exactly the properties of the reduced

or centered moduli space of two BPS monopoles of gauge group SU(2). Atiyah and

Hitchin [8] considered all manifolds with these properties and showed that there is only

one manifold which has no singularities: the AH manifold. In the original context, the

absence of singularities was required because of known properties of multi-monopole

solutions. In particular, the metric on the moduli space of an arbitrary number of

BPS monopoles was known to be complete. This means that every curve of �nite

length on the manifold has a limit point (see Chapter 3 of [8] and references therein).

In the present context, the absence of singularities on the quantum moduli space M
can be taken as an assumption about the strong-coupling behaviour of the 3D SUSY

gauge theory. This assumption leads directly to Seiberg and Witten's proposal that
the quantummoduli space has the same hyper-K�ahler metric as the the AH manifold.
In the following we will show that the one-instanton contribution, Eqs (35) and (29),
calculated in the previous section, together with the results of one-loop perturbation
theory (8), provides a direct proof of the SW proposal without assuming the absence

of strong-coupling singularities.

Following Gibbons and Manton [21], we parametrize the orbits of SO(3)N (whose
double-cover is SU(2)N ) by Euler angles �, � and  with ranges, 0 � � � �, 0 � � <

2� and 0 �  < 2� and introduce the standard left-invariant one-forms,

�1 = � sin d� + cos sin � d�

�2 = cos d� + sin sin � d�

�3 = d + cos � d� (38)

The remaining dimension of the moduli spaceM, transverse to the orbits of SO(3)N ,

is labelled by a parameter r and the most general possible metric with the required
isometry takes the form [22],

gijdXidXj = f2(r)dr2 + a2(r)�21 + b2(r)�22 + c2(r)�23 (39)

The function f(r) depends on the de�nition of the radial parameter r. We will also
de�ne the corresponding Cartesian coordinates,

X = r sin � cos�

Y = r sin � sin�

Z = r cos � (40)
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We start by identifying the parameters introduced above in terms of the low-energy

�elds of Section 2.2 in a way which is consistent with their transformation properties

under SO(3)N . The triplet (X;Y;Z) transforms as a vector of SO(3)N and will

be identi�ed, up to a rescaling, with the triplet of scalar �elds appearing in the

Abelian classical action (4): (X;Y;Z) = (Scl=MW )(�1; �2; �3). This means that we

are de�ning the parameter r to be equal to Scl. The remaining Euler angle,  , by

de�nition transforms as  !  + � under a rotation through an angle � about the

axis de�ned by the vector (X;Y;Z). After comparing this transformation property

with the U(1)N transformation (30) of the dual photon �, we set  = �=2. In the

following we will refer to (X;Y;Z; �) as standard coordinates.

The weak-coupling behaviour of the metric gij can be deduced by comparing the

general low-energy e�ective action (36) with its classical counterpart (4), together

with the one-loop correction (8). Choosing the constant K in (36) to be equal to

2e2=(�(8�)2), the classical metric is just the at one, �ij, in the standard coordinates

introduced above. Including the one-loop renormalization of the coupling (8), the
metric functions, a2, b2 and c2 are given by,

a2 = b2 ' Scl(Scl � 2)

c2 ' 4 + 8=Scl (41)

Corrections to the RHS of the above formulae come from two-loops and higher and

are down by powers of 1=Scl. In fact, the equality a2 = b2 persists to all orders in
perturbation theory, reecting the fact that U(1)N is only broken (spontaneously) by
non-perturbative e�ects. To this order, the function f2 is also determined to be equal
to 1� 2=Scl +O(1=S2

cl).

The Majorana fermions 
i� appearing in (36), will be real linear combinations of
the fermions �A� of the low-energy action (6). In general, this linear relation will
have a non-trivial dependence on the bosonic coordinates. For our purpose it will
be su�cient to determine this relation at leading order in the weak-coupling limit,

r = Scl !1. In the standard coordinates we set,


i� ' M iA(�; �; �)�A� (42)

up to corrections of order 1=Scl. It is convenient to complexify the SO(4)R index as
in Section 2.2 and consider instead coe�cients M ia and M i�a = (M ia)�. In order to

reproduce the fermion kinetic term in (7) these coe�cients must obey the relations,

�ijM
iaM j�b = �a

�b
�
Scl

MW

�2

�ijM
iaM jb = �ijM

i�aM j�b = 0 (43)
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The �rst condition �xes the overall normalization of the fermions in (36) while the

second is required for their kinetic term to be U(1)N invariant. The remaining freedom

present in this identi�cation is related to theR-symmetry of the N = 4 SUSY algebra.

The hyper-K�ahler condition can be formulated as a set of non-linear ordinary dif-

ferential equations for the functions a, b, c and f :

2bc

f

da

dr
= (b� c)2 � a2 (44)

together with the two equations obtained by cyclic permutation of a, b and c. The

solutions of these equations are analysed in detail in Chapter 9 of [8] and we will

adapt the analysis given there to our current purposes. The equations completely

determine the behaviour of a, b and c as functions of r only once one makes a speci�c

choice for the function f , for example the choice f = �b=r made by Gibbons and

Manton [21]. If one makes such a choice in the present context, then the correspond-

ing relation between r and the weak-coupling parameter Scl will receive quantum

corrections which cannot be determined. In fact we have chosen instead to de�ne
r to be equal to Scl and, correspondingly, this implies some choice for f which can
only be determined order by order in perturbation theory. This reects an impor-
tant feature of the exact results for the low-energy structure of SUSY gauge theories
which is familiar from four-dimensions. In these theories the constraints of supersym-

metry and (in the 4D case) duality allow one to specify the exact quantum moduli
space as a Riemannian manifold. However the Lagrangian �elds and couplings of the
conventional weak-coupling description de�ne a particular coordinate system on the
manifold and sometimes the relation of these parameters to the parameters of the
exact low-energy e�ective Lagrangian can not be determined explicitly. As discussed

in [24], just such an ambiguity arises in the relation between the tree-level coupling
constant and the exact low-energy coupling in the �nite four-dimensional N = 2
theory with four hypermultiplets.

In the light of the above discussion we will eliminate both f and r from the equa-
tions, and focus on the information about the metric which is independent of the

choice of parametrization. Following [8] we obtain a single di�erential equation for
x = b=a and y = c=a,

dy

dx
=
y(1� y)(1 + y � x)

x(1� x)(1 + x� y)
(45)

The solutions of this equation are described by curves or trajectories in the (x; y)-

plane. In the weak coupling limit Scl !1 we have a2 = b2 !1 and c2 ! 4. Hence

we must �nd all the solutions of (45) which pass through the point Q with coordinates
x = 1, y = 0 (see Diagram 7 on p74 of [8]). The relevant features of these solutions

are as follows:
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1: A particular solution which passes through Q is the trajectory x = 1. Returning

to the full equations (44), we �nd that this corresponds to the solution:

a = b =
c

(1 � c2=4)
(46)

Eliminating Scl in (41), we �nd this relation is obeyed up to one-loop in perturbation

theory as long as we choose square roots so that ac = bc < 0. This solution describes

the singular Taub-NUT geometry and, as discussed in [2], this is the exact solution of

the low-energy theory up to non-perturbative corrections. In other words the resulting

e�ective action (36) includes the sum of all corrections from all orders in perturbation

theory. However, as we have commented above, the function f is not determined by

the solution, so the all-orders e�ective action cannot be written explicitly in terms of

the weak coupling parameter Scl.

2: There is precisely a one-parameter family of solutions passing through Q, each

of which is exponentially close to the line x = 1 (y < 0) near Q. Linearizing around
x = 1, y = 0 we may integrate (45) to obtain the leading asymptotic behaviour,

a� b ' B
a2

c
exp

�
2a

c

�
(47)

where B is a constant of integration. Corrections to the RHS are down by powers of
y = c=a or by powers of exp(2=y).

3: Using numerical methods to examine the behaviour of these solutions away
from the point Q, one �nds that there is a unique critical trajectory which originates

at the point P 0 with coordinates (0;�1). All other trajectories originate either at
the origin (0; 0) or at negative in�nity (0;�1). Atiyah and Hitchin show that only
the critical trajectory corresponds to a complete manifold. The critical solution can
be constructed explicitly in terms of elliptic functions, its asymptotic form near Q is
given in Gibbons and Manton [21] (see equation (3.14) of this reference) and agrees
with (47) with a speci�c value for the integration constant B = Bcr = 16 exp(�2).
All trajectories with B 6= Bcr correspond to singular geometries.

Using the identi�cations (41), the asymptotic behaviour (47) becomes,

a� b ' �8qS2
cl exp (�Scl) (48)

where q = B=Bcr. Hence the leading deviation from the perturbative relation a =

b comes with exactly the exponential suppression characteristic of a one-instanton
e�ect. When substituted in the metric (39) and the e�ective action (36), this term

yields a contribution to the boson kinetic terms which also comes with the phase
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factor exp(�i�) expected for the (anti-)instanton term. Further, each member of the

family of solutions parametrized by the constant q yields a di�erent prediction for

this one-instanton e�ect. In principle, it is straightforward to check the coe�cient of

this term against the results of a semiclassical calculation of the scalar propagator.

This would involve calculating the Grassmann bilinear contributions to the scalar

�eld which come from the fermion zero modes in the monopole background. In the

following, we will choose instead to extract a prediction for the four-fermion vertex

in (36) and compare this directly with the result (35) of Section 3.

The e�ective action (36) contains a four-fermion vertex proportional to the Rie-

mann tensor. To make contact with the results of Section 3 where the vacuum is

chosen to lie in the �3 direction in orbit of SU(2)N , we evaluate the Riemann tensor

corresponding to the metric (39) at the point on the manifold with standard coor-

dinates (0; 0; r = Scl; �). This calculation is presented in Appendix D (Many of the

necessary results have been given previously by Gauntlett and Harvey in Appendix B

of [23]). In particular, we evaluate the leading-order contribution to the �-dependent
terms in the Riemann tensor in the weak-coupling limit: Scl !1. The result is best
expressed in the complex basis with coordinates,

z1 =
1p
2
(X � iY ) z2 =

1p
2
(Z � i�) (49)

In this basis, the relevant contribution to the Riemann tensor is pure holomorphic
and is given by,

R1212 = 8qScl exp (�Scl + i�) (50)

where the other pure holomorphic components are related to this one by the usual
symmetries of the Riemann tensor: Rabcd = �Rbacd = Rcdab = �Rabdc. The anti-
instanton contribution is pure anti-holomorphic and all components of mixed holo-
morphy are independent of �.

The above result for the Riemann tensor means that the corresponding four-fermion
vertex in the non-linear �-model (36), has exactly the chiral form expected from
the discussion of Section 3.2. In particular, invariance of the vertex under U(1)N
transformations implies that the holomorphic (anti-holomorphic) components 
a (
�a)
of the target space fermions have U(1)N charge �1=2 (+1=2). Hence we complete
our identi�cation of the fermions by demanding that the transformation (42) maps

fermions of positive (negative) U(1)N charge to fermions of positive (negative) U(1)N
charge. At the chosen point (0; 0; r = Scl; �), we write the relation between fermions,
(
a;
�a) in the complex basis (49) and (�b; �

�b) in the complex basis of (7) as,


�a ' Mab�
�
b


��a ' M�a�b�
�
�b (51)
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where M�a�b = (Mab)
� and, as in (42), corrections to the RHS are down by inverse

powers of Scl. The second condition in (43) is automatically satis�ed. Regarding Mab

as a 2�2 matrix, the �rst condition in (43) is satis�ed by choosingM = (Scl=MW )M̂ ,

where M̂ 2 SU(2) is a residual degree of freedom associated with the unbroken

SU(2)R symmetry10.

Finally we calculate the four-fermion vertex which follows from the instanton con-

tribution to the Riemann tensor (50). After taking into account the symmetries of the

Riemann tensor described above and performing a Fierz rearrangement the resulting

vertex becomes,

L4F =
1

4
K R1212

�

1 � 
1

� �

2 � 
2

�
(52)

We rewrite the vertex in terms of Weyl fermions using,�

1 � 
1

� �

2 � 
2

�
= (det(M))

2
�
�1 � �1

� �
�2 � �2

�

=

�
Scl

MW

�4
��2 � 2 (53)

Collecting together the various factors, the �nal result for the induced four-fermi
vertex is,

L4F = 27�3qMW

�
2�

e2

�4
��2 � 2 exp (�Scl + i�) (54)

Comparing this with the calculated value (35) for the coe�cient � in the instanton-
induced vertex (29), we deduce that q = 1. This implies that the quantum moduli
space of the theory is in fact the Atiyah-Hitchin manifold.
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Appendix A: Dimensional Reduction

In this Appendix we present our conventions and give the details of dimensional

reduction. We work in Minkowski11 space in 4D and 3D with the metric signature

10Strictly speaking M is only restricted to lie in U (2). However the additional phase can be
reabsorbed by changing the identi�cation  = �=2 made above by an additive constant.

11With the exception of this Appendix and the next one, the calculations in the rest of the paper
are performed in Euclidean space
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(+;�;�; :::) and m;n = 0; 1; 2; 3, �; � = 0; 1; 2.

We start with the N = 2 supersymmetric Yang-Mills in 4D

S4D =
1

g2

Z
d4x Tr

n
�1

2�
vmn�v

mn + i��� /�D�� + i�� /D���+ �D
2 (55)

+2Dm �A
yDm

�A+ i�
� /�D� + i� /D�

� + 2�F
y

�F
�2�D [ �A ; �A

y ] + 2
p
2 i
�
[ �A

y; � ] �� + ��� [ �A ; �
� ]
�o

:

Here
�
vm is the gauge �eld, �A is the complex scalar �eld, Weyl fermions �� and � are

their superpartners, while �D and �F are auxiliary �elds. Also /D� _� = Dm�
m
� _�, and

/�D _��
= Dm�� _��

m , where Dm�X = @m�X � i [
�
vm; �X ]. Wess and Bagger [25] spinor

summation conventions are used throughout and sigma-matrices in Minkowski space

are, �m� _� = (�1; � a), ��m _�� = (�1;�� a).

The three-dimensional theory is obtained by making all the �elds independent of
one spatial dimension and decoupling this dimension from the theory, Eq. (1). The
only subtle point in this program is the dimensional reduction of the fermions. In

4D the 2-component Weyl spinors can be combined into the 4-component Majorana
spinors,

��ch =
 
���
���

_�

!
; ���ch = (��

� ; ��� _�) ;

�
� ch = (� 

� ; �
� _�) ; � ch =

0
@ � �
�
� _�

1
A ; (56)

in such a way that,
i��� /�D�� + i�� /D��� = i���ch�

m
chDm��ch ; (57)

where �mch is the gamma matrix of the 4D theory in the standard chiral basis,

�mch =

�
0 �m

��m 0

�
: (58)

Thus, ��ch and � ch are the Majorana fermions in the chiral basis.

For the purposes of dimensional reduction it is more convenient to choose a di�erent
{ real { basis for Majorana spinors in 4D related by a unitary transformation to the
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chiral basis above,

��re =
 
���
�~��

!
; ���re = i(�~�

� ; ��
�) ;

�
� re = i(�~�

� ; ��
�) ; � re =

 
���
�~��

!
; (59)

where new (real) 2-spinors are simply the `real' and `imaginary' parts of the Weyl

2-spinors,

��� =
1p
2
(��� + ��� _�) �~�� = � ip

2
(��� � ��� _�)

��� =
1p
2
(� � + �

� _�) �~�� = � ip
2
(� � � �

� _�) : (60)

The 4D gamma matrices in this basis are

�0
re =

�
0 �� 2
�� 2 0

�
; �1

re =

�
0 i� 3

i� 3 0

�
;

�2
re =

�
i1 0

0 �i1
�
; �3

re =
�

0 �i� 1
�i� 1 0

�
: (61)

Now the dimensional reduction from 4D to 3D is straightforward, one has to decouple
the second dimension, (x0; x1; x2; x3) ! (x0; x1; x3) � (y0; y1; y2). The four real 2-
spinors ���, �~�� and ���, �~�� become Majorana spinors in 3D and the three gamma

matrices satisfying the Cli�ord algebra in 3D can be read o� from (61): 0 = � 2; 1 =
�i� 3; 2 = i� 1. Note that the 3D Majorana condition  TC =  y0 is now the
condition that the spinor is real since the charge conjugation matrix is C = � 2. We
have de�ned the Dirac conjugate in 3D as � =  y0. For a Majorana spinor this
means ���

� = i��
�.

By renaming the gamma matrices in 4D we can always choose the third and not
the second dimension to decouple. This will always be assumed, see the footnote on

page 4.

Finally we de�ne bosonic �elds ��1;2;3 and �
v� in 3D as follows,

�
vm =

(
�
v� ; m = 0; 1; 2

��3 ; m = 3 ; �A = ��1 + i��2p
2

; (62)

23



and the 4D action (56) becomes

S3D =
2�

e2

Z
d3x Trf � 1

2�
v��

�
v�� +D���iD

�

��i ���D̂����~�D̂�~����D̂�� ��~�D̂�~�
+2��3([��;�~� ] + [��;�~� ]) + 2��2([��;�� ] + [�~�;�~� ]) + 2��1([��;�~� ] + [�~�;�� ])
+([��1;��2]

2 + [��2;��3]
2 + [��3;��1]

2)g : (63)

Here D̂ �
� = D� (

�) �� with D� = @� � i[
�
v�; ] and 0;1;2 satisfy f�; �g = 2g�� .

This action can be written in a manifestly SO(4)R invariant form. First, de�ne

��
A = (��;�~�;��;��~�), where A = 1; :::; 4 is the SO(4)R index. Second, introduce the

self-dual and anti-self-dual 't Hooft �i-matrices [18]

�iAB =

8><
>:

�iAB A;B = 1; 2; 3

��Bi A = 4

�Ai B = 4

��iAB =

8><
>:

�iAB A;B = 1; 2; 3

�Bi A = 4

��Ai B = 4

: (64)

With this de�nition, � is self-dual and �� anti-self-dual with respect to �1234 = +1.
Moreover, they form two sets of commuting su(2) algebras, as [�i; ��j] = 0. In this
notation the action (63) takes the form,

S3D =
2�

e2

Z
d3x Trf � 1

2�
v���v

�� +D���iD
�

��i ���
AD̂��

A

+
X
i<j

[��i;��j]
2 + 2��i��

i
AB��

A

��
Bg : (65)

The Lagrangian has a global SO(4)R ' SU(2)N � SU(2)R symmetry. The SU(2)R
leaves the three scalar �elds invariant, and acts on the fermions. In terms of the four-
dimensional Weyl fermions (�� � ) forms a doublet under SU(2)R. Rewriting this in

terms of the Majorana's in 3D, one �nds

��
A 7! exp

�
1
2
�k�kAB

�
��
B : (66)

The SU(2)N group is the remnant of a 3-dimensional rotation group in the N = 1,
D = 6 theory. The scalar �elds transform as

��
i 7! exp

�
�kRk

�i
j ��

j ; (67)

where (Rk)ij = �kij; �123 = 1 are the standard rotation group generators. On the
fermions, SU(2)N acts as

��
A 7! exp

�
1
2
�k��kAB

�
��
B (68)

These transformations leave the microscopic theory invariant, as one can check ex-

plicitly.
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The supersymmetry transformation rules for the scalar �elds are given by

���
i = ��A���iAB��

B
� (69)

They can be obtained from a dimensional reduction of the SUSY rules in 4D. One can

check that SU(2)N and SU(2)R are invariances of this transformation. Finally we

can relate the Majorana fermions ��
A to the (dimensionally-reduced) Weyl fermions

�� and � by complexifying in the SO(4)R index. We de�ne a complex basis;

��
1
� =

1p
2
(��� � i~���) = �� _�

���
_�

; ��
�1
� =

1p
2
(��� + i~���) = ���

��
2
� =

1p
2
(��� � i~���) = �� _�

�
� 

_�
; ��

�2
� =

1p
2
(��� + i~���) = � � (70)

Appendix B: Wilsonian E�ective Action at 1-loop

In this Appendix we extract the 1-loop e�ective U(1) Wilsonian action from the
microscopic SU(2) Lagrangian.

In order to calculate the Wilsonian e�ective action, it is customary to split up all
�elds (except the ghosts) into a background part and a uctuating part, e.g.,

��i = ��ibkgd + ���i ; etc: (71)

The background �elds should be thought of as comprising large-wavelength modes
which will justify a gradient expansion; in particular the background scalar �eld
includes the VEV v which we can choose to point in the third direction in both
colour and SU(2)N space:

��i bkgd =
p
2v�i3�

3=2 + ���ibkgd (72)

By convention, under an SU(2) gauge transformation, the variation of the total �eld
is entirely assigned to the uctuating parts while the background parts are held �xed,

thus:

��(x) �v
a
� = �abc�b(x)(vc�bkgd

+ �vc�)�; @��a(x)
= �abc�b(x)�vc� � (D��� )

a

��(x) ��
a
k = �abc�b(x)

�
�ck bkgd + ��ck

�
��(x) v

a
�bkgd = ��(x) �

a
k bkgd = 0 (73)
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and likewise for the fermions. Here D� = @� � i[
�
v
�
bkgd; ] is the background covariant

derivative. It is convenient to specialize to the one-parameter family of \background

R� gauges," linear in the uctuating �elds, de�ned by the gauge-�xing term

Lg:f:t: = �2�

e2
1

2�

X
a=1;2;3

(fa� )
2

(74)

where

fa� �
a=2 = D� �

�
v� + i�

X
k=1;2;3

[��k bkgd ; ���k] (75)

As in the usual R� gauges, for any �; Lg:f:t: is constructed to cancel out the troublesome

quadratic cross term �
p
2v(��13@

��v2� � ��23@
��v1�) induced in the SU(2) Lagrangian

by the VEV (72) (with an integration by parts). The corresponding action for the

triplet of complex ghosts ci follows straightforwardly from Eq. (73):

Lghost =
2�

e2
ciy

�f i�

��j
cj

=
2�

e2
~c y � [�D2 � (D� � �~v�� ) + �~�k bkgd � ((~�k bkgd + �~�k)� )]~c

(76)

using an obvious 3-vector notation for the adjoint �elds, e.g., ~v� = (v1�; v
2
�; v

3
�):

We will calculate (part of) the one-loop e�ective action for the massless quanta
f�31bkgd; �

3
2 bkgd; ��

3
3bkgd; v

3
� bkgd; �

3
bkgd; ~�

3
bkgd; �

3
bkgd; ~�

3
bkgdg. Here �31 bkgd and �32bkgd are the

Goldstone bosons associated with the spontaneous breaking of the SU(2)N symmetry

down to U(1) under which they transform as a doublet, whereas ��33bkgd is the singlet
dilaton (cf Eq (72)). Since these scalars have di�erent charges under the unbroken
U(1), one generically expects their e�ective couplings to renormalize di�erently at
the loop level, hence:

Le� =
2�

e2
1

2

 
1� C1e

2

MW

+O(e4)
! X
i=1;2

�
@��

3
i bkgd

�2

+
2�

e2
1

2

 
1 � C3e

2

MW

+O(e4)
!
(@���

3
3bkgd)

2 + � � � (77)

where the one-loop numerical constants C1 and C3 are not necessarily equal, and we

omit spinor and gauge �elds as well as higher derivative terms. However, since our

choice of gauge �xing, (75), respects both scale and SU(2)N invariance, Eq. (77) must

come from an O(3)-invariant expression containing no explicit factors of MW nor of
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��33bkgd
; only the total background �elds �3i bkgd can appear. In particular, explicit

factors of MW are replaced by

MW ! � ; � = [
X

i=1;2;3

(�3i bkgd)
2]
1=2

(78)

Thus (77) must come from

L1-loop
e� =

2�

e2
1

2

 
1 � C1e

2

�

! X
i=1;2;3

(@��
3
i bkgd)

2
+

2�

e2
(C1 � C3)e

2

2�3

0
@ X
i=1;2;3

�i bkgd@��ibkgd

1
A

2

+ � � � (79)

in terms of the two possible SU(2) invariants at the 2-derivative level. The di�erence

between (77) and (79) lies in the 3-point and higher-point functions when one expands

about the VEV.

Below we shall explicitly calculate

C1 = C3 =
1

4�2
(80)

which constitutes our 1-loop prediction.

Calculation of the e�ective action. Extracting the 1-loop Wilsonian e�ective
action is an intricate calculation in a generic \background R�" gauge, but for the
speci�c value � = 1 we can exploit the following observation. Let us extend the gauge
�eld

�
v� to a 6-dimensional vector �eld incorporating the three scalars ��i :

�
v6D� = (

�
v0 ;

�
v1 ;

�
v2 ;

�
v3 � ��1 ; �v4 � ��2 ; �v5 � ��3 ) (81)

With the convention that all relevant �eld con�gurations are constant in the �nal
three spatial directions,

@

@x3
=

@

@x4
=

@

@x5
� 0 (82)

then the 3-dimensional N = 4 SU(2) Lagrangian is known to be simply that of 6-

dimensional N = 1 SYM theory. Furthermore, for the speci�c choice � = 1; the

gauge-�xing conditions (75) may be rewritten compactly as

fa�=1�
a=2 = D6D

� �
�
v6D� (83)
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where D6D

� is the 6-dimensional background covariant derivative de�ned subject to

(82), and the metric signature is (+;�;�;�;�;�). Likewise the ghost action (76)

simpli�es to

Lghost =
2�

e2
~c y � [� (D6D)2 � D6D� � �~v 6D

� � ]~c (84)

With these simpli�cations the problem is now reduced, quite literally, to a textbook

exercise (see Sec. 16.6 of [28], which we follow closely). At the one-loop level we focus

solely on terms quadratic in the uctuating �elds, dropping for example the second

term in (84). The resulting Gaussian functional determinants may be exponentiated

in the usual way, and lead to a contribution

X
s=0; 1

2
;1

�s Tr log�s (85)

to the e�ective action. Here s indexes the spin, and the weight factor �s takes the

values �1 = �1
2
for the 6D vector, �1=2 = +1

2
for the single 6D Dirac spinor formed

from the four 3D Majorana fermions12, and �0 = +1 for the complex ghosts. �s is
the Gaussian quadratic form sandwiched between the spin-s uctuating �elds in the
adjoint representation of SU(2)color: As shown in [28] it has the universal form:

�s = �@2 +�(1) +�(2) +�(J )

s (86)

where in the present model

�(1) = if@� ; v6Da
bkgd�t

ag ; �(2) = v6Da
bkgd�t

a v6D�b
bkgd

tb ; �(J )

s = v6Da
bkgd��t

aJ ��
s (87)

Here ta is the color generator in the adjoint representation, (ta)bc = �i�abc; and J ��
s is

the generator of 6-dimensional Lorentz transformations in the spin-s representation:

(J ��
1 )�� = i(����

�
� � ����

�
�) ; J ��

1=2 =
i

4
[�; �] ; J ��

0 = 0 : (88)

We now depart from [28] in two obvious ways, in order to incorporate spontaneous
symmetry breaking. First, we require the background �elds to live purely in the third
direction in color space,

�
v6D
bkgd� = v6D3

bkgd� �
3=2 (89)

Second, rather than truncating the expansion of the logarithm at second order in the

total background �eld, we instead expand about the VEV, rewriting Eq. (72) as

�
vbkgd� =

p
2v ��5 �

3=2 + �
�
vbkgd� (90)

12NB: We take �1=2 = +1=2 rather than �1=2 = +1 for the spinor because in the de�nition of �1=2

we will square the /�D operator following [28].
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and keep terms to second order in the deviation �eld �
�
vbkgd� but to all orders in the

VEV itself. In terms of the deviation �eld, Eq. (86) becomes

�(1) = if@� ; �v6D3
bkgd�t

3g ;
�(2) = ~�(2) � 2MW �v

6D3
bkgd5t

3t3 �M2
W t

3t3 ;

�(J )

s = �v6D3
bkgd��t

3J ��
s (91)

Here
~�(2) = �v6D3

bkgd�t
3 �v6D�3bkgd t

3 (92)

Also, thanks to (89), �v6D3
bkgd�� is now the abelian �eld strength @[��v

6D3
bkgd� ] subject as

always to the constancy conditions (82). Taylor expanding the logarithm then gives

X
s=0; 1

2
;1

�sTr log
�
� (@2 +M2

W t
3t3) + �(1) + ~�(2) +�(J )

s � 2MW �v
6D3
bkgd5t

3t3
�

= const. +
X

s=0; 1
2
;1

�s Tr
�
G � (�(1) + ~�(2) +�(J )

s � 2MW �v
6D3
bkgd5t

3t3 )

�G � (�(1) +�(J )

s � 2MW �v
6D3
bkgd5t

3t3 ) � G � (�(1) +�(J )

s � 2MW �v
6D3
bkgd5t

3t3 )
�

(93)

where corrections to the RHS are O(�v3bkgd) Here G is the diagonal colour-space matrix,

G = diag(
1

p2 �M2
W

;
1

p2 �M2
W

;
1

p2
) (94)

as follows from (t3t3)ab = �ab� �a3�b3. Apart from the masses in the propagators (94),
the chief e�ect of the spontaneous symmetry breaking in (93) are the terms linear

and quadratic in MW . Let us dispose of these �rst. Terms linear in MW areX
s=0; 1

2
;1

�sMW Tr
�
� 2G � �v6D3

bkgd5t
3t3 + 2G � �v6D3

bkgd5t
3t3 � G ��(1)

+ 2G � �v6D3
bkgd5t

3t3 � G ��(J )

s

�
(95)

These are would-be tadpole contributions to the e�ective action. Respectively, the
second and third terms here vanish because trcolort

3t3t3 = 0 and trrepJ ��
s = 0. The �rst

term is a nonvanishing Feynman diagram whose only spin dependence comes from the

trace over the Lorentz representation, giving a relative weight of 6; 4; 1, respectively,

for the vector, spinor and ghost loop. From the above values of �s one sees that

6�1 + 4�1=2 + �0 = 0 (96)

so that the tadpoles do cancel among the three types of loops (a manifestation of

supersymmetry). And the same arithmetic kills the cross-term in (93) proportional
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toM2
W : (Since these mass-dependent terms were the only potential source of di�erence

between v6D3
bkgd5 � �3

bkgd3 and the other two massless scalars, their vanishing implies that

C1 = C3 in the notation of Eq. (77).) In fact these three arguments kill almost all of

the M0
W terms in (93) as well, leaving only

X
s=0; 1

2
;1

�sTr (� 1
2
G ��(J )

s � G ��(J )

s ) = �1
2

Z
d3k

(2�)3
v3��(k)v

3
��(�k)

�
� Z d3p

(2�)3
2 � 1

p2 �M2
W

� 1

(p+ k)2 �M2
W

� X
s=0; 1

2
;1

�s trJ ��
s J ��

s

(97)

The p integration yields i=(4�MW )+O(k2) (the factor of 2 inside the integrand counts
the two massive colors a = 1; 2). The spin sum simpli�es using [28]

trJ ��
s J ��

s = (g��g�� � g��g��)C(s) (98)

where an explicit calculation using (88) gives C(1) = 2; C(1
2
) = 1; and C(0) = 0: So

the net contribution is

i

8�MW

Z
d3k

(2�)3
v3
bkgd��(k)v

3��
bkgd

(�k) (99)

where we drop terms of O(k4). A comparison with the tree-level action �2�
e2

i
4

R
(v3��)

2

then implies
2�

e2
! 2�

e2
� 1

2�MW

+O(e2) (100)

which is our one-loop prediction C1 = C3 = 1=4�2.

Appendix C: Three-dimensional Instantons

In this Appendix we set up and give the details of the 1-instanton calculus in three
spacetime dimensions.

First we consider the bosonic part of the three-dimensional Euclidean action (63),

SB =
2�

e2

Z
d3xTrf 1

2�
v��

�
v�� +D���iD

�

��i + ([��1;��2]
2 + [��2;��3]

2 + [��3;��1]
2)g : (101)

To �nd the instanton con�guration we employ Bogomol'nyi's lower bound approach

[12],

SB � 2�

e2

Z
d3x1

2

�
Ba
�B

a
� +D��

a
3D��

a
3

�
(102)

=
2�

e2

Z
d3x 1

2

�
(Ba

� +D��
a
3)

2 + (�2Ba
�D��

a
3)
�
� 2�

e2

Z
d3x(�Ba

�D��
a
3) ;
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where Ba
� =

1
2
����v

a
��. The 3D bosonic instanton, being a minimum of SB, saturates

Bogomol'nyi bound (103),

��
cl

1
= 0 ; ��

cl

2
= 0 ; (103)

Bcl a
� = Dcl

��
cl a
3 ; (104)

where (103) ensures the vanishing of the commutator terms in (101) and the remaining

components of the bosonic instanton satisfy Bogomol'nyi equation (104) and are given

by [13],

�cl a3 =
�
MW jxj cothMW jxj � 1

� xa
x2

;

vcl a� =
�
1� MW jxj

sinhMW jxj
�
�a��

x�

x2
; (105)

with the boundary conditions as jxj ! 1,

�cl a3 ! xa

x
MW ; Bcl a

� ! �x
ax�

x4
: (106)

The instanton action follows from (103), (106),

Scl =
2�

e2

Z
d3x@�(�Bcl a

� �cl a3 ) =
2�

e2
4�MW (107)

From the above formulae it is obvious that the bosonic components of the 3D instanton

are those of the BPS (anti-)monopole in the corresponding four-dimensional theory
in the

�
v0 = 0 gauge.

The fermi-�eld components of the instanton can be determined by in�nitesimal su-
persymmetry transformations of the bosonic components (105) and will be discussed
later.

Isolated one-instanton contribution to the functional integral is of the generic form

[18],

Z1 =
Z

d�B

Z
d�F R exp[�Scl] ; (108)

where d�B and d�F are the measures of integrations over collective coordinates of
bosonic and fermionic zero modes, R is the ratio of functional determinants over

non-zero eigenvalues of the operators of quadratic uctuations in the instanton back-
ground, Eq. (23). In this Appendix we determine d�B and d�F .
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It will prove to be particularly convenient to arrange the 3D instanton analysis

in a four-dimensional way. The four-vector �eld
�
vm of the dimensionally reduced

4D theory (translationally invariant along x3) is given by (62). The Bogomol'nyi

equations (104) in this language are equivalent to the 4D self-duality equations [14],

vcl amn = �vcl amn (109)

and the instanton action (107) is

Scl =
2�

e2

Z
d3x 1

4
vcl amn v

cl a
mn =

8�2

e2
MW : (110)

The 3D instanton or, equivalently, the BPS monopole, is in this way similar to the

4D Yang-Mills instanton [26]. The functional integration over the (x3-independent)

uctuations �vam around the instanton will be performed in the (four-dimensional)

covariant background gauge,

Dcl
m�v

a
m = 0 ; (111)

and the bosonic instanton zero modes will be of the general form [27],

Za [k]
m =

@vcl am

@[k]
+ Dcl

m�
a ; (112)

where [k] are the zero modes collective coordinates { the three-translations, X�, and
the U(1) rotation, �. The second term on the right hand side of (112) is necessary to
keep Zm in the background gauge (111). In general, these bosonic zero modes, Zm,
can be written in a more compact notation,

Dcl
[mZn] =

�Dcl
[mZn] ; Dcl mZm = 0 : (113)

The measure d�B is now simply [27],

d�B =
4Y

k=1

d[k]p
2�

�
detrs

2�

e2

Z
d3x Za [r]

m Za [s]
m

�1=2
: (114)

First, consider translational zero modes, cf. (112),

Za [�]
m = �@�vcl am + Dcl

mv
cl a
� = vcl am� : (115)

Their overlap is

O�� =
2�

e2

Z
d3x Za [�]

m Za [�]
m =

2�

e2

Z
d3x vcl am� vcl am�

=
���

4

2�

e2

Z
d3x vcl amn vcl amn = ��� Scl : (116)
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Now we consider the U(1) orientation zero mode. To do this we need to, �rst, gauge

rotate the instanton (105) into the unitary (singular) gauge, where

vcl a0 sing = �cl a3 sing � �a3 ; (117)

and, second, allow the further global gauge transformations consistent with (117),

they obviously form a U(1) subgroup of the SU(2),

~V cl
m sing = exp[i�� 3=2] ~vclm sing exp[�i�� 3=2] : (118)

The U(1) zero mode in the form (112) is

~Z [3]
m = @� ~V

cl
m sing +

1

MW

Dcl
m

�
~�clsing �MW �

3=2
�

=
1

MW

~vclm3 sing ; (119)

with the overlaps,

O33 =
2�

e2

Z
d3x Za [3]

m Za [3]
m =

1

MW

2�

e2

Z
d3x vcl am3 vcl am3 =

1

MW

Scl

O�3 =
2�

e2

Z
d3x Za [�]

m Za [3]
m = 0 : (120)

Finally combining (114), (116) and (120) we obtain the desired expression (16) for
d�B, Z

d�B =
Z

d3X

(2�)3=2
S
3=2
cl

Z 2�

0

d�

(2�)1=2
S
1=2
cl

MW

: (121)

Our next goal is d�F . The 1-instanton solution of the N = 4 supersymmetric Yang-
Mills in 3D has four fermion zero modes which can be determined by in�nitesimalN =
4 supersymmetry transformations of the bosonic components (105). Equivalently they
can be understood in terms of the Weyl spinors of the four-dimensional theory, (17),

�cl� = 1
2
��(�

m��n) �� v
cl
mn

 cl
� = 1

2
�0�(�

m��n) �� v
cl
mn ; (122)

where the two-component Grassmann collective coordinates �� and �0� are the pa-

rameters of in�nitesimal N = 2 supersymmetry transformations in (dimensionally

reduced) 4D theory. Since � = 1; 2 there are two �'s and two  's which is equivalent
to four zero modes in terms of Majorana spinors in 3D. There are no anti-fermion zero
modes due to the self-duality, (109). The fermion collective coordinates integration

measure is in general, Z
d�F =

Z
d2� d2�0 (J�)�2 ; (123)
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where the fermion Jacobian is,

J� = 2�

e2

Z
d3x d2� Tr ��

cl �

��
cl
� ; (124)

and it is understood13 that
R
d2� �2 � 1. The right hand side of (124) is easily

evaluated with the use of (122) and the sigma-matrix algebra, and gives J� = 2Scl.

Comparing with (18) we obtain,

Z
d�F =

Z
d2� d2�0 (2Scl)

�2 : (125)

Finally we need the long distance asymptotics of the fermion zero modes (122).

These can be readily obtained by, �rst, switching from �m matrices in (122) to �mch of

Eq. (58), second, rotating into the real basis, (61), decoupling the x2 direction and,

�nally, switching to � matrices in 3D. The result is then rotated into the singular

gauge, (117), and the large distance limit jxj ! 1 is considered

�LD� (x) = 2� �
� ��

x�

x3
;  LD

� (x) = 2� �
� �0�

x�

x3
; (126)

which con�rms Eq. (32).

Appendix D: The Riemann Tensor

In this appendix we calculate the leading exponentially suppressed terms in the Rie-
mann tensor for the metric

ds2 = f2(r)dr2 + a2(r)�21 + b2(r)�22 + c2(r)�23

with �i de�ned in (38) and the functions a; b and c satisfying (44). Following Appendix
B of [23], we de�ne the vierbein one-forms �̂� = ��i dXi with

�̂1 = a�1 ; �̂2 = b�2 ; �̂3 = c�3 �̂4 = fdr (127)

which, using (44) gives us the spin connection

!1
r = (a0=f)�1 ; !

2
r = (b0=f)�2 ; !

3
r = (c0=f)�3

!1
2 = (1 + c0=f)�3 ; !

2
3 = (1 + a0=f)�1 ; !

3
1 = (1 + b0=f)�2 (128)

13Note that in (124) we could have summed over the isospin a = 1; 2; 3 rather than trace over
the SU (2) matrices. This would have produced an extra factor of 1=2 which then would require an
alternative prescription for Grassmanian integration,

R
d2� �2 � 2 and the �nal answer for J� would

be the same.
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The curvature 2-forms are now found to be

R12 = ĉ0dr ^ �3 + [�ĉ+ â+ b̂+ 2âb̂]�1 ^ �2
R23 = â0dr ^ �1 + [�â+ b̂+ ĉ+ 2b̂ĉ]�2 ^ �3
R31 = b̂0dr ^ �2 + [�b̂+ ĉ+ â+ 2ĉâ]�3 ^ �1 (129)

Where â = a0=f , b̂ = b0=f and ĉ = c0=f . The other components are determined by

R34 = R12 and cyclic, giving us a Riemann tensor self-dual with respect to the epsilon

tensor �1234 = +1. Explicitly we have,

R��� = �a�� Tab �
b
� (130)

with T = diag(�â0=fa;�b̂0=fb;�ĉ0=fc) where,

Rijkl = ��i �
�
j �


k�

�
lR��� (131)

Calculating the Riemann tensor at the point (0; 0; r; �) in the standard coordinates,
we then change to the complex basis (49) with coordinates

z1 =
1p
2
(X � iY ) z2 =

1p
2
(Z � i�) (132)

Labelling the coordinates (z1; z2; �z1; �z2) by an index P = 1; 2; 3; 4, the Riemann tensor
is conveniently given in terms of the following (4� 4) matrices,

A =

0
BBB@

0 A+e
+i 

0 A�e
+i 

�A+e
+i 

0 �A�e
�i 

0

0 A�e
�i 

0 A+e
�i 

�A�e
+i 

0 �A+e
�i 

0

1
CCCA

B =

0
BBB@

0 �B+e
+i 

0 �B�e
+i 

B+e
+i 

0 �B�e
�i 

0

0 B�e
�i 

0 B+e
�i 

B�e
+i 

0 �B+e
�i 

0

1
CCCA

C =

0
BBB@

0 0
ab
r2

0

0 0 0
cf
2

�

ab
r2

0 0 0

0 �

cf
2 0 0

1
CCCA (133)

where A� = af � 1
2
bc and B� = bf � 1

2
ac. The �nal result is

RPQRS = � â0

4far2
APQARS +

b̂0

4fbr2
BPQBRS +

ĉ0

fc
CPQCRS (134)
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The leading exponentially suppressed terms are proportional to (a � b) whose

asymptotic form is given in (48) as,

a� b ' �8qr2e�r (135)

Hence, to compare with the instanton calculation, it su�ces to approximate all other

factors by their leading weak coupling behaviour. From (41) we have,

a+ b ' 2r +O(1=r)

c ' �2 +O(1=r)

f ' �1 +O(1=r) (136)

Expanding the exact expression (134) we �nd that, to the required order,

R1212 = 8qre�r+i�

R�1�2�1�2 = 8qre�r�i� (137)

As discussed in Section 4, the remaining pure (anti)-holomorphic components are

related to these by symmetries of the Riemann tensor. All components of mixed
holomorphy are independent of �.
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