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1Duality and Supersymmetric MonopolesJerome P. Gauntlett a�aPhysics Department, Queen Mary and West�eld College,Mile End Rd, London E1 4NS, U.K.Exact duality in supersymmetric gauge theories leads to highly non-trivial predictions about the moduli spacesof BPS monopole solutions. These notes attempt to be a pedagogical review of the current status of theseinvestigations and are based on lectures given at the 33rd Karpacz Winter School: Duality - Strings and Fields,February 1997.1. INTRODUCTIONElectromagnetic duality has emerged as a pow-erful tool to study strongly coupled quantum�elds. In N=4 super-Yang-Mills theory and somespecial theories with N=2 supersymmetry, theduality is conjectured to be exact in the sense thatit is valid at all energy scales. These theories pro-vide the most natural setting for Montonen andOlive's original idea [1] since they have vanishing�-functions and hence the quantum correctionsare under precise control. In many theories withN=2 and N=1 supersymmetry duality plays animportant role in elucidating the infrared dynam-ics. In these models one can study strong cou-pling phenomenon such as con�nement and chiralsymmetry breaking in an exact context2.The purpose of these lectures is to review someaspects of exact duality focusing on theories withN=4 supersymmetry. In these theories the dual-ity group is SL(2;Z) which includes a Z2 corre-sponding to the interchange of electric and mag-netic charges along with the interchange of strongand weak coupling. Sen was the �rst to realise[2] that SL(2;Z) or \S-duality" leads to highlynon-trivial predictions about the BPS spectrumof magnetic monopoles and dyons in the theory.BPS states are important for testing duality be-cause they form short representations of the su-persymmetry algebra and hence we have goodcontrol over their behaviour as we vary the cou-�Current Address: Isaac Newton Institute, 20 ClarksonRd, Cambridge, CB3 0EH.2See the contributions of other speakers at the school.

pling. At weak coupling the predicted BPS spec-trum can be translated into statements about cer-tain geometric structures on the moduli space ofBPS monopole solutions.We begin with bosonic SU (2) BPS monopoles,reviewing some aspects of the moduli space ap-proximation and discussing how quantised dyonsappear in the semiclassical spectrum. Next wedescribe some features of N=4 super-Yang-Millstheory before studying the S-duality predictions.We analyse the SU (2) case followed by the higherrank gauge groups. We conclude by outliningsome open problems in the study of exact duality.2. SU(2) BPS MONOPOLES AND THEMODULI SPACE APPROXIMATIONConsider the Yang-Mills-Higgs LagrangianL = �14F a��F a�� � 12D��aD��a ; (1)where A� = Aa�T a is an SU(2) connection with�eld strength F�� = @�A� � @�A� + e[A�; A�],and � = �aT a transforms in the adjoint repre-sentation with the covariant derivative given byD�� = @�� + e[A�;�]. We choose the Lie alge-bra generators T a to be anti-hermitian. There isno potential term for the Higgs �eld and we arethus considering the \BPS limit" [3,4] which isrelevant for the supersymmetric extension. Themoduli space of Higgs vacuua is obtained by im-posing h�a�ai = v2 and is thus a two-sphere. Ifv2 6= 0 then SU (2) is spontaneously broken toU (1). The electric and magnetic charge with re-spect to the U (1) speci�ed by the Higgs �eld are



2given byQe = 1v Z dSi(Eai �a) ;Qm = 1v Z dSi(Bai �a) ; (2)where Eai = F0i and Bai = 12�ijkF ajk are the non-abelian electric and magnetic �eld strengths, re-spectively, and the integration is over a surface atspatial in�nity.The perturbative states consist of a masslessphoton, a massless neutral scalar andW� bosonswith electric charge Qe = �e and mass ev. Toanalyse the monopole and dyon spectrum we needto construct classical static monopole solutionsand then perform a semi-classical analysis. Letus begin by noting that for all �nite energy con-�gurations the Higgs �eld must lie in the vacuumat spatial in�nity. The Higgs �eld of these con�g-urations thus provides a map from the two sphereat spatial in�nity to the two sphere of Higgs vac-uua. These maps are characterised by a topologi-cal winding number k and one can show that thisimplies that the magnetic charge is quantisedQm = 4�e k : (3)The minimal magnetic monopole charge is twicethe Dirac unit because we could add electricallycharged �elds in the fundamental representationof SU (2) that would carry 1/2 integer electriccharges in contrast to the integer charged W -bosons.To proceed with the construction of staticmonopole solutions it will be convenient to workin the A0 = 0 gauge. We must then imposeGauss' Law, the A0 equation of motion, as a con-straint on the physical �elds:Di _Ai + e[�; _�] = 0: (4)In this gauge the Hamiltonian isH = T+V wherethe kinetic and potential energies are given byT = 12 Z d3x( _Aai _Aai + _�a _�a) ; (5)V = 12 Z d3x(Bai Bai +Di�aDi�a); (6)

respectively. Noting that V can be rewritten [4]asV = 12 Z d3x[(Bai �Di�a)(Bai �Di�a)]�vQm;(7)we deduce that in each topological class k corre-sponding to magnetic charge given by (3) thereis a Bogomol'nyi bound on the mass of any staticclassical monopole solution:M � vjQmj = 4�ve jkj: (8)The static energy is minimised when the bound issaturated which is equivalent to the Bogomol'nyi(or BPS) equationsBi = �Di�: (9)The upper sign corresponds to positive k or \monopoles" and the lower sign corresponds tonegative k or \anti-monopoles". From now on wewill restrict our considerations to monopoles, theextension to anti-monopoles being trivial. In theA0 = 0 gauge there are no static dyon solutions;the dyons emerge as time dependent solutions aswe will see.The moduli space of gauge inequivalent solu-tions to the Bogomol'nyi equations will be de-noted Mk. Let us discuss some of the geometryof this manifold. We begin by recalling that in theA0 = 0 gauge the con�guration space of �elds isgiven by C = A=G where A = fAi(x);�(x)g isthe space of �nite energy �eld con�gurations andwe have divided out by G, the group of gaugetransformations that go to the identity at spatialin�nity. Tangent vectors f _A; _�g to C must satisfyGauss Law (4). From this point of view, the ki-netic energy in (5) is simply the metric on C. Themoduli Z� that appear in the general solutionto the Bogomol'nyi equations fA(x; Z);�(x; Z)g,are natural coordinates onMk � C. Tangent vec-tors to Mk must also satisfy the linearised Bogo-mol'nyi equations�ijkDj _Ak = Di _� + e[ _Ai;�] : (10)Using the coordinates Z� we havef _A; _�g = _Z�f��Ai; ���g ; (11)



3where f��Ai; ���g satisfyDi��Ai + e[�; ���] = 0 ; (12)�ijkDj��Ak = Di��� + e[��Ai;�] ; (13)which are simply the equations for a physical zeromode. The zero modes can be obtained by di�er-entiating the general solution with respect to themoduli but in general one has to include a gaugetransformation to ensure that it satis�es (13) i.e.,��Ai = @�Ai �Di�� ;��� = @��� e[�; ��] : (14)The metric on C gives rise to a metric on Mkwhich can be written in terms of the zero modes:G��(Z) = Z d3x[��Aai ��Aai + ���a���a] : (15)Mk is 4k-dimensional which can be established,for example, by counting zero modes using an in-dex theorem. The space of �eld con�gurationsA inherits three almost complex structures, fromthose on R4 and they descend to give a hyper-K�ahler structure on Mk. Explicit formulae forthe complex structures on Mk in terms of thezero modes can be found in [5]. More details onthe geometry of Mk can be found in [6].The moduli space for a single BPS monopolecan be determined by explicitly constructing themost general solution and we �ndM1 = R3�S1.The R3 piece simply corresponds to the positionof the monopole in space. The S1 arises from thegauge transformation g = e��=v on any solution.Since this does not go to the identity at in�nity, itis a \large" gauge transformation, it correspondsto a physical motion. Since all �elds are in theadjoint a 2� rotation in SU (2) is the identity andwe conclude that 0 � � < 2�. We will see thatthis coordinate is a dyon degree of freedom.We have noted that the dimension of Mk is4k. The physical reason for the existence of thesemultimonopole con�gurations is that in the BPSlimit there is a cancellation between the vec-tor repulsion and scalar attraction between twomonopoles. Heuristically one can think of the 4kdimensions as corresponding to a position in R3and a phase for each monopole but the structureof Mk turns out to be much more subtle and in-teresting. For general k we can separate out a

piece corresponding to the motion of the centreof mass of the multi-monopole con�guration andwe haveMk = R3� (S1 � ~M0k)=Zk. The S1 fac-tor is related to the total electric charge. ~M0k is4(k�1) dimensional and hyper-K�ahler. It admitsan SO(3) group of isometries which correspondsto a rotation of the multi monopole con�gurationin space. Although the topology of these spacesis well understood, the metric is explicitly knownonly for k = 2 [6].To determine the semi-classical spectrum ofstates with magnetic charge k we start with aclassical solution (Acl(x; Z);�cl(x; Z)). To havea well de�ned perturbation scheme with e � 1,we need to introduce a collective co-ordinate foreach zero mode; these are the moduli Z�. Wethen expand an arbitrary time dependent �eld asa sum of the massive modes with time dependentcoe�cients and allow the collective coordinatesto become time-dependent (see, e.g., [7]). A low-energy ansatz for the �elds is obtained by ignoringthe massive modes and demanding that the onlytime dependence is via the collective co-ordinates.Thus we are led to the ansatz 3Ai(x; t) = Acli (x; Z(t)) ;�(x; t) = �cl(x; Z(t));A0 = _Z��� : (16)After substituting this into the action (1) we ob-tain an e�ective actionS = 12 Z dtG�� _Z� _Z� � 4�ve k ; (17)which is precisely that of a free particle prop-agating on the moduli space Mk with metric(15). This is the moduli space approximation [9].The classical equations of motion are simply thegeodesics on Mk.To proceed with the semiclassical analysis weneed to study the quantum mechanics of (17).Let us show how a quantised spectrum of dyonsemerges in the quantum theory. For k = 1 we3Note that the A0 term is included to ensure that themotion is orthogonal to gauge transformations. One coulddo a gauge transformation if one wants to remain in theA0 = 0 gauge (see also the discussion in [8]).



4have M1 = R3 � S1 and including various con-stants we have:S = 12 Z dt �(4�ve ) _Z2 + 4�ve3 _�2�� 4�ve : (18)The wavefunctions are plane waves of the formeiP�Zeine� where ne is an integer. In the modulispace approximationQe = �ie@� and we see thatwe have a tower of dyons with Qe = nee. Themass of these states can be calculated and we getM = n2eve3=8� + 4�v=e� v[Q2e + Q2m]1=2 ; (19)where we have used the fact that we are assuminge� 1 in our approximations. By generalising theargument that led to (8) it can be shown [10] thatM � v[Q2e + Q2m]1=2 for all classical solutions tothe equations of motion (static dyons can be ob-tained if we do not work in the A0 = 0 gauge). Wethus see that in the moduli space approximationthe bound is saturated. Of course in the purelybosonic theory we are considering here this couldget higher order quantum corrections.For k > 1 we can perform a similar analysison Mk, looking for scattering states and boundstates of the Hamiltonian in the usual fashion.This has been pursued in the bosonic theory in[11,12]. The momentum conjugate to the coordi-nate on the S1 gives the total electric charge Qeof the con�guration4 and the bound states havemasses M = v[Q2e + Q2m]1=2 + �E where �E isthe relative kinetic energy.We conclude this section by considering arenormalisable term that we can add to the La-grangian (1) that plays an important role in du-ality:�L = � �e232�2F a�� � F a�� : (20)As it is a total derivative it doesn't a�ect theequations of motion. It is related to instantone�ects and it also a�ects the electric charge ofdyons. Recall that the dyon collective coordi-nate arose from doing a gauge transformation4The individual electric charge of each monopole is nota good quantum number due to the possibility of W -boson exchange which the moduli space approximationincorporates.

about the � axis. The Noether charge picksup a � dependent contribution and one �ndsthat Qe = nee + e�=2�nm [13]. In the mod-uli space approximation this manifests itself viaQe = �ie@� + e�=2�nm. At this point it is con-venient to rescale the �elds fA;�g ! fA;�g=e.Our combined Lagrangian then takes the simpleformL = � 116� Im� [F 2+ iF � F ]� 12e2D�2 ; (21)where we have introduced the complex parameter� = �2� + 4�ie2 : (22)The BPS mass formula for dyons (19) is thengiven byM = vjne + nm� j : (23)Due to the rescaling, here and in the following vcontains a hidden factor of the coupling constante.3. N=4 SUPER-YANG-MILLSN=4 super-Yang-Mills theory has the maximalamount of supersymmetry with spins less thanor equal to one. It has vanishing beta-functionand is thought to describe a conformally invari-ant theory. In addition it is supposed to exhibitS-duality, which we shall de�ne below. We con-sider N=4 super-Yang-Mills with arbitrary sim-ple gauge group G. It can be obtained as the di-mensional reduction on a six-torus of N=1 super-Yang-Mills theory in ten dimensions (see, e.g.,[14]). The ten-dimensional Lorentz group reducesto SO(3; 1)�SO(6) and SO(6) becomes a globalsymmetry of the theory. The bosonic �elds inthe supermultiplet come from the ten dimensionalgauge �eld and consist of a gauge �eld and 6 Higgs�elds �I, transforming as a 6 of SO(6), all takingvalues in the adjoint representation of G. Thereare four Weyl fermions in the adjoint transform-ing as a 4 of Spin(6) that come from the reductionof the Majorana-Weyl spinor in ten dimensions.Including a � parameter, the bosonic part of theaction isS = � 116� ImZ �Tr(F ^ F + i � F ^ F )



5� 12e2 Z �TrD��ID��I + V (�I)� ; (24)where the potential is given byV (�I) = X1�I<J�6Tr[�I ; �J ]2 ; (25)and here we have taken TrT aT b = �ab.The classical vacua of the theory are given byV (�I) = 0 or equivalently [�I; �J ] = 0 for allI; J . In this theory, there are no quantum correc-tions to the moduli space of vacuua. For genericvacuua, i.e., generic expectation values h�Ii, thegauge symmetry is broken down to U (1)r wherer is the rank of the gauge group. A given N=4theory is speci�ed by G, h�Ii and � .The six Higgs �elds de�ne a set of conservedelectric and magnetic charges which appear ascentral charges in the N=4 supersymmetry al-gebra:QIe = 1ev Z dS �Tr(E�I) ;QIm = 1ev Z dS �Tr(B�I) ; (26)For BPS saturated states, i.e., states in the short16 dimensional representation of the supersym-metry algebra, the mass is exactly given by theformulaM2 = v2e2 �(QIe)2 + (QIm)2� : (27)The spin content of the short BPS multiplet isthe same as the massless multiplet and has spins� 1. There are also medium sized representa-tions consisting of 64 states with spins � 3=2,but these only arise when QIe is not proportionalto QIm. These can only appear when the rank ofthe gauge group is greater than one and we willsee that S-duality makes no predictions about theexistence of these states as they don't appear inthe perturbative spectrum. The generic repre-sentation of the N=4 algebra has 256 states withspins � 2 and the masses can be renormalised.It is important to emphasise that the mass for-mula for BPS states (27) is derived from the su-persymmetry algebra and hence it is valid in thequantum theory [15,14] in contrast to the bosonic

case. Thus the mass of BPS states is exactlygiven by their electric and magnetic quantumnumbers. This is an important property of BPSstates which enables us to use them to test S-duality. It will also be useful to note that half ofthe supersymmetry generators are realised as zeroon a BPS multiplet. This is sometimes rephrasedas saying that BPS states preserve (or break) halfof the supersymmetry.In a generic vacuum h�Ii at weak coupling wededuce that there are massiveW -boson BPS mul-tiplets. To determine the dyon spectrum we needto quantise the BPS monopole solutions in a semi-classical context. For simplicity we will restrictour attention in the following to a single direc-tion in the moduli space of vacuua:h�2i = : : : = h�6i = 0 ;�1 � � ; hTr�2i = v2; (28)which clearly satis�es V (�I) = 0. Classical BPSmonopole solutions with zero electric charge arethen obtained by solving the Bogomol'nyi equa-tions we considered beforeBi = Di� : (29)Note that for the vacuua (28) only the �rst com-ponent of the electric and magnetic charges arenon-zero and we will write Q1e = Qe, Q1m = Qm.More general vacuua have been considered in [16]but the region we will analyse seems to lead tothe richest monopole physics.4. N=4 G=SU(2) AND S-DUALITYWe now restrict our attention to gauge groupG = SU (2). Since we are focusing on a singleHiggs �eld (28) we will be able to directly usemany of the results in section two. We will as-sume v2 6= 0 so that SU (2) ! U (1). BPS stateswith charges (nm; ne) satisfy the mass formula(23). It is an important fact that BPS stateswith (nm; ne) relatively prime integers are abso-lutely stable for all values of � . This is deduced bycharge conservation and the triangle inequality.We now state the S-duality conjecture: theSL(2;Z) transformations� ! a� + bc� + d ;



6(nm; ne) ! (nm; ne)� a bc d��1 ; (30)where a; b; c; d 2 Z, ad � bc = 1, give the sametheory [2]. The SL(2;Z) group is generated byT : � ! � + 1 which is equivalent to the transfor-mation � ! � + 2� that can be deduced in per-turbation theory (after a relabeling of states) andS : � ! �1=� , which for � = 0, is equivalent tostrong-weak coupling and electric-magnetic dual-ity originally considered in [1,14].A simple check of S-duality is that the BPSmass formula (23) is invariant. This is a nec-essary condition because the BPS mass formulacan be derived from the supersymmetry algebraand hence it holds in the quantum theory. Tosee the invariance one should note that v ! v0 =vjc�+dj under a SL(2;Z) transformation becausewe rescaled the higgs �eld by a factor of the cou-pling constant e.We now argue that there are more sophisticatedtests of S-duality. We begin by noting that theperturbative spectrum can be determined at weakcoupling and consists of a neutral massless photonmultiplet (0; 0) and massiveW�-boson BPS mul-tiplets with charge (0;�1). S-duality maps theW -boson multiplets to BPS states (k; l), with kand l relatively prime integers, typically at strongcoupling. But since these are precisely the abso-lutely stable BPS states they cannot decay as wevary � and we deduce that they must also exist atweak coupling where we can search for them usingsemi-classical techniques. We will argue that theycan be translated into the existence of certain ge-ometric structures on the moduli space Mk.If we assume that the entire spectrum of BPSstates does not vary as we change the couplingthen we can deduce that the above BPS statesare the only BPS states in the theory. Any extrastates would necessarily be BPS states at thresh-old, i.e., at threshold to decay into other BPSstates. For example the mass of a potential BPSstate (2; 2) is only marginally stable into the de-cay of two (1; 1) states. If there were such statesat threshold then we could use S-duality to mapthem to purely electrically charged states (0; n)with n 6= �1. Using our assumption that thespectrum of BPS states doesn't change as we

vary the coupling we conclude that these statesshould exist at weak coupling but this contradictswhat we see in perturbation theory. We believethat the additional assumption is weak due tothe very strong constraints that N=4 supersym-metry imposes on the quantum theory. What isnow known about the BPS spectrum, and will bereviewed below, supports this assumption5.Let us translate the prediction of the spec-trum of BPS states with relatively prime charges(k; l) into statements about the moduli spaceof monopoles. The semiclassical analysis beginswith the moduli space Mk of BPS monopole so-lutions. We have noted that the 4k coordinateson Mk can be interpreted as collective coordi-nates that must be introduced for 4k bosoniczero modes. In the N=4 context we also havefermionic zero modes. These arise from solvingthe Dirac equation for the fermion �elds in thepresence of a given monopole solution. Thereare four Weyl or two Dirac spinors in the ad-joint of SU (2) and an index theorem [18] tellsus that there are 4k fermionic c-number zeromodes that require the introduction of 4k com-plex Grassmann odd fermionic \collective coordi-nates"  �. This means the low-energy ansatz forthe fermions will include terms of the schematicform�(x; t) �  (t)�cl(x; Z(t)) (31)where �cl(x; Z) is a c-number fermion zero modefor the monopole solution speci�ed by the mod-uli Z. We noted above that BPS states preservehalf of the supersymmetry. This manifests itselfin the fact that half of the supersymmetry gen-erators leave the classical BPS monopole solutioninvariant. It can be shown that the bosonic andfermionic zero modes form a multiplet of the un-broken supersymmetries. This is essential in ob-taining a supersymmetric low-energy ansatz forthe �elds. The ansatz for the low-energy �eldsis technically quite involved and has been car-ried out in [5,19]. The result of substituting theansatz into the spacetime Lagrangian leads to the5See [17] for an alternative way of determining the BPSspectrum that also bears on this issue.



7following supersymmetric quantum mechanicsS = 12 Z dt�G��[ _Z� _Z� + i � �
0Dt � ]+16R��
� � � 
 � � ��� 4�ve2 k ; (32)where we have traded the complex  � for a realtwo component Majorana spinor  �i and the co-variant derivative of these fermions is obtainedusing the pullback of the Christo�el connection:Dt � = _ � + ���
 _Z� 
 . For a general met-ric the supersymmetric quantum mechanics hasN=1 supersymmetry speci�ed by a real two com-ponent spinor �. In the case that the target ishyper-K�ahler there are an additional three super-symmetries with parameters �(m) [20]. Since themonopole moduli spaces are hyper-K�ahler thereare eight real supersymmetry parameters whichprecisely correspond to the half of the spacetimesupersymmetry that is preserved by BPS states.The quantisation of this model is discussed in[21]. The states are in one to one correspon-dence with di�erential forms on Mk. Thereare four real two component supercharges. Re-placing one of these with a complex one com-ponent charge Q we can write the Hamiltonianas H = fQ;Qyg + 4�nmv=e2 where we have in-cluded the topological term. The supersymme-try charge Q is realised as the exterior derivativeacting on forms, Q = d, and Qy as its adjointQy = dy = �d� with � being the Hodge star act-ing on forms. As a consequence, the Hamiltonianis the Laplacian acting on di�erential formsH = ddy + dyd+ 4�ve2 nm: (33)For nm = 1 we have M1 = R3 � S1. A ba-sis of forms is given by f1; dZ�; : : : ; dZ1 ^ dZ2 ^dZ3^dZ4g which gives 16 states corresponding toa BPS multiplet. To be more precise we need tocheck that the spins of these states are the same asthose of the BPS multiplet. For nm = 1 all of thefermionic zero modes can be constructed explic-itly as Goldstinos by acting with the broken su-persymmetry generators. One can check the an-gular momentum content and one �nds that thespin content is that of a BPS multiplet [14]. Thewave functions multiplying these forms are just

as in the bosonic case, eiP�Zeine�, correspondingto dyons with Qe = nee + e�=2�. The Laplacianon R3 � S1 is trivial and by following the samearguments as in the bosonic case, we deduce thatthe mass of these states is given by (23). Puttingthis together we deduce that for nm = 1 thereis a tower of BPS dyon states (nm; ne) = (1; ne)exactly as predicted by duality.Now we turn to nm = k > 1. In this caseMk = R3 � (S1 � ~M0k)=Zk. If we �rst ignorethe Zk identi�cation then the states are tensorproducts of forms on R3�S1 with forms on ~M0k,respectively, jsi = j!ine 
 j�i. The analysis forthe states j!ine is similar to the nm = 1 case:there are 16 di�erential forms that are again as-sociated with Goldstinos and these make up thespin content of a BPS multiplet. The wave func-tions give rise to quantised electric charge withQe = nee + e�nm=2�. The energy of the statesjsi can be determined and we �ndHjsi = ( P 22M +M )j!nei 
 j�i+ j!ine 
 j��i(34)with M given by the BPS mass formula (23).Thus to get a BPS state with charges (nm; ne) weneed a normalisable (i.e., L2) harmonic6 form �on ~M0k. The action of Zk on the S1 is a cylic shiftwhich leads to the action j!ine ! e2�ine=kj!ine .Hence for the state jsi to be well de�ned on Mkwe need the form j�i to transform as j�i !e�2�ine=kj�i.Recalling that duality predicts that for eachrelatively prime integers (k; l) there is a uniqueBPS state, we conclude that ~M0k must have aunique normalisable harmonic form which picksup a phase e�2�il=k under the Zk action, for ev-ery relatively prime pair of integers (k; l). Theuniqueness implies that the form must either beself-dual or anti-self dual, since otherwise actingwith the Hodge star � would generate anotherharmonic form with the above properties. Thisconjecture was formulated by Sen who also found6Note that if �� = �� with � 6= 0 then by acting with thesupersymmetrycharges one can show that it always comesin multiplets of 16. Combining this with the 16 statesj!i gives rise to a 256 multiplet of N=4 supersymmetry.These states are relevant for studying the scattering ofBPS states.



8the harmonic form for k = 2. [2]. For k > 2 sub-stantial evidence was provided in [22] (see also[23]).5. HIGHER RANK GAUGE GROUPSWe now turn to N=4 theories with simplegauge groups G with rank r > 1 with maxi-mal symmetry breaking to U (1)r. For simplic-ity of notation we will often discuss the caseG = SU (3) ! U (1)2. The Lie algebra of G has amaximal abelian subalgebra H with r generatorsHi. We can de�ne raising and lowering operatorsE�� that satisfy[Hi; E�] = �iE�;[E�; E��] = rXi=1 �iHi : (35)(a linear combination of these generators give theT a satisfying TrT aT b = �ab that we used before).� is an r-component root vector. A basis of sim-ple roots, �(a) (a = 1; � � � ; r), may be chosen suchthat any root is a linear combination of �(a) withintegral coe�cients all of the same sign. Positiveroots are those with positive coe�cients.We continue to work with a single Higgs �eld� by restricting our attention to the special partof moduli space (28). We may choose the Car-tan subalgebra such that our vacuum is speci-�ed by h�i = vh � H with v2 = hTr�2i. If� � h = 0 for some root � then the unbrokengauge group is nonabelian. Otherwise, maximalsymmetry breaking occurs, and h�i picks out aunique set of simple roots which satisfy the con-dition h � �(a) > 0 [24].Since the �elds are in the adjoint representa-tion, the electric quantum numbers of states liveon the r-dimensional root lattice spanned by thesimple roots �(a),q =Xnea�(a) ; (36)where the nea are integer. The electric charge (for� = 0) is then given byQe = eh � q : (37)At weak coupling we deduce that for each root �there is a BPS W -boson with q = �. For SU (3)

we have W -bosons with ne = �(1; 0);�(0; 1) and�(1; 1) corresponding to the two simple roots�(1);�(2) and the non-simple positive root 
 =�(1) + �(2), respectively. From (27) we deducethat the W -bosons corresponding to simple rootsare stable, while those corresponding to the non-simple roots are only neutrally stable. In SU (3)we have that M
 =M�(1) +M�(2) .Magnetic quantum numbers arise from topo-logically nontrivial �eld con�gurations. For any�nite energy solution the Higgs �eld must ap-proach the vacuum: let the asymptotic valuealong the positive z-axis be �0 = vh � H (thevalue in any other direction can only di�er fromthis by a gauge transformation). Asymptoticallywe also haveBi = ri4�r3G(
) ; (38)where G is covariantly constant, and takes thevalue G0 along the positive z-axis. The Cartansubalgebra may be chosen so that G0 = g � H.For a smooth solution this quantity must satisfya topological quantization condition [25,26]eiG0 = I : (39)The solution to this equation isg = 4�Xnma �(a)� ; (40)where the nma are integers and the �(a)� are thethe simple coroots, de�ned as�(a)� = �(a)�(a)2 : (41)The magnetic quantum numbers thus live on thecoroot lattice spanned by the �(a)�. For maximalsymmetry breaking, all of the nma are conservedtopological charges, labeling the homotopy classof the Higgs �eld con�guration. For solutions ofthe Bogomol'nyi equations (29) all of the integersin nma have the same sign. The topological chargeg determines the magnetic charge by the formulaQm = 1eg � h : (42)A general dyon state may be labeled either bythe electric and magnetic charge r-vectors q, g or



9by the integer valued r-vectors ne and nm. Fora BPS state the mass is given by the BPS massformula (27) which, using (37) and (42), can berecast in the formM = vj(h � �(a))nea + � (h � �(a)�)nma j ; (43)where we have reinstated �.We now have enough de�nitions to de�ne theaction of S-duality. It is the natural generalisa-tion of the SU (2) case (30): the SL(2;Z) dualityon a general dyon state is given by� ! a� + bc� + d ;(nm;ne) ! (nm;ne)� a bc d��1 ; (44)and when we act with the S-generator S : � !�1=� we must replace the group G with its dualgroupG� [25]. For simply laced groups i.e., all theroots have the same length (the ADE groups),the N=4 supersymmetric Lagrangian with gaugegroup G is the same as that of G� since all �eldsare in the adjoint representation. For non-simply-laced groups this is not true since for exampleSO(2N + 1)� = Sp(N ). In this case one doesnot expect the theory to be invariant under thefull SL(2;Z) duality group, but rather a �0(2)subgroup [27] (see also [28]). We restrict our con-siderations to simply-laced gauge groups in thefollowing.Just as in the SU (2) case S-duality maps theperturbativeW -boson states into an in�nite num-ber of dyon BPS states. For the SU (3) case wegenerate the following SL(2;Z) orbits:�nm;ne� = �k(1; 0); l(1; 0)�;�k(0; 1); l(0; 1)�;�k(1; 1); l(1; 1)� ; (45)for relatively prime integers k and l. Like theSU (2) case we have again typically been mappedto strong coupling. For the �rst two classes ofstates we note from the BPS mass formula (43)that they are absolutely stable and hence we con-clude that they also exist at weak coupling. Thewhole orbit of states coming from the (1; 1) W -boson are only marginally stable. Consequently

we have to again employ the additional assump-tion that in the N=4 theory the spectrum ofmarginal states does not change as we vary thecoupling. In this case we should see these statesat weak coupling also.It is perhaps worth noting here that by start-ing with the perturbative spectrum of W -bosonsS-duality only makes predictions about the shortBPS representations of the N=4 supersymmetryalgebra. This is because the purely electricallychargedW -bosons have parallel electric and mag-netic charge vectors QIe and QIm. If any mediumsized representations of the N=4 algebra existedthey would necessarily have non-parallel chargevectors and lie on separate SL(2;Z) orbits. Itwould be interesting to know if they existed.To test the S-duality predictions (45) we beginby reviewing some aspect of BPS monopole so-lutions. Using an index theorem Weinberg hasargued that the moduli space of monopoles ofcharge nm has dimensiond = 4Xa nma : (46)A number of explicit monopole solutions can beconstructed by embedding SU (2) monopoles asfollows [29]. Let �s, Asi be an SU (2) monopole so-lution with charge k and Higgs expectation value�. If we let � be any root satisfying��h > 0 thenwe can de�ne an SU (2) subgroup with generatorst1 = (2�2)�1=2(E� +E��)t2 = �i(2�2)�1=2(E� � E��)t3 = (�2)�1� �H : (47)A monopole with magnetic chargeg = 4�k�� (48)is then given by� = Xs �sts + v(h� h ���2 �) �HAi = Xs Asi ts� = vh �� : (49)Since the moduli space of SU (2) monopoles withcharge k has dimension 4k these solutions provide



10a 4k dimensional submanifold of monopole solu-tions with charge (48). Note that by embeddingan SU (2) monopole with charge one we obtainspherically symmetric monopole solutions.Weinberg has shown that there is a distin-guished set of r \fundamental monopoles" withg = 4��(a)� i.e., they have magnetic charge vec-tors nm consisting of a one in the ath position andzeroes elsewhere. The reason for calling them fun-damental is twofold. First, they have no \inter-nal" degrees of freedom: all of these solutions canbe constructed by embedding an SU (2) monopoleof unit charge using the corresponding simple rootand consequently they have only four zero modes:three translation zero modes and a U (1) phasezero mode corresponding to dyonic excitations ofthe same U (1) as where the magnetic charge lies7.Secondly, the index theorem (46) is consistentwith thinking of a general monopole with chargenm as a multimonopole con�guration consistingof nma fundamental monopoles of type a.Note that for magnetic monopoles with chargevector g = 4�k�(a)� i.e., consisting of k funda-mental monopoles of the same type, the dimen-sion of moduli space is 4k. Thus we deduce thatthese solutions can all be obtained by embeddingSU (2) monopoles of charge k, using the embed-ding based on the same simple root.Let us now return to the BPS states predictedby S-duality. We need to study the semiclas-sical quantisation for a given magnetic chargenm. Just as in the SU (2) case the bosonic zeroand fermionic zero modes are paired by the un-broken supersymmetry and a low-energy ansatzagain leads to the N=4 supersymmetric quantummechanics (32) on the moduli space of solutionsMnm . First consider monopoles with nm = (k; 0)or nm = (0; k) i.e., k fundamental monopolesof the same type. The moduli space of thesemonopoles is the SU (2) moduli space Mk. Thedyonic states with charges (k(1; 0); l(1; 0)) and(k(0; 1); l(0; 1)) predicted by duality are equiva-lent to the harmonic forms on Mk required byS-duality in the SU (2) theory. The results of[2,22] thus constitute tests of duality for higher7One can check that the embedded SU(2) solutions areinvariant under gauge transformations of the other U(1)'s.

rank gauge groups.The new predictions for SU (3) monopoles arisein the sectors with both magnetic quantum num-bers non-zero. In particular, the (k(1; 1); l(1; 1))dyon states should arise as bound states of k (1; 0)and k (0; 1) monopoles. Note from the BPS massformula that these states are only neutrally stableand consequently they should emerge as boundstates at threshold. At present only for k = 1have these states been shown to exist. Let usmake some comments on this case.It was shown in [30{32] that the moduli spacefor nm = (1; 1) is given byM(1;1) = R3 � R �MTNZ (50)where MTN is four-dimensional Taub-NUTspace. The R3 factor corresponds to the centreof mass of the (1; 0) and (0; 1) monopole con�gu-ration. Taub-NUT space is a hyper-K�ahler man-ifold as required for the quantum mechanics (32)to have N=4 supersymmetry. Taub-NUT spacehas U (2) isometry, of which a SU (2)L subgroupcorresponds to the action of rotating the multi-monopole con�guration in space. That this isSU (2) and not SO(3) can be demonstrated bystudying the zero modes about the sphericallysymmetric (1; 1) solution that can be obtainedvia the SU (2) embedding using the root 
 [30].Note that the �xed point set of the SU (2)L actionis a single point in Taub-NUT space (the \nut")and this corresponds to the spherically symmet-ric solutions. The extra U (1)R isometry in U (2)combined with the factor R in (50) and the iden-ti�cation under the integers Z lead to dyon stateswith electric charge ne. One might have expectedan S1 factor rather than R for the total electriccharge in the (1; 1) direction (i.e., parallel to themagnetic charge), but this is not quite correct dueto the fact that in general the masses of the twofundamental monopoles (1; 0) and (0; 1) are notequal.The basis of 16 forms onR3�R leads to a BPSsupermultiplet of 16 states in the N=4 supersym-metric quantum mechanics. In order to get thedyon BPS states predicted by duality (45) withmagnetic charge (1; 1) there must exist a uniquenormalizable harmonic (anti)-self-dual two-form



11on Taub-NUT space that is invariant under theU (1)R isometry to ensure that the electric chargeis l(1; 1). Such a harmonic form exists [30,31].6. SOME OPEN PROBLEMSAs we have discussed a number of highly non-trivial checks of exact S-duality can be carriedout by studying the geometry of monopolemodulispaces. Let us conclude by discussing some openissues.In the N=4 theory with maximal symmetrybreaking the BPS states predicted by duality cor-respond to normalisable harmonic forms on BPSmonopole moduli spaces. For gauge group SU (2)the work of [22] provided substantial evidence forthe appropriate harmonic forms. It would be de-sirable to have a similar analysis for higher rankgauge groups. For SU (3) ! U (1)2 we have seenthat the duality predictions for monopoles withk fundamental monopoles of the same type, i.e.,nm = k(1; 0) or k(0; 1) reduce to those of theSU (2) case. The new SU (3) predictions withnm = (1; 1) correspond to a harmonic form onTaub-NUT space. It remains to be shown thatthe BPS states with nm = k(1; 1) exist for k 6= 1and that the BPS states in (45) are the onlyones in the spectrum. The SU (2) and SU (3)results can be embedded in higher rank gaugegroups. This can be illustrated by consideringG = SU (4) ! U (1)3. In this case S-duality pre-dicts BPS states with nm = k(1; 0; 0), k(0; 1; 0),k(0; 0; 1), which are equivalent to the SU (2) pre-dictions, k(1; 1; 0), k(0; 1; 1) which are equivalentto the SU (3) predictions, and k(1; 1; 1) whichare the new SU (4) predictions. Apart from thecases we have discussed there is only one moreclass of moduli spaces that are explicitly known:when there are no more than a single fundamen-tal monopole of each type (e.g, (1; 1; 1) for theSU (4) example) [33{35]. It is a natural gener-alisation of Taub-NUT space and the harmonicform predicted by duality has been shown to ex-ist [36]. The major obstacle in verifying more ofthe S-duality predictions is our lack of knowledgeabout the monopole moduli spaces.New issues arise in the N=4 case when a non-abelian gauge group remains unbroken. In this

case the existence of massless W -bosons mightseem to require dual massless monopoles whichcannot be studied as conventional semi-classicalsolitons. There are also massive monopoles thatcan be studied. If they carry non-abelian mag-netic charge there are subtleties to do with themoduli space approximation due to the non-normalisablility of zero modes corresponding toglobal gauge rotations (see e.g., [37,38]). Themoduli spaces of monopoles that have net abelianmagnetic charge can in some cases be determinedas limits of moduli spaces in which the symme-try is maximally broken. Curiously, it is claimedthat the harmonic forms found by [36] becomenon-normalisable in this limit [38].In this paper we have only discussed N=4 the-ories. Special theories with N=2 supersymmetryand vanishing �-function are also candidates forexhibiting exact duality. For gauge group SU (2)with Nf=4 hypermultiplets in the fundamentalrepresentation, it is conjectured that the dualitygroup is the semi-direct product of SL(2;Z) withthe global 
avour symmetry group Spin(8) [39].SL(2;Z) mod 2 is isomorphic to S3 the permu-tation group of three objects, which is also thegroup of outer automorphisms of Spin(8) whichacts on the v; s; c; conjugacy classes. This dualitypredicts an orbit of vector multiplets at thresholdwith charges (nm; ne) = 2(k; l) and an orbit ofhypermultiplets with charges �(k; l). In this the-ory there are half as many fermionic zero modescoming from the vector multiplet as in the N=4theory and the net result is that one should studyan N=2 supersymmetric quantum mechanics onthe moduli space of SU (2) monopoles Mk. Asa consequence, the states are spinors on Mk notforms. In addition there are fermionic zero modescoming from the hypermultiplets that give rise toa natural O(k) bundle on Mk [40]. The BPSstates predicted by duality correspond to certainharmonic spinors coupled to this bundle. Formonopole charge k = 2 these were found usingindex theory [41,42]. Perhaps an analysis similarto [22] is possible for higher monopole charge. Seealso [17] for a di�erent approach.For higher rank theories with N=2 supersym-metry and vanishing �-function less is knownabout exact duality. A straightforward attempt
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