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QMW-PH-97-13NI-97023hep-th/9705011Intersecting BranesJerome P. GauntlettPhysics DepartmentQueen Mary and West�eld CollegeMile End Rd, London E1 4NS, U.K.andIsaac Newton Institute20 Clarkson RdCambridge, CB3 0EH, U.K.j.p.gauntlett@qmw.ac.ukAbstractBPS con�gurations of intersecting branes have many applications in string theory.We attempt to provide an introductory and pedagogical review of supergravity solutionscorresponding to orthogonal BPS intersections of branes with an emphasis on elevenand ten space-time dimensions. Recent work on BPS solutions corresponding to non-orthogonally intersecting branes is also discussed. These notes are based on lecturesgiven at the APCTP Winter School \Dualities of Gauge and String Theories", Korea,February 1997.



1 IntroductionThere is now very strong evidence that an eleven dimensional M -theory plays a fun-damental role in string theory (see [1] for a recent review). The low-energy limit ofM -theory is D=11 supergravity but it is not yet known what the correct underlyingmicroscopic theory is�. It is known that D=11 supergravity and hence M -theory con-tains solitonic membranes, \M2-branes", and �vebranes, \M5-branes", which play animportant role in the dynamics of the theory. Both of these solitons preserve 1/2 of thesupersymmetry and hence are BPS states. BPS states are states that preserve somesupersymmetry and are an important class of states as we have some control over theirbehaviour as various moduli are allowed to vary. It is an important issue to understandthe spectrum of BPS states in M -theory and we will see that there is a large class ofstates corresponding to intersectingM2-branes and M5-branes.String theory in D=10 also contains a rich spectrum of BPS branes. In the typeIIA and IIB theories there are branes that carry charges arising from both the Neveu-Schwarz-Neveu-Schwarz (NSNS) and the Ramond-Ramond (RR) sectors of the world-sheet theory. The former class consists of the fundamental strings and the solitonic�vebranes, \NS5-branes". The second class of branes, the \D-branes", have a simpleperturbative description as surfaces in at space where open strings can end, which hasplayed a central role in recent string theory developments [3]. By dimensionally reducingthe intersecting brane solutions ofM -theory we obtain type IIA solutions correspondingto intersecting NS- and D-branes. Various string dualities then enable one to constructall of the supergravity solutions corresponding to intersecting branes in both the typeIIA and IIB theories. The properties of these supergravity solutions complement whatwe can learn about the various branes using string perturbation theory.�It has been proposed thatM -theory in the in�nite momentum frame is given by the large N limit ofa certain quantum mechanics based on N �N matrices [2]. This interesting development was discussedby H. Verlinde in his lectures at the School and we refer the reader to his article for more details.1



Since solitons are a key ingredient in duality studies, a great deal of e�ort has beendevoted to constructing general soliton solutions of supergravity theories in various di-mensions. The intersecting brane solutions in D=11 and D=10 provide a uni�ed view-point since many of the other soliton solutions can be obtained by dimensional reductionand duality transformations. Understanding the general structure of intersecting branesolutions is an involved task: a partial list of references is: [4]-[41]. In these lectures wewill only consider BPS intersections, but we note here that non-BPS solutions have alsobeen studied. BPS intersecting branes fall into two categories which have been termed\marginal" and \non-marginal" [34]. Roughly speaking the mass (or tension) M andcharges Qi of marginal con�gurations satisfyM = �Qi while for the non-marginal casesone hasM2 = �Q2i , corresponding to non-zero binding energy. For the most part we willbe focusing on the marginal intersections. The non-marginal solutions can be obtainedfrom the marginal solutions by dimensional reduction and/or duality transformations.They were discussed by J. Russo in his lectures at this school.Our main focus will be on supergravity solutions with an emphasis on M -theory. Itis worth pointing out in advance that there are a number of important applications ofintersecting brane con�gurations which we will not be discussing in much detail. Letus briey highlight just two here. The �rst is to provide a microscopic state countinginterpretation of black hole entropy[42]y. One can construct classical solutions corre-sponding to intersecting D-branes that give rise upon dimensional reduction to blackholes with non-zero Bekenstein-Hawking entropy. By exploiting the perturbative D-brane point of view one can count the number of open string microstates that give riseto the same macroscopic quantum numbers that the black hole carries and one �ndsperfect agreement. It should be noted that while the perturbative calculation is valid atweak coupling the supergravity black hole spacetime is valid at strong coupling and onemust invoke supersymmetry to argue that the state counting calculation is unchangedas one varies the coupling. Although this is an exciting development there is still moreySee S. Das's contribution to the proceedings for more details and references.2



to be understood on how these two complementary views of black holes are related.A second application is to use BPS intersecting branes to study the infrared dynamicsof supersymmetric gauge theories [43, 44] (and references therein). One considers di�er-ent types of branes intersecting in an appropriately chosen arrangement. The low-energydynamics on the world-volume of one type of brane is associated with a supersymmetricquantum �eld theory that one wishes to study. By considering the low-energy dynam-ics from the point of view of di�erent branes and allowing the branes to move around,enables one, in certain cases, to determine the low-energy e�ective dynamics of the �eldtheory. This has proven to be a very powerful tool to study supersymmetric gaugetheories in three and four spacetime dimensions. It is worth noting that in a recentdevelopment some aspects of the supergravity solutions of branes in M -theory playedan important role [45].The plan of the rest of the paper is as follows. In section 2 we discuss orthogonalintersections of branes in M -theory. In section 3 we discuss the intersections of NS-and D-branes in type IIA and IIB string theory. Section 4 reviews recent solutions onsupersymmetric con�gurations of branes that intersect non-orthogonally and section 5concludes.2 Intersecting M-Branes2.1 M2-branes and M5-branesThe low-energy e�ective action of M -theory is D=11 supergravity. The bosonic �eldcontent consists of a metric, gMN , and a three-form potential, AMNP , with four-form3



�eld strength FMNPQ = 24r[MANPQ]. The action for the bosonic �elds is given byS = Z p�g �R� 112F 2 � 1432 �M1:::M11FM1:::M4FM5:::M8AM9:::M11� : (1)Supersymmetric solutions to the corresponding equations of motion can be constructedby looking for bosonic backgrounds that admit Killing spinors i.e., backgrounds whichadmit 32-component Majorana spinors � such that the supersymmetry variation of thegravitino �eld  M vanishes:�DM + 1144(�MNPQR � 8�NM�PQR)FNPQR� � = 0: (2)The M2-brane solution [46] takes the formds2 = H1=3[H�1 ��dt2 + dx21 + dx22�+ �dx23 + : : : dx210�]Ft12� = c2 @�HH2 ; H = H(x3; : : : ; x10); r2H = 0; c = �1: (3)We have written the metric with an overall conformal factor as this form will be con-venient when we discuss intersecting M -branes. The solution admits Killing spinors ofthe form � = H�1=6� with the constant spinor � satisfying�̂012� = c�; (4)where �̂0:::p � �̂0 : : : �̂p is the product of p+1 distinct Gammamatrices in an orthonormalframe. Using the fact that (�̂012)2 = 1 and that Tr�̂012 = 0 we conclude that the M2-brane solution has 16 Killing spinors and preserves (breaks) half of the supersymmetry.The solution is governed by a single harmonic function that depends on the coordinates~x = fx3; : : : ; x10g and we �rst take it to be of the formH = 1 + ar6 ; r = j~xj : (5)The solution then describes a single M2-brane with world-volume oriented along thef0; 1; 2g hyperplane located at r = 0. The M2-brane carries electric four-form chargeQe which is de�ned as the integral of the seven-formz �F around a seven-sphere thatzTo be more precise we should integrate �F +A ^ F , since the �eld equation is d � F + F ^ F = 0.4



surrounds the brane and is proportional to ca. If c = 1 we have an M2-brane, whileif c = �1 we have an anti-M2-brane. We will often not distinguish between branesand antibranes in the following. The ADM mass per unit area or ADM tension T canbe calculated and is proportional to jQej as one requires for a BPS state. The metricappears to be singular at r = 0. However, it has been shown that this surface is in facta regular degenerate event horizon [47]. The metric can be continued into an interiorregion and it is here that a real curvature singularity is located. By generalising theharmonic function to have many centresH = 1 + kXI=1 aIr4I ; rI = j~x� ~xIj ; (6)we obtain k parallel M2-branes located at positions ~xI .The construction of theM5-brane solution [48] runs along similar lines. The solutionis given by ds2 = H2=3 hH�1 ��dt2 + dx21 + : : : dx25�+ �dx26 + : : :+ dx210�iF�1:::�4 = c2 ��1:::�5@�5H; H = Hi(x6; : : : ; x10); c = �1; (7)where ��1:::�5 is the at D=5 alternating symbol. It again admits 16 Killing spinorsgiven by � = H�1=12� where � now satis�es the projection:�̂012345� = c�: (8)For a single M5-brane we choose the harmonic functions to beH = 1 + ar4 ; r = j~xj ; (9)where ~x = fx6; : : : ; x10g. The M5-brane carries magnetic four-form charge Qm whichis obtained by integrating F around a four-sphere that surrounds the M5-brane and isproportional to ca. c = �1 correspond to an M5- and an anti-M5-brane respectively.The ADM tension is again proportional to jQmj in line with unbroken supersymmetry.The M5-brane is a completely regular solution as was shown in [49]. A con�guration of5



parallel multi-M5-branes is obtained by generalising the single centre harmonic functionto have many centres.The dimensional reduction of D=11 supergravity on a circle leads to D=10 type IIAsupergravity. Indeed this is necessary for the type IIA string theory to be dual to M -theory. There are two distinct ways in which theM -brane solutions can be dimensionallyreduced to D=10: they can be \wrapped" or \reduced", as we now explain (we will alsoreturn to this in section 3). Since both the M2-brane and the M5-brane solutions areindependent of the coordinates tangent to the world-volume of the branes we can demandthat one of them is a periodic spatial coordinate upon which we compactify. The resultof this wrapping leads to the fundamental string and the D4-brane solutions of the typeIIA theory, respectively. If we denote the compacti�ed direction as x10 and the othercoordinates by x�, we �nd that the membrane carries electric two-form A��10 chargewhile the four-brane carries magnetic three-form A��� charge. The process of reducingalong a direction transverse to the world-volume is slightly more involved. To obtain asolution that is periodic in such a direction, x10 say, we construct a periodic array ofeitherM2- orM5-branes i.e., we take a multiM -brane solution with the branes lined upalong the x10 direction and equally spaced by a distance 2�R. The solution obtained bydimensional reduction along the x10 direction will have non-trivial dependence on thecompacti�ed coordinate or equivalently the D=10 solution will have massive Kaluza-Klein modes excited. If we average over the compact coordinate, i.e., if we ignore themassive modes, then we obtain the D2-brane and the NS5-brane solutions of typeIIA supergravity, respectively. The former carries electric A��� charge and the lattermagnetic A��10 charge. A more direct way to get these IIA solutions is simply to takethe harmonic functions for the D=11 M2- or the M5-brane to be independent of oneof the transverse directions. A brane solution whose harmonic function is independentof a number of transverse coordinates is sometimes said to be \delocalised", \averaged"or \smeared" over those directions. Delocalised branes will appear when we discussintersecting brane solutions. 6



2.2 Intersecting M-branesWe now turn to solutions corresponding to intersectingM -branes. We begin by present-ing the generalized supersymmetric solution for two M2-branes orthogonally \overlap-ping" in a point [5, 7] which we will denote by M2 ?M2(0):ds2 = (H1H2)1=3 [� (H1H2)�1 dt2 +H�11 �dx21 + dx22�+H�12 �dx23 + dx24�+ �dx25 + : : :+ dx210�];Ft12� = c12 @�H1H21 ; Ft34� = c22 @�H2H22 ; � = 5; : : : ; 10:Hi = Hi(x5; : : : ; x10); r2Hi = 0; ci = �1; i = 1; 2: (10)There are Killing spinors of the form � = (H1H2)�1=6�, where � is constant and satis�esthe algebraic constraints �̂012� = c1��̂034� = c2�: (11)Since [�̂012; �̂034] = 0 and Tr(�̂012)(�̂034) = 0, each condition projects out an independenthalf of the spinors and we conclude that there are eight Killing spinors and hence thesolution preserves 1/4 of the supersymmetry.The functions Hi are harmonic in the coordinates ~x = fx5; : : : ; x10g and we �rst takethem to be of the form Hi = 1 + air4i ; ri = j~x� ~xij : (12)The solution then describes anM2-brane oriented in the f1; 2g plane with position ~x1 andanother oriented in the f3; 4g plane with position ~x2 orthogonally overlapping in a point.To see this we note that the solution is a kind of superposition of each individual M2-brane solution. For the directions tangent to the ith M2-brane the metric appears withthe inverse of the harmonic function i.e., H�1i , and the directions transverse to the ithM2-brane are independent of Hi exactly as in (3). Moreover, the overall conformal factor7



is the product of the two harmonic functions to the appropriate power, as one expects forM2-branes. In the degenerate case that ~x1 = ~x2, an M2-brane with f1; 2g orientationintersects one with f3; 4g orientation. Note that the special case when H1 = H2 was�rst constructed by G�uven [48]x.A more general solution has harmonic functions of the formHi = 1 + kiXI=1 ai;Ir4i;I ; ri;I = j~x� ~xi;Ij : (13)The solution then describes k1 parallel M2-branes with f1; 2g orientation and positions~x1;I, and k2 parallel M2-branes with f3; 4g orientation and positions ~x2;I. Each M2-brane of one set orthogonally overlaps all of the M2-branes in the other set in a point.An M2-brane with f1; 2g orientation intersects one with f3; 4g orientation in the casethat ~x1;I = ~x2;J, for some combination I; J . Note that in describing the solutions in therest of the paper we will implicitly take the harmonic functions to be that of a singlebrane as in (12) for ease of exposition.There is a potentially confusing point with our interpretation of (10). To explainthis lets �rst introduce some terminology: we refer to common tangent directions asbeing tangent directions common to all branes. In the case that the branes intersectrather than overlap these are the intersection directions. Relative transverse directionsare those tangent to at least one but not all branes and overall transverse directionsare those orthogonal to all branes. The two harmonic functions in (10) are invariantunder the common tangent direction, i.e., the time direction in this case, and also undertranslations in all the relative transverse directions x1; : : : ; x4. In particular, we notethat H1 does not fall o� in the x3; x4 directions, as one would expect for a D=11 M2-brane spatially oriented in the f1; 2g plane. i.e., the H1 M2-brane is delocalised in thedirections tangent to the otherM2-brane. Similarly theH2 M2-brane in the f3; 4g planexThis was described as a \4-brane" solution in [48] because of the SO(4) invariance in the(x1; x2; x3; x4) plane. The problem with this interpretation is the absence of boost invariance thatsingle branes possess and it is best interpreted as a special case of the M2 ?M2(0) solution.8



is delocalised in the directions tangent to the M2-brane lying in the f1; 2g plane. It isnatural to conclude that our interpretation of the solutions as describing intersectingbranes is valid but that we have not found the most general fully localised solutions. Ina later subsection we will discuss more general solutions that make some progress in thisdirection.Since the M2-branes are delocalised in the directions tangent to the other brane,we can immediately consider the solution (10) in a dimensionally reduced context withall relative transverse directions periodically identi�ed. This implies, e.g., that the M2-brane with spatial orientation in the f1; 2g plane has been reduced in the f3; 4g directionsto give a membrane in D=9 and then wrapped in the f1; 2g directions to give a pointobject in D=7 that carries electric charge of the D=7 gauge �eld A�12. Similarly theother M2-brane is a point object in D=7 carrying electric charge with respect to thegauge �eld A�34. Thus, the dimensionally reduced solution may be regarded as twocharged D=7 black holes, each carrying an electric charge with respect to di�erentU(1)'s. In the intersecting case with ~x1 = ~x2 the two black holes are coincident and wecan interpret it as a single black hole that carries two charges. These BPS black holessolutions are extremal and in fact have naked singularities. Later we will describe howextremal black holes with non-zero horizon area can be constructed from intersectingbranes.The solutions (10) are generically singular on the surfaces ~x � ~xi = 0, with thescalar curvature diverging. This behavior is di�erent from that of a single M2-branewhere, as we have noted, these surfaces are regular event horizons. The singularity inthe present case arises because the M2-branes are delocalised in the relative transversedimensions. It is possible that more general localised solutions will exhibit a similarsingularity structure to that of a single M2-brane.Lets now turn to con�gurations involving M5-branes. We will present a solutiondescribing an M2-brane intersecting an M5-brane in a one-brane, M2 ? M5(1), and9



another describing an M5-brane intersecting another M5-brane in a threebrane, M5 ?M5(3). Both solutions are constructed as a kind of superposition of their constituents.There is another solution involving M5 ? M5(1) which is qualitatively di�erent andwill be discussed in a later subsection. The M2 ?M5(1) solution is given by [5, 7]ds2 = H2=31 H1=32 [H�11 H�12 (�dt2 + dx21) +H�11 �dx22 + dx23 + dx24 + dx25�+H�12 �dx26�+ �dx27 + dx28 + dx29 + dx210�];F6�� = c12 ����@�H1; Ft16� = c22 @�H2H22 ; Hi = Hi(x7; : : : ; x10); (14)where ���� is the D=4 at space alternating symbol. The eight Killing spinors havethe form � = H�1=121 H�1=62 � with the constant spinor � satisfying�̂016� = c1��̂012345� = c2�: (15)and we have used the fact that �̂10 = �̂0�̂1 : : : �̂9. If we choose the harmonic func-tions to have single coincident centres then the solution describes an M5-brane in thef1; 2; 3; 4; 5g direction intersecting an M2-brane in the f1; 6g direction.The solution corresponding to M5 ?M5(3) is given by [4, 5, 7]ds2 = (H1H2)2=3 [(H1H2)�1 (�dt2 + dx21 + dx22 + dx23) +H�11 �dx24 + dx25�+H�12 �dx26 + dx27�+ �dx28 + dx29 + dx210�];F67�� = c12 ���@H1; F45�� = c22 ���@H2; Hi = Hi(x8; x9; x10); (16)where ��� is the D=3 at space alternating symbol. The solution preserves 1=4 of thesupersymmetry and the Killing spinors are given by � = (H1H2)�1=12� with the constantspinor � satisfying the constraints �̂012345� = c1��̂012367� = c2�: (17)10



If we choose the harmonic functions to have single coincident centres then the solutiondescribes an M5-brane in the f1; 2; 3; 4; 5g direction intersecting an M5-brane in thef3; 4; 5; 6; 7g direction.Note that in both solutions (14), (16) the harmonic functions again just depend onthe overall transverse directions. Thus, just as in theM2 ?M2(0) solution above, eachof the branes are delocalised along the directions tangent to the other. We will see laterhow the solutions (14) and (16) can be obtained from (10) after dimensional reduction,duality transformations and then uplifting back to D=11.2.3 Multi-Intersections and Black HolesIn the last section we presented three basic intersections of two M -branes, each preserv-ing 1/4 of the supersymmetry. We can construct solutions of n orthogonally intersectingM -branes by simply ensuring that the branes are aligned along hyperplanes in such away that the pairwise intersections are amongst the allowed set. The solutions are thenconstructed by superposing the solutions in a way that we have already seen: there is aharmonic function H for each constituent brane that depends on the overall transversecoordinates. It appears in the metric only as H�1 multiplying the directions tangent tothat brane and in the overall conformal factor with the appropriate power dependingon whether it is an M2- or an M5-brane. The four-form �eld strength has non-zerocomponents corresponding to those of each of the M -branes. This procedure [5, 7] hasbeen called the \harmonic function rule".Generically a con�guration of n intersecting branes will preserve 2�n of the super-symmetry [4, 5, 7]. This is because the Killing spinors are projected out by products ofGamma matrices with indices tangent to each brane, and generically these projectionsare independent. There are, however, important exceptions when the projections are notindependent [6, 7]. Let us illustrate this by discussing the cases for three intersecting11



M -branes which all preserve 1=8 of the supersymmetry. There is a unique con�gurationcorresponding to three M2-branes. If the M2-branes are orientated along the f1; 2g,f3; 4g and f5; 6g hyperplanes the metric is given by [5, 7]:ds2 = (H1H2H3)1=3[�(H1H2H3)�1dt2 +H�11 �dx21 + dx22�+H�13 �dx23 + dx24�+H�13 �dx25 + dx26�+ �dx27 + dx28 + dx29 + dx210�]; (18)with the harmonic functions Hi = Hi(x7; x8; x9; x10).There is also a unique con�guration corresponding to two M2-branes and one M5-brane and we can take the orientations of the branes to be in the f1; 2; 3; 4; 5g, f1; 6g andf2; 7g hyperplanes. This solution provides us with the �rst special triple intersection.To see this note that the product of the three Gamma matrix projections gives anotherprojection corresponding to an M5-brane in the f3; 4; 5; 6; 7g direction. This meansthat we can obtain an M2 ? M2 ? M5 ? M5 con�guration that breaks 1=8 of thesupersymmetry (and not 1=16 as one might naively expect) as long as we choose thepolarisation of the fourth M5-brane (i.e., whether it is a brane or anti-brane) to bedetermined by the polarisations of the �rst three. The metric for this solution is givenby [6]ds2 = (H1H2)1=3(H3H4)2=3[�(H1H2H3H4)�1dt2 + (H1H3)�1 �dx21�+ (H2H3)�1 �dx22�+(H3H4)�1 �dx23 + dx24 + dx25�+ (H1H4)�1 �dx26�+ (H2H4)�1 �dx27�+ �dx28 + dx29 + dx210�]; (19)with the harmonic functions Hi = Hi(x8; x9; x10).There are two ways in which two M5-branes and one M2-brane can intersect. The�rst is when they are oriented along the f1; 2; 3; 4; 5g, f3; 4; 5; 6; 7g and f1; 6g planes.Note that this is again a special intersection as we can add an M2-brane in the f2; 7gplane to return to the solution (19). The other intersection has the M2-brane lying inthe f3; 8g plane and the three branes intersect in a common string. For this solution12



there are only two overall transverse directions and so the three harmonic functions havelogarithmic divergences.Finally there are three ways in which three M5-branes can intersect. Take the �rsttwo to lie in the f1; 2; 3; 4; 5g and f3; 4; 5; 6; 7g planes. The thirdM5-brane can be placedin the f1; 2; 3; 6; 7g direction in which case there is an overall string intersection. Weshall return to this con�guration in a moment. If the third M5-brane is placed in thef1; 3; 4; 6; 8g plane there is a common 2-brane intersection and we obtain a third specialtriple intersection since we can add a fourthM5-brane in the f2; 3; 4; 7; 8g plane and stillpreserve 1=8 of the supersymmetry. Note that this con�guration has only two overalltransverse dimensions. The third case has the M5-brane lying in the f3; 4; 5; 8; 9g planeand now there is only one overall transverse dimension.Although conceptually clear it is slightly involved to list all of the supersymmetricintersecting M -brane con�gurations and determine the amount of supersymmetry pre-served taking into account the three special triple intersections. This was undertaken in[25].We now turn to intersecting brane con�gurations corresponding to BPS black holesin D=4,5 that have non-zero horizon area. To obtain such a black hole in D=5 we candimensionally reduce theM2 ?M2 ?M2 solution (18) along the six relative transversedirections x1; : : : ; x6. If we take the harmonic functions Hi to have a single coincidentcentre we are led [5] to a black hole solution in D=5 that carries three electric chargescorresponding to three U(1)'s coming from the three-form components A�12, A�34 andA�56. One can show that the BPS black hole is extremal and has non-zero horizon area.There is another way to obtain such a D=5 black hole. One considers the M2 ?M5(1)solution (14) and adds momentum along the string direction. The procedure for doingthis is well known and the solution one gets is [5]ds2 = H2=31 H1=32 [H�11 H�12 (dudv +Kdu2) +H�11 �dx22 + dx23 + dx24 + dx25�13



+H�12 �dx26�+ �dx27 + dx28 + dx29 + dx210�]; (20)where u; v = x1� t and the function K is harmonic in the overall transverse coordinates:in the simplest case of a single centre it corresponds to a \pp-wave" carrying momentumin the string direction. The wave in the f1g direction imposes the constraint� = ��̂01� (21)on the Killing spinors (� depending on which direction it is travelling). It thus breaksa further 1/2 of the supersymmetry and hence the solution preserves 1/8 of the super-symmetry. Reducing this to D=5 along the relative transverse directions and the stringintersection, we obtain a black hole that carries electric A�16 charge, magnetic A��6charge (note that in D=5 this is dual to a vector �eld) and electric Kaluza-Klein g�1charge corresponding to the momentum running along the string.Let us now discuss how D=4 black holes can be constructed from intersecting M -branes. One way is to dimensionally reduce the M2 ? M2 ? M5 ? M5 solution (19)along the relative transverse directions [6]. In this way one obtains a black hole carryingtwo electric and two magnetic charges. Another way is to consider three M5-branesall overlapping in a common string, with momentum running along the common stringdirection [6]:ds2 = (H1H2H3)2=3[(H1H2H3)�1 �dudv +Kdu2�+ (H1H2)�1 �dx22 + dx23�+ (H1H3)�1 �dx24 + dx25�+ (H2H3)�1 �dx26 + dx27�+ �dx28 + : : : dx210�]: (22)Note that as long as the direction of the wave is chosen appropriately, it does not imposeany additional constraints on the Killing spinors and hence the solution preserves 1/8of the supersymmetry.It should become clear in the next section that the di�erent con�gurations of M -branes giving black holes in either D=4 or D=5 can be related to each other by di-mensional reduction and duality. There we will also discuss ways in which intersecting14



D-branes give rise to black holes. The perturbative D-brane point view has been verysuccessfully exploited in giving a microscopic interpretation of black hole entropy. Asless is understood about M -brane dynamics it is harder to do this in M -theory. How-ever, one can turn this around and see what can be learned about M -theory dynamicsif we demand that it is consistent with black hole entropy. This has been pursued in [6].2.4 Dynamics of IntersectionsAs we have noted all of the solutions we have considered so far are delocalised along therelative transverse directions i.e., in the directions tangent to all of the branes. As such,the properties and dynamics of the intersection are somewhat occluded. Addressing thisdirectly at the level of �nding more general solutions is an interesting open question butwe can also obtain a great deal of insight using more general arguments [50, 51].Lets begin by considering the possibility of an M2-brane ending on an M5-brane ina string. One immediately faces a potential problem with charge conservation: considera seven-sphere surrounding the M2-brane. The integral of �F , along this seven spheregives the M2-brane charge Qe, where F is the four-form �eld strength. It might seemthat we could smoothly deform the sphere to a point by slipping it o� the end past theM5-brane and hence conclude that Qe must vanish. However, this argument ignoreswhat happens when the sphere is passed through the M5-brane. The argument can failif the charge can somehow be carried by the string boundary inside the M5-brane.One way to study this is to include the world-volume dynamics of the M5-brane inthe supergravity equations of motion. The low-energy dynamics of an M5-brane and itscoupling to the spacetime supergravity �elds can be described by a low-energy e�ectiveaction on the world-volume of the brane. This can be constructed from �rst principlesby determining the zero modes in the small uctuations around a classical solution. Thedynamics for the M5-brane is governed by a D=6 (0; 2) supermultiplet multiplet whose15



bosonic �elds consist of 5 scalars and a two-form V2 that has self dual �eld strength [54].The world-volume action contains the coupling jdV2 �Aj2 where A is the supergravitythree-form pulled back to the world-volume: Aijk=A���@iX�@jX�@kX�, where X�(�i)are the world-volume scalar coordinates. This modi�es the A equation of motion toinclude a world-volume source term. After integrating over an asymptotic seven spherewe deduce that Qe = RS3 �dV2 where the integral is a world-volume integral and � is theworld-volume Hodge-dual. In the world-volume theory this integral is non-zero if thereis a self-dual string inside the six-dimensional world-volume. Thus we conclude that itis possible for an M2-brane to end in a string on an M5-brane if theM2-brane charge iscarried by a self-dual string inside the world-volume theory. Note that it is also possibleto reach an identical conclusion without having to introduce world-volume dynamics ifone takes into account the contribution of Chern-Simons couplings in the supergravity[51].This conclusion indicates that theM5-brane is a natural generalisation of a D-branein string theory to M -theory. It also suggests that we can think of the M2 ? M5(1)solution (14) as being associated with these con�gurations. It is possible that moregeneral supergravity solutions exist that have localisedM2-branes ending onM5-branes.They would be very interesting as they would illuminate the geometry of the boundaryof theM2-brane and the dynamics of the self-dual string. These solutions will probablybe highly non-trivial to construct but perhaps progress can be made by looking forlocalised solutions with an M2-brane ending on the M5-brane from either side.Similar arguments can be developed for self intersections ofM -branes. The followingargument in fact works for all p-branes [4]. If we assume that we can consider a q-braneintersection within a given p-brane as a dynamical object in the p+1-dimensional world-volume �eld theory, then the condition that the p-brane can support a dynamical q-braneintersection would be that its world volume contains a (q + 1)-form potential to whichthe q-intersection can couple. The e�ective action of all p-branes contain scalar �elds16



which are the Goldstone modes arising from the fact that the classical p-brane solutionbreaks translation invariance. These scalar �elds have one-form �eld strengths whichcan be dualised in the world-volume to give (p�1)-form dual potentials which can coupleto a q = (p� 2)-dimensional intersection. Hence we conclude that a p-brane can have adynamical self intersection in (p � 2) dimensions. The M2 ? M2(0) and M5 ? M5(3)solutions (10), (16) are both consistent with this rule.2.5 M5 ?M5(1)There is another solution corresponding to two M5 branes overlapping in a string [7]:ds2 = (H1H2)2=3 [(H1H2)�1(�dt2 + dx21) +H�12 (dx22 + dx23 + dx24 + dx25)+H�11 (dx26 + dx27 + dx28 + dx29) + dx210]Fmnp10 = �c12 �mnpq@qH1; F���10 = �c22 �����@�H2;H1 = H1(X1m); H2 = H2(X2�); r2Hi = 0; (23)where X1m = (x2; x3; x4; x5) and X2� = (x6; x7; x8; x9). For single centre harmonic func-tions this corresponds to anM5-brane with orientation f1; 2; 3; 4; 5g overlapping anotherwith orientation f1; 6; 7; 8; 9g. There are 16 Killing spinors of the form � = (H1H2)�1=12�with the constant spinor � satisfyinĝ�016789� = c1��̂012345� = c2�; (24)It satis�es the harmonic function rule but with a key di�erence: the harmonic func-tions are now independent of the single overall transverse direction and only depend onthe relative transverse directions. That is, the M5-branes are now localised inside thedirections tangent to the other M5-brane but are delocalised in the overall transversedirection that separates them. 17



Another interesting feature of this solution is that it does not satisfy the (p � 2)dimensional self-intersection rule for p-branes that we discussed in the last subsection.The resolution of this puzzle is quite interesting. A consequence of the Gamma-matrixprojections (24) is that �̂0110� = c1c2�. This suggests that we can add an M2-brane inthe f1; 10g plane without breaking further supersymmetry. Note that such anM2-braneoverlaps each of the M5-branes in a string which is allowed. The solution is given by[34, 52]ds2 = (H1H2)2=3H1=33 [(H1H2H3)�1(�dt2 + dx21) +H�12 (dx22 + dx23 + dx24 + dx25)+H�11 (dx26 + dx27 + dx28 + dx29) +H�13 dx210]Fmnp10 = �c12 �mnpq@qH1; F���10 = �c22 �����@�H2 Ft110I = c1c22 @IH3H23 ; (25)where xI = (X1m;X2�) and the function H3(X1;X2) corresponding to the M2-branesatis�es the equation hH�11 (X1)r2(X1) +H�12 (X2)r2(X2)iH3 = 0: (26)Functions of the form H3(X1;X2) = h1(X1) + h2(X2); (27)solve this equation if the hi are harmonic on E 4, but point singularities of h1 or h2would representM2-branes that are delocalized in four more directions. We expect thatthere exist solutions of (26) representing localizedM2-branes although explicit solutionsmay be di�cult to �nd. In the same way the solution M2 ? M5(1) can be thought ofas being related to an M2-brane ending on an M5-brane we can think of the solution(25) as corresponding to an M2-brane being stretched between two M5-branes. Thisinterpretation and the fact that we can add the extra M2-brane without breaking anymore supersymmetry also provides a resolution of the fact that the solution (23) violatesthe (p� 2) self-intersection rule: when two M5-branes are brought together to intersecton a string, one should think of the intersection as being a collapsed M2-brane.This observation suggests the following nomenclature: the solutions M2 ? M2(0),M2 ? M5(1) and M5 ? M5(3) can be called intersecting brane solutions, since when18



they do intersect (as opposed to overlap) they describe dynamical intersections. On theotherhand the M5 ? M5(1) solution should be described as an overlap since it is notuntil we add an extra M2-brane that we get a dynamical intersection.It is worth noting that if we remove one of the M5-branes in (25) we obtain a moregeneral solution than the previous M2 ? M5(1) solution (14) in that the equation forthe M2-brane coming from (26) is more general than just a harmonic function in theoverall transverse coordinates. Again we do not know of any interesting solutions inclosed form. There are also generalisations of the M2 ? M2(0) and M5 ? M5(3)solutions where one of the M -branes satis�es a more general equation. These can beobtained by dimensional reduction and duality using the results of the next section.Finally we note that more general con�gurations of multi-intersectingM -branes can beobtained by combing these types of intersections with the previous ones. See [25] forsome results in this direction.3 Intersecting Branes in Type II String Theory3.1 NS and D-branesThe D=10 type IIA supergravity action can be obtained from dimensional reduction ona circle of D=11 supergravity. The Kaluza-Klein ansatz for the bosonic �elds leading tothe string-frame 10-metric isds2(11) = e� 23�(x)dx�dx�g��(x) + e 43�(x)(dy + dx�C�(x))2A(11) = A(x) +B(x) ^ dy ; (28)where A(11) is the D=11 three-form potential and x� are the D=10 spacetime coordi-nates. We read o� from the right hand side the bosonic �elds of D=10 IIA supergravity;these are the NSNS �elds (�; g�� ; B��) and the RR �elds (C�; A���). The bosonic19



�elds of the D=10 type IIB supergravity coming from the NSNS sector are identicalto that of the type IIA theory, (�; g�� ; B(1)�� ). From the RR sector of the IIB theorythere is an axion, another two-form and a four-form that has a self-dual �eld strength(l; B(1)�� ; A+�1�2�3�4).The rank of the various form potentials immediately suggests what the spectrumof BPS branes is. A potential of rank r has a �eld strength of rank (r + 1) that canbe integrated along an (r + 1)-sphere which in D spacetime dimensions surrounds a(D � 3 � r)-brane. The value of the integral gives the magnetic r-form charge carriedby the the (D � 3 � r)-brane. Similarly, the �eld strength of rank (D � 1 � r) that isPoincare dual to the (r + 1)-form �eld strength can be integrated along a (D � 1 � r)sphere that surrounds an (r�1)-brane. Now the integral gives the electric r-form chargecarried by the (r�1)-brane. Of course one still needs to check that such solutions to thenon-linear �eld equations exist and moreover to check if they admit any Killing spinors.This has been carried out and we record here the metric and dilaton behaviour of thevarious BPS solutions.The IIA and IIBNS-strings are electrically charged with respect to theNS two-form.For both the type IIA and IIB theory we have:ds2 = H�1 ��dt2 + dx21�+ dx22 + : : :+ dx29e2� = H�1; H = H(x2; : : : ; x9); r2H = 0: (29)The IIA and IIB NS5-branes carry magnetic NS two-form charge and we have:ds2 = �dt2 + dx21 + : : :+ dx25 +H �dx26 + : : :+ dx29�e2� = H; H = H(x6; : : : ; x9); r2H = 0: (30)Finally, the Dp-branes carry either electric or magnetic charge with respect to the RR�elds and the metric and dilaton are given by:ds2 = H�1=2 ��dt2 + dx21 + : : :+ dx2p�+H1=2 �dx2p+1 + : : :+ dx29� ;e2� = H� (p�3)2 ; H = H(xp+1; : : : ; x9); r2H = 0: (31)20



Given the rank of the RR-forms that we mentioned above, we see that the type IIAtheory has Dp-branes with p = 0; 2; 4; 6. There is an additional D8-brane which isrelated to massive type IIA supergravity and we refer the reader to [53] for more details.For the IIB theory we have p = �1; 1; 3; 5; 7. p = �1 corresponds to an instanton [60]and we won't include it in our discussions of intersecting branes. Note that we havewritten all of the above solutions in the sigma-model string metric which is related tothe Einstein metric via gE = e��=2g�.All of these type II branes preserve 1/2 of the supersymmetry. The type II theorieshave two spacetime supersymmetries parameters given by Majorana-Weyl spinors �L; �R.In the type IIA theory they have opposite chirality and we choose �10�L = �L and�10�R = ��R. In the type IIB theory they have the same chirality and we choose�10�L; �R = �L; �R. The solutions have 16 Killing spinors which satisfy the followingprojections:IIA=IIB NS�strings : �L = �̂01�L �R = ��̂01�RIIA NS5�branes : �L = �̂012345�L �R = �̂012345�RIIB NS5�branes : �L = �̂012345�L �R = ��̂012345�RIIA=IIB Dp�branes : �L = �̂01:::p�R: (32)The Gamma-matrix projections will have an extra minus sign for the correspondinganti-branes.Let us �rst make a few brief comments on these di�erent branes. The NS-stringsolutions that exist for each theory are simply identi�ed with the fundamental string ofeach theory [56, 57, 58, 59]. The IIA and IIB NS5-branes of each theory are like solitonsin quantum �eld theory in the sense that their tension T is related to the string couplingg and magnetic three-form charge Q via T � Q=g2. These solitons have an elegant(4; 4) superconformal �eld theory description which is illuminating, but incomplete [55].Although the IIA and IIB NS5-branes have the same supergravity solution the world-21



volume theories that govern the low-energy dynamics of these solitons are quite di�erent[54]. The IIA NS5-brane has (0; 2) supersymmetry on the six-dimensional world-volumejust as the M5-brane. The bosonic �elds consist of �ve real scalars and a two-formwith self dual �eld strength. The world-volume theory of the IIB NS5-brane has (1; 1)supersymmetry whose bosonic �eld content is four scalars and a vector �eld.The branes that carry charge with respect to the RR �elds are the D-branes. Thesebranes di�er from the NS-branes in that their tension is related to the string couplingand charge via T � Q=g. This fact is closely related to the fact that D-branes havea very simple perturbative description in string theory [3]. At weak coupling, they aresurfaces in at spacetime where open strings can end i.e., if we let X�, � = 0; : : : ; p, bethe coordinates tangent and XT , T = p+1; : : : ; 10, be the coordinates transverse to thebrane, then the strings coordinates X�(�; �) satisfy Neumann boundary conditions andXT (�; �) satisfy Dirichlet boundary conditions. This perturbative description has playeda central role in recent developments in string theory. Note that D9-branes �ll all ofspace and a closer analysis leads one to the type I theory. They are not associated withany supergravity solution. The world-volume theory for all Dp-branes is given by thedimensional reduction of ten-dimensional superYang-Mills theory to (p+1) dimensions.The bosonic �elds are 9� p scalars and a single vector �eld.It will be convenient when we come to discussing intersecting brane solutions to knowhow the above solutions are related. We noted earlier that if we wrap the M2- or M5-brane on a circle we are led to the type IIANS-string andD4-brane, respectively, while ifwe reduce theM -branes then we get theD2-brane and the NS5-brane, respectively. Thesecond observation is that the type II brane solutions are related by various symmetriesof the supergravity equations of motion. The type IIB supergravity has an SL(2;R)symmetry of which an SL(2;Z) is conjectured to survive as a non-perturbative symmetryof the string theory. The action on the low-energy �elds is as follows: the NSNS andRR two-forms B(i)�� transform as a doublet, the self dual four-form A+�1�2�3�4 and the22



Einstein metric are invariant and the dilaton and RR scalar can be packaged into acomplex scalar � = l + ie�� which undergoes fractional liner transformations. TheZ2 \S-duality" transformation that interchanges the two-forms and acts as � ! �1=�allows us to construct the NS5-brane and NS-string solutions from the D5-brane andD1-brane solutions, respectively, and vice-versa. Note that the D3-brane is left inertunder this and all SL(2;Z) transformations. For the behaviour of the D7-brane see [60].If we employ more general SL(2;Z) transformations then we obtain \non-marginal" BPSbranes in the type IIB theory. Speci�cally if we start with a NS5-brane we obtain a (p; q)5-brane that is a bound state of p NS5-branes and q D5-branes, with p and q relativelyprime integers. Similarly from theNS-string we get (p; q) strings [61]. Since the SL(2;Z)transformations do not break supersymmetry, all of these solutions preserve 1=2 of thesupersymmetry: the projections on the Killing spinors are the SL(2;Z) rotations ofthose in (32). The (p; q) 5-branes will play a role when we discuss branes intersecting atangles in the next section.The other basic tool to relate various branes is T -duality. The type IIA theorycompacti�ed on a circle of radius R is T -dual to the IIB theory compacti�ed on a circleof radius 1=R. This can be established exactly in perturbation theory. Since T -dualityinterchanges Dirichlet with Neumann boundary conditions [3], if we perform T -dualityin a direction transverse (tangent) to a Dp-brane we obtain a D(p+1)-brane (D(p� 1)-brane). This can also be seen at the level of classical supergravity solutions using thefact that T -duality manifests itself as the ability to map a solution with an isometry intoanother solution. The action of T -duality on the NS �elds with respect to a symmetrydirection z, mapping string-frame metric to string-frame metric,isd~s2 = [g�� � g�1zz (g�zgz� +B�zBz�)]dx�dx� + 2g�1zz Bz�dzdx� + g�1zz dzdz~B = 12dx� ^ dx�[B�� � g�1zz (g�zBz� +B�zgz� )] + g�1zz gz�dz ^ dx�~� = �� 12 log gzz (33)where x� are the rest of the coordinates and we have indicated the transformed �elds23



by a tilde. These rules may be read as a map either from IIA to IIB or vice-versa. Theaction on the RR gauge �elds can be found in [75]. For our applications the new solutionobtained by T -duality will preserve the same amount of supersymmetry as the originalone. Using these transformations we again conclude that if we perform T -duality ona direction tangent to a Dp-brane solution (31) then we are led to a D(p � 1)-branesolution. For example, the metric component gzz = H�1=2 ! H1=2. But note that we donot arrive at the most general solution as the harmonic function of the D(p � 1)-braneis invariant under the z direction. Similarly, if we take a Dp-brane that is delocalisedin a transverse direction and perform T -duality in that direction we get a D(p + 1)-brane solution. Performing T -duality on a direction transverse to a IIA/B fundamentalstring (29) delocalised in that direction will transform it into a IIB/A fundamentalstring. Acting on a direction tangent to the IIA/B string, say in the f1g direction,will replace the B01 component of the NS two-form in the string solution with an o�diagonal term in the metric g01. The �nal solution is a pp-wave of the IIB/A theory.Note that this is is the spacetime manifestation of the fact that in perturbation theoryT -duality interchanges winding and momentummodes. The supersymmetry projectionsfor pp-waves travelling in a given direction for both the IIA and IIB theories are:IIA=IIB pp � wave : �L = �̂01�L �R = �̂01�R: (34)Acting with T -duality in a direction tangent to a IIA/B NS5-brane (30) will lead to aIIB/A NS5-brane. If it is in a direction transverse to a delocalised NS5-brane then weagain get o� diagonal terms in the metric. One �nds that the non-trivial part of themetric is given by Taub-NUT space, which we will review in the next section. TheseT -duality results are summarised in Table 1.Using these duality transformations we can essentially obtain all others starting from,say the M2-brane. Reducing the M2-brane to D=10 we obtain the IIA D2-brane. T -dualising this solution leads to all Dp-brane solutions of the IIA and IIB theory. Toimplement this for p � 7 one must use the massive IIA supergravity [53]. On theotherhand S-duality on the D1 and D5-branes gives the IIB NS-string and the NS5-24



Tangent TransverseNS1 pp� wave NS1NS5 NS5 Taub�NUTDp D(p � 1) D(p + 1)Table 1: T-Duality Rules For Type II Branesbrane solutions, respectively. The corresponding IIA NS-branes are then obtained byT -dualising on a transverse or tangent direction, respectively. Similarly, we obtain theIIA/B pp-waves (Taub-NUT) from the IIB/A NS-string (NS5-brane) by T -dualising ona tangent (transverse) direction. The M5-brane solution can be obtained by \uplifting"either the D4-brane or the IIA NS5-brane to D=11. Uplifting the IIA D0-brane givesa D = 11 pp-wave and, as we shall discuss in the next section, uplifting the D6-branegives Taub-NUT space. Note that in performing these transformations we will be led tothe correct BPS solutions but possibly not the most general solution as the harmonicfunction may become delocalised in the procedure, as we noted above.3.2 Intersecting NS and D-BranesWe can use the duality transformations discussed in the last subsection to obtain allintersecting brane solutions in type II string theory. Lets start with the M2 ? M2(0)solution with the M2-branes oriented along say the f1; 2g and f3; 4g directions. Re-ducing this con�guration along an overall transverse direction we obtain a D2 ? D2(0)solution with the D2-branes having the same orientations. If we now perform T -dualityin a direction parallel to one of theD2-branes, say the f2g direction, we transform it intoa D1-brane in the f1g direction and the otherD2-brane into aD3-brane with orientationf2; 3; 4g. The �nal con�guration is thus D1 ? D3(0). One can continue T -dualising in25



all possible ways and one generates the following list of intersecting D-branes [7, 8]:IIA : 2 ? 2(0); 4 ? 4(2); 6 ? 6(4); 2 ? 4(1); 4 ? 6(3);6 ? 8(5); 0 ? 4(0); 2 ? 6(2); 4 ? 8(4);IIB : 3 ? 3(1); 5 ? 5(3); 7 ? 7(5); 1 ? 3(0); 3 ? 5(2);5 ? 7(4); 1 ? 5(1); 3 ? 7(3); 5 ? 9(5); (35)These solutions all preserve 1/4 of the supersymmetry and can be directly constructedusing the analogue of the harmonic function rule we used for M -branes. The harmonicfunctions for each brane depends on the overall transverse coordinates. Note that for thecases where the branes overlap in a 5-brane the overall transverse directions have shrunkto a point and the derived solution is just Minkowski space. Their could however, bemore general solutions for these cases since, for example, the case 5 ? 9(5) correspondsto a type I D5-brane which does correspond to a classical solution.There is an elegant way of characterising these D-brane con�gurations in perturba-tion theory. Consider open strings with one end on each of the two intersecting branes.The string coordinates can either be NN, DD or ND depending on whether the coordi-nate has Neumann (N) or Dirichlet (D) boundary conditions at each end. The number ofcoordinates with mixed ND boundary conditions is equal to the number of relative trans-verse directions and is four in all of the above cases. One can also show in perturbationtheory that these con�gurations preserve 1/4 of the supersymmetry [3].If we also act with S-duality in the type IIB theory we can generate solutions con-taining NS-branes. Further acting with T -duality gives:Dp ? NS1(0); 0 � p � 8;Dp ? NS5(p � 1); 1 � p � 6;NS1 ? NS5(1); NS5 ? NS5(3);NS1 +W ; NS5 +W ; Dp +W; 1 � p � 9; (36)26



where the con�gurations in the last line correspond to pp-waves which travel in onedirection tangent to the brane and the solutions with NS-branes only are valid in bothIIA and IIB. Note that we have not included Taub-NUT con�gurations. We also have notincluded \non-marginal" con�gurations that are obtainable by employing more generalSL(2;Z) transformations. The M2 ? M5(1) and the M5 ? M5(3) solutions can bothbe obtained from the above IIA solutions, as claimed earlier. For example, one can upliftNS1 ? NS5(1) and D4 ? D4(2), respectively.These con�gurations can be broadly classi�ed into three categories: self-intersections,branes ending on branes and branes within branes. Let us make some general commentson each of these. The D-brane self intersections in (35), Dp ? Dp(p � 2), and theNS5 self intersection for IIA and IIB in (36), NS5 ? NS5(3), all satisfy the (p � 2)self-intersection rule that we described earlier. The second category is where branes canend on branes, p ? q(p� 1). Although the solutions are too general to directly describethis setup we expect that this is the physical situation they are naturally associatedwith in the same way that we explained for the M2 ? M5(1) con�guration (14). Thebest understood example of branes ending on branes is the case NS1 ? Dp(0) whichcorresponds to a fundamental string ending on a Dp-brane. Note that the end of thefundamental string appears as either an electric or magnetic point source in the D-brane world-volume. All other cases of the form p ? q(p � 1) can be obtained byS- and T - duality on these con�gurations (which thus supports the brane ending onbrane interpretation). For example S-duality immediately gives the D1 ? D3(0) andD1 ? NS5(0) con�gurations in the IIB theory. It is perhaps worth highlighting someother cases: the D3 ? NS5(2) case in the IIB theory was used in [43] to study threedimensional gauge theories on the 2+1-dimensional intersection. The case of a D4-braneending on a NS5-brane, NS5 ? D4(3) in IIA was used to study four-dimensional gaugetheories [62]. It is interesting that this can be lifted to M -theory as a single M5-brane[45]. The third category of con�gurations are the branes inside of branes which havethe form p ? q(p). These correspond to brane soliton solutions inside the world-volume27



theory. As an example consider D0 ? D4(0). If we consider N parallel D4-branes thenwe should consider a U(N) super-Yang-Mills theory on the 4 + 1 dimensional world-volume [63]. Four dimensional euclidean U(N) instantons correspond to static solitonsin the world-volume theory which can also be interpreted as D0-branes [64].We now comment on some di�erent con�gurations of branes that give rise to D=4and D=5 black holes. Start with the M2 ?M5(1) con�guration with a pp-wave alongthe intersection (20) which gives a D=5 black hole upon dimensional reduction. Onecan now perform the following steps:M5 : 1 2 3 4 5M2 : 1 10W : 1 R10�! NS5 : 1 2 3 4 5NS1 : 1W : 1 T1�!NS5 : 1 2 3 4 5W : 1NS1 : 1 S�! D5 : 1 2 3 4 5W : 1D1 : 1 (37)where we have dimensionally reduced on the 10 direction to get a IIA solution, T -dualisedon the 1 direction to get a IIB solution and then performed S-duality. The resulting IIBcon�guration, D5 ? D5(1) plus a pp-wave [65], is the case that has been most studiedin black hole entropy studies. We noted that the M2 ? M2 ? M2 solution (18) canalso give a D=5 black hole. It can be related to the above con�guration by dimensionalreduction and duality:M2 : 1 10M2 : 2 3M2 : 4 5 R10�! N1 : 1D2 : 2 3D2 : 4 5 T145�!W : 1D5 : 1 2 3 4 5D1 : 1 : (38)We mentioned two ways in which D=4 black holes can be obtained from intersecting28



M -branes: M5 ? M5 ? M5 with momentum owing along a common string direction(22), and M5 ? M5 ? M2 ? M2 (19). Both of these can be related to a verysymmetrical con�guration of four D3-branes [6, 9]. The second case works as follows:M5 : 1 2 3 4 5M5 : 1 2 3 6 10M2 : 4 6M2 : 5 10 R10�! NS5 : 1 2 3 4 5D4 : 1 2 3 6D2 : 4 6NS1 : 5 ST1�!D5 : 1 2 3 4 5D3 : 2 3 6D3 : 1 4 6D1 : 5 T34�! D3 : 1 2 5D3 : 2 4 6D3 : 1 3 6D3 : 3 4 5 : (39)We now turn to the overlapping brane solutions that can be generated from theM5 ?M5(1) overlap (23). Reducing on the common string direction we getD4 ? D4(0)and T -duality generates the list of overlapping D-branes:IIA : 0 ? 8(0); 2 ? 6(0); 2 ? 8(1); 4 ? 4(0); 4 ? 6(1);IIB : 1 ? 7(0); 1 ? 9(1); 3 ? 5(0); 3 ? 7(1); 5 ? 5(1): (40)These solutions all break 1/4 of the supersymmetry and can also be directly constructedusing the harmonic function rule but taking into account that the harmonic functionsdepend on the relative transverse coordinates not the overall transverse coordinates. Atthe level of string perturbation theory, these con�gurations correspond to D-branes thathave eight string coordinates with mixed ND boundary conditions. Employing S-dualitywe obtain the following con�gurations with NS branes:NS5 ? Dp(p � 3) 3 � p � 8;NS5 ? NS5(1): (41)Recall that an extra M2-brane can be added to the M5 ? M5(1) solution withoutbreaking any more supersymmetry and the resulting con�guration can be interpreted29



as an M2-brane stretched between the two M5-branes. After dimensional reductionof this solution and performing dualities we �nd analogous generalisations of the abovesolutions. For the D-brane intersections in (40) that intersect in a point, we �nd that wecan add a fundamental string without breaking any more supersymmetry. This can thenbe interpreted as a fundamental string being stretched between the two D-branes. If theD-branes intersect in a string then we �nd that we can add a pp-wave along this stringintersection without breaking any more supersymmetry. One interesting example of thisis the 1 ? 9(1) case. Since the IIBD9-brane leads to the type I theory, our interpretationtranslates into the fact that a type I D-string can carry momentum without breakingany more supersymmetry. This D-string can be interpreted as a heterotic string soliton[66] and the properties of the heterotic string with momentum were studied in detailin [58, 59]. For the cases with NS- and D-branes (41) we �nd that we can add aD(p � 2)-brane that can be thought of as being stretched between the NS5-brane andthe Dp-brane that ends on each in a D(p�3) brane, cases that were considered above in(36). One example of this is aD3-brane stretched between a NS5-brane and a D5-brane,intersecting each on a two-brane. This setup was considered in [43]. The NS5 ? NS5(1)case is considered below.In the next section we will be considering some of these con�gurations but generalisedso that the branes intersect at angles. In preparation for this let us be a little moreexplicit about some cases. Start with the NS5 ? D5(2) con�guration of IIB with theextra D3-brane which preserves 1/4 of the supersymmetry and perform T -duality in oneof the common intersection directions:N5 : 1 2 3 4 5D5 : 1 2 7 8 9D3 : 1 2 6 T2�! N5 : 1 2 3 4 5D4 : 1 7 8 9D2 : 1 6 (42)30



We can now uplift this IIA solution to give the M -theory solution (25):M5 : 1 2 3 4 5M5 : 1 7 8 9 10M2 : 1 6 : (43)Reducing on the 6 direction and then relabeling the 10 direction as the 6 direction weget the IIA solution NS5 : 1 2 3 4 5NS5 : 1 6 7 8 9NS1 : 1 : (44)Performing T -duality on the 1 direction we get the IIB con�gurationNS5 : 1 2 3 4 5NS5 : 1 6 7 8 9W : 1 : (45)It is interesting to note that in the IIA theory we can add a fundamental string to theNS5 ? NS5(1) con�guration without breaking any more supersymmetry, while in theIIB theory we can add a pp-wave. Since the IIA and IIB theories have the same NS-�elds the con�guration (44) does give a solution of the IIB theory, but it breaks 1/8 ofthe supersymmetry not 1/4. Finally carrying out S-duality on (45) we getD5 : 1 2 3 4 5D5 : 1 6 7 8 9W : 1 : (46)4 Branes Intersecting at AnglesIn the con�gurations that we have studied so far all of the branes have orthogonal inter-sections. In a perturbativeD-brane context it has been pointed out that certain rotationsaway from orthogonality lead to con�gurations that still preserve some supersymmetry[67]. In this section we will summarise some recent work on constructing classical su-pergravity solutions that describe such intersections [37]. Other recent work on �nding31



con�gurations with non-orthogonal intersections will not be discussed [36][38]-[41]. Thesolutions in [37] which we shall describe are much more complicated than the ones wehave seen so far. They have a common origin in D=11 using toric Hyper-K�ahler mani-folds. To motivate the solutions we shall �rst begin by recasting some of the orthogonalsolutions in a similar language.4.1 Taub-NUT space and Overlapping BranesWe begin by reviewing the construction of the D6-brane solution of the type IIA theoryin terms of Taub-NUT space [70]. Taub-NUT space is a four-dimensional Hyper-K�ahlermanifold. That is, the manifold admits three covariantly constant complex structuresJ (m) and the metric is Kahler with respect to each. Consider the Hyper-K�ahler metricsds2 = V (x)dx � dx+ V �1(x)(d +A(x) � dx)2;r�A = rV: (47)Choosing the harmonic function V to have single centre, V = 1 +m=r, and hence A =m cos �d�, where (r; �; �) are spherical polar coordinates on E 3, gives Taub-NUT space.The metric appears singular at r = 0 but this is in fact a coordinate singularity if wechoose  to be a periodic coordinate with period 4�m. The U(1) isometry correspondingto shifts in the coordinate  is tri-holomorphic i.e., the Lie derivative of the complexstructures with respect to the U(1) killing �eld vanishes. The topology of each surfacewith �xed r is a three sphere which is a circle bundle over a two-sphere base with  beingthe coordinate of the �bre. The global topology of the manifold is E 4. From the metricwe note that as r !1 the radius of the circle approaches 4�m which suggests that wecan use Taub-NUT space in a Kaluza-Klein setting [68, 69]. Since it is Hyper-K�ahlerthe manifold is automatically Ricci-at and hence will solve Einstein's equations. Wecan use this to give an D=11 supergravity solution by adding in 6+1 Minkowski space:ds2 = �dt2 + dx21 + : : :+ dx26 + ds2TN32



A = 0: (48)If we now reduce this solution along the U(1) Killing-vector using (28) we obtain theD6-brane solution with metric and dilaton as in (31) with the non-trivial RR one-formcoming from the o� diagonal terms in the metric. It is worth emphasising that whilethe D6-brane is a singular solution in ten-dimensions, it has a non-singular resolutionin M -theory. If V is multicentred, V = 1 + �mi=ri with ri = jx � xij, then we obtainthe multicentre Hyper-K�ahler manifolds. They are non-singular provided that no twocentres coincide. Upon dimensional reduction they give rise to parallel D6-branes.If we relabel the Taub-NUT coordinates (x;  )=(x7; : : : ; x10), then the solution (48)has 16 Killing spinors which satisfy the constraints� = �̂78910�: (49)This is equivalent to theD6-brane constraint (32). if we reduce on x10. Consider now theTaub-NUT space to lie along the (x3; : : : ; x6) directions with x6 being the coordinate onthe circle. If we now reduce along x10 then we arrive at the IIA Taub-NUT con�guration.Recall that if we now T -dualise in the circle direction x6 we obtain the IIB NS5-brane(delocalised in the x6 direction transverse to the brane). This will be useful in a moment.For completeness we note here that the supersymmetry projections for a IIA or IIBTaub-NUT con�guration in the (x3; : : : ; x6) direction isIIA=B Taub �NUT : �L = �̂3456�L �R = �̂3456�R: (50)A natural generalisation of the above construction of the D6-brane is to consider aneight dimensional Ricci-at manifold obtained as the product of two Taub-NUTS. Byadding in 2+1 dimensional Minkowski space we get a D=11 supergravity solution:ds2 = ds2(E 1;2) + ds2TN1 + ds2TN2A = 0: (51)33



Label the coordinates of the circles of the two Taub-NUT metrics by x6 and x10, respec-tively. Reduce on the x10 direction to get a IIA con�guration and then T -dualise on thex6 direction to get a type IIB solution. Reducing the second Taub-NUT on x10 leadsto a D6-brane in the 1; : : : ; 6 directions and T -dualising in the x6 direction transformsit into a D5-brane. On the other hand, reducing the �rst Taub-NUT on x10 gives IIATaub-NUT and the T -duality turns it into a IIB NS5-brane. Since both branes sharethe 2+1 dimensional space we see that the �nal con�guration is a D5-brane orthogonallyoverlapping a NS5-brane in a two brane, D5 ? NS5(2), which is a solution we havealready considered. Recall that by a sequence of dualities we can relate it to the �rstpair of branes in (42)-(46).4.2 Toric Hyper-K�ahler Manifolds and Branes Intersecting atAnglesTo obtain solutions corresponding to non-orthogonally overlapping branes we replaceTaub-NUT�Taub-NUT by an eight-dimensional toric hyper-K�ahler manifold i.e., onethat admits a U(1) � U(1) triholomorphic isometry:ds2 = ds2(E 1;2) + ds2HKA = 0: (52)After dimensional reduction and dualities we shall get solutions with branes as in (42)-(46) (ignoring the last entry) that overlap non-orthogonally. We shall discuss the inclu-sion of the other brane later. One interesting aspect of these solutions is that they allcome from completely regular D=11 metrics.All of these solutions will generically preserve 3=16 of the supersymmetry. The proofof this is essentially an application of the methods used previously in the context of KKcompacti�cations of D=11 supergravity (see, for example, [71]). We �rst decompose34



the 32-component Majorana spinor of the D=11 Lorentz group into representations ofSL(2;R)� SO(8): 32! (2;8s)� (2;8c) : (53)The two di�erent 8-component spinors of SO(8) correspond to the two possible SO(8)chiralities. The unbroken supersymmetries correspond to singlets in the decomposi-tion of the above SO(8) representations with respect to the holonomy group H of M.Consider for example, D=11 Minkowski space for which H is trivial; in this case both8-dimensional spinor representations decompose into 8 singlets, so that all supersymme-tries are preserved. The generic holonomy group for an eight-dimensional hyper-K�ahlermanifold is Sp(2), for which we have the following decomposition of the SO(8) spinorrepresentations: 8s ! 5� 1� 1� 18c ! 4� 4 : (54)There are now a total of 6 singlets (three SL(2;R) doublets) instead of 32, so that theD=11 supergravity solution preserves 3/16 of the supersymmetry, unless the holonomyhappens to be a proper subgroup of Sp(2) in which case the above representations mustbe further decomposed. For example, the 5 and 4 representations of Sp(2) have thedecomposition 5 ! (2;2)� (1;1)4 ! (2;1)� (1;2) (55)into representations of Sp(1) � Sp(1). We see in this case that there are two moresinglets (one SL(2;R) doublet), from which it follows that the solution preserves 1/4 ofthe supersymmetry whenever the holonomy is Sp(1)�Sp(1). Since this is the holomonygroup for Taub-NUT�Taub-NUT space, we recover our previous result.35



4.3 Toric hyper-K�ahler manifoldsTo proceed we need to be more concrete about the properties of eight dimensional torichyper-K�ahler manifolds. The most general metric has the local formds2 = Uij dxi � dxj + U ij(d'i +Ai)(d'j +Aj); (56)where Uij are the entries of a positive de�nite symmetric 2� 2 matrix function U of the2 sets of coordinates xi = fxir ; r = 1; 2; 3g on each of 2 copies of E 3, and U ij are theentries of U�1. The two one-forms Ai have the form Ai = dxj � !!ji where !! is a tripletof 2 � 2 matrix functions of coordinates on E 6 and are determined by the matrix Uij.Speci�cally, the two-forms Fi = dAi with componentsF rsjk i = @rj!ski � @sk!rji ; (57)must satisfy F rsjk i = "rst@tjUki; (58)where we have introduced the notation @@xir = @ri : (59)Note that dFi = 0 implies @i � @j U = 0 (i; j = 1; 2) : (60)The simplest hyper-K�ahler manifold, which may be considered to represent the `vac-uum', is constant U which implies Ai = 0. We shall denote this constant `vacuummatrix' by U (1). For our applications we may restrict U (1) to be such thatdetU (1) = 1: (61)Regular non-vacuum hyper-K�ahler metrics can be found by superposing this with somelinear combination of matrices of the formUij[fpg;a] = pipj2jPk pkxk � aj ; (62)36



where the `p-vector' fp1; p2g is an ordered set of coprime integers and a is an arbitrary3-vector. Any matrix of this form may be associated with a 3-plane in E 6, speci�ed bythe 3-vector equation p1x1 + p2x2 = a: (63)If we have two p-vectors the angle between the two 3-planes can be determined and isgiven by: cos � = p � p0pp2p02 ; (64)with inner product p � q = (U (1))ijpiqj: (65)The general non-singular metric may now be found by linear superposition. For agiven p-vector we may superpose any �nite number N(fpg) of solutions with variousdistinct 3-vectors fam(fpg); m = 1; : : : ; Ng. We may then superpose any �nite numberof such solutions. This construction yields a solution of the hyper-K�ahler conditions ofthe form Uij = U (1)ij +Xfpg N(fpg)Xm=1 Uij[fpg;am(fpg)]: (66)Since each term in the sum is associated with a 3-plane in E 6, any given solution isspeci�ed by the angles and distances between some �nite number of mutually intersecting3-planes [72]. It can be shown that the resulting hyper-K�ahler 8-metric is completeprovided that no two intersection points, and no two planes, coincide. This is theanalogue of the four dimensional multicentre metrics being singular when two centrescoincide and has been demonstrated by means of the hyper-K�ahler quotient constructionin [37].The simplest examples of these manifolds are found by supposing �U � U � U (1)to be diagonal. For example, Uij = U (1)ij + �ij 12jxij : (67)37



which is constructed from the p-vectors (1; 0) and (0; 1). Hyper-K�ahler metrics with Uof this form were found previously on the moduli space of 2 distinct fundamental BPSmonopoles in maximally-broken rank four gauge theories [73] (see also [74]). For thisreason we shall refer to them as `LWY metrics'. Whenever �U is diagonal we maychoose the two one-forms Ai to be one-forms on the ith Euclidean 3-space satisfyingFi = ?dUii (i = 1; 2); (68)where ? is the Hodge dual on E 3.For the special case in which not only �U but also U (1) is diagonal then U isdiagonal and the LWY metrics reduce to the metric product of 2 Taub-Nut metrics withSp(1)�Sp(1) holonomy. Note that for the LWY metrics the angle between the 3-planes,(64) reduces to cos � = � U (1)12qU (1)11 U (1)22 ; (69)and we see that Sp(1)�Sp(1) holonomy occurs when the 3-planes intersect orthogonally.In general one can argue that the holonomy of a general toric Hyper-K�ahler manifold isSp(2) and is only a proper subgroup of Sp(2) when there are only two 3-planes or twosets of parallel 3-planes intersecting orthogonally, in which case the metric is a productof two Hyper-K�ahler 4-metrics.4.4 Overlapping branes from hyper-K�ahler manifoldsLet us return to the interpretation of our D=11 solution (52) for a general hyper-K�ahlermanifold speci�ed by a matrix U as in the last subsection. We follow the steps thatwe considered when we discussed Taub-NUT�Taub-NUT. We �rst reduce the solutionalong one of the U(1) Killing vectors to obtain a IIA solution that preserves 3/16 ofthe supersymmetry and then T -dualise along the other U(1) Killing vector. Using theT -duality rules of [75] we get a IIB solution with Einstein metric and other �elds given38



by ds2E = (detU) 34 [(detU)�1ds2(E 2;1) + (detU)�1Uijdxi � dxj + dz2]B(i) = Ai ^ dz� = �U12U11 + ipdetUU11 : (70)As the interpretation of this solution is rather subtle lets �rst consider continuingwith the transformations as in (42)-(46): T -dualising on one of the E 2;1 directions leadsto a IIA solution which we shall not write down. If we uplift it to D=11 one obtains:ds211 = (detU) 23 [(detU)�1ds2(E 1;1) + (detU)�1Uij dX i � dXj + dy2]F = Fi ^ d'i ^ dy; (71)where X i = (xi; �i) with �i the coordinates of the torus that is (essentially) dual to theone with coordinates �i. We shall start by considering the case in which U is diagonal.In the simplest of these cases the 8-metric is the metric product of two Euclidean Taub-Nut metrics, each of which is determined by a harmonic function with a single pointlikesingularity. Let Hi = [1 + (2jxij)�1] be the two harmonic functions; thenU = 0@H1(x1) 00 H2(x2)1A ; (72)and we return to the M5 ? M5(1) solution (23). Note that in this derivation, the Hiare harmonic on the ith copy of E 3, rather than on the ith copy of E 4 and hence eachof the M5-branes are delocalised in the direction between them and in one directiontangent to the other M5-brane. Next generalising to the LWY metrics (67) we stillinterpret the singularities in U to be the locations of the two (delocalised) M5-branes.Since theM5-branes have a string direction in common, the con�guration is determinedby the relative orientation of two 4-planes in the 8-dimensional space spanned by both.Because of the delocalisation the angle between the two four planes is taken to be theangle between the singular three planes (69). It can be argued that this rotation can39



be thought of as an Sp(2) rotation of one M5-brane relative to the other in E 8 [37].We thus conclude that the process of rotating one M5-brane away from another by anSp(2) rotation preserves 3/16 supersymmetry. In the more general case in which �Uis non-diagonal the solution can be interpreted as an arbitrary number of M5-branesintersecting at angles determined by the associated p-vectors; these angles are restrictedonly by the condition that the pairs of integers pi be coprime{. It is an interesting openquestion whether these 3/16 supersymmetric solutions can be generalized to allow U todepend on all eight coordinates fX(i); i = 1; 2g.Reducing on the overall transverse coordinate we obtain a IIA solution which we shallomit. In the simplest case that U is diagonal as in (72) it is the NS5 ? NS5(1) solutionin (44). For more general U there is an arbitrary number of NS5-branes intersectingat angles determined by their p-vectors as in the M5-brane case. Again there is adelocalisation in one direction tangent to each of the NS5-branes. If we now T-dualizein the common string direction we obtain a solution involving IIB NS5-branes with anidentical interpretation. This may be mapped to a similar con�guration involving onlyD5-branes by S-duality. In this way we deduce thatds2E = (detU) 14 [ds2(E 1;1) + Uij dX i � dXj ]B 0 = Ai ^ d'i� = ipdetU ; (73)is also solution of IIB supergravity preserving 3/16 supersymmetry. In the simplest case,in which U is of LWY type, this solution represents the intersection on a string of twoD5-branes, with one rotated relative to the other by an Sp(2) rotation with angle �,given by (69). We are now in a position to make contact with the work of Berkooz,Douglas and Leigh [67]. They considered two intersecting Dirichlet (p+q)-branes with{Note that this condition comes from demanding that the Hyper-K�ahlermanifold is regular. If wejust wanted to have solutions to the supergravity equations of motion then we could allow the pi to bearbitrary real numbers. 40



a common q-brane overlap in perturbation theory. According to their analysis, eachcon�guration of this type is associated with an element of SO(2p) describing the rota-tion of one (p+q)-brane relative to the other in the 2p-dimensional relative transversespace. The identity element of SO(2p) corresponds to parallel branes, which preserve1/2 the supersymmetry. Other elements correspond to rotated branes. The only caseconsidered explicitly in [67] was an SU(p) rotation, but it was noted that the conditionfor unbroken supersymmetries was analogous to the reduced holonomy condition arisingin KK compacti�cations. The case we are considering corresponds to an Sp(2) rotationin SO(8). The analysis of [67] was generalised in [37] to show that this setup preserves3/16 supersymmetry. In addition the solution (73) shows that at least for the Sp(2)case the analogy with holonomy is exact since this IIB solution is dual to a non-singularD=11 spacetime of Sp(2) holonomy.Let us now return to the interpretation of the IIB solution (70). When U is diagonalwe obtain the NS5 ? D5(2) solution. Since the two �vebranes share two commondirections, the singular three planes correspond to the location of the �vebranes inthe six-dimension space. For this case the �vebranes are just delocalised in the extradirection that separates them i.e., there is no further delocalisation in directions tangentto the other brane as above. By studying the action of SL(2;Z) on the solution andrecalling that a IIB (p; q) 5-brane can be constructed using SL(2;Z) transformations,we come to the following interpretation for a general Hyper-K�ahler metric: a `single3-plane solution' of the hyper-K�ahler conditions with p-vector (p1; p2) is associated witha IIB superstring 5-brane with 5-brane charge vector (p1; p2). This implies that there isa direct correlation between the angle at which any given 5-brane is rotated, relative toa D5-brane, and its 5-brane charge. An instructive case to consider is the three 5-branesolution involving a D5-brane and an NS-5-brane, having orthogonal overlap, and oneother 5-brane. As the orientation of the third 5-brane is changed from parallel to theD5-brane to parallel to the NS-5-brane it changes, chameleon-like, from a D-brane toan NS-brane. 41



4.5 Intersecting branes from hyper-K�ahler manifoldsThere is a generalisation of (52) called a `generalized membrane' solution which takesthe form ds2 = H� 23ds2(E 2;1) +H 13ds2HKF = �!3 ^ dH�1; (74)where !3 is the volume form on E 2;1 and H is a T 2-invariantk harmonic function on thehyper-K�ahler 8-manifold. Provided the sign of the expression for the four-form F in(74) is chosen appropriately it can be shown that the solution with F 6= 0 breaks nomore supersymmetries than the solution (52) with F = 0. Point singularities of H arenaturally interpreted as the positions of parallelM2-branes. For our purposes we requireH to be independent of the two ' coordinates, so singularities of H will correspond toM2-branes delocalized on T 2. Such functions satisfyU ij@i � @jH = 0: (75)Proceeding as before we can now convert this D=11 con�guration into various inter-secting brane con�gurations. Lets �rst consider the case of the Hyper-K�ahler manifoldbeing a product of two Taub-NUT manifolds. Recall that we �rst reduced on one of theTaub-NUT circles and then T -dualised on the other circle and for H = 1 we obtainedthe NS5 ? D5(2) con�guration. For H 6= 1, the reduction gives a D2-brane and theT -duality converts it into a D3-brane and we arrive at the �rst con�guration in (42).Continuing with the various dualities we arrive at all of the con�gurations in (42)-(46)In the case of (43) we recover the M -theory solution considered in (25). Note thatsubstituting (72) into (75) produces (26).If we now consider a general toric Hyper-K�ahler manifold in (74) we obtain solutionskThis condition on H is needed for our applications; it is not needed to solve the D=11 supergravityequations. 42



corresponding to the con�gurations in (42)-(46) with the �rst two branes overlappingnon-orthogonally and the third brane stretched between them.5 ConclusionsIn this paper we have reviewed various supergravity solutions corresponding to BPS in-tersecting branes inM -theory and in type II string theory. We �rst discussed three basicintersections of twoM -branes which all break 1/4 of the supersymmetry: M2 ?M2(0),M2 ?M5(1) and M5 ?M5(3). Upon dimensional reduction these con�gurations wererelated to type II intersecting D-branes with four ND string coordinates, as well as toother con�gurations involving NS-branes. We argued that these solutions could be in-terpreted in one of three ways: self intersections of branes in (p� 2) dimensions, braneswithin branes, or branes ending on branes. All of the solutions have the property thatthey are delocalised along the relative transverse directions. We pointed out that theharmonic function of one of these branes can be generalised to have a dependence on thecoordinates tangent to the other brane. It would be interesting if more general solutionsof (26) could be found. More generally it would be of interest to construct fully localisedintersecting brane solutions.We noted that multi intersections of n-branes are allowed and that they genericallybreak 2�n of the supersymmetry. An interesting exception to this are various specialtriple overlaps that allow an extra brane to be added without breaking more supersym-metry. We showed that intersecting branes can be dimensionally reduced to give blackholes with non-zero horizon area in D=4 and D=5. Considering the intersecting Dbrane con�gurations from a perturbative point of view has had remarkable success atreproducing the black hole entropy from state counting.We also discussed the M5 ?M5(1) overlap. This solution has the interesting prop-43



erty that the M5-branes are localised inside the world-volume of the other brane, butare delocalised in the direction that separates them. We noted that these con�gurationsviolate the (p � 2) self intersection rule and that the resolution of this is the fact thatthere are more general solutions with an extra M2-brane that still preserve 1/4 of thesupersymmetry. The extra M2-brane is interpreted as being stretched between the twoM5-branes. After dimensional reduction these are related to D-brane intersections withthe number of ND string coordinates being eight.We showed that toric hyper-K�ahler manifolds can be used to construct generalisationsof the M5 ?M5(1) solution which preserve 3/16 supersymmetry where the M5-branesoverlap non-orthogonally. Similar con�gurations can be obtained by dimensional reduc-tion and duality. One interesting case is two D5-branes intersecting non-orthogonally.The two D5-branes are related by an Sp(2) rotation in the eight relative transverse di-rections. Since the solution is related by duality to a non-singular D=11 spacetime ofSp(2) holonomy it makes precise the analogy between the fraction of supersymmetrypreserved by non-orthogonal D-branes and the standard holonomy argument in Kaluza-Klein compacti�cations that was discussed in [67]. In view of this it would be of interestto consider other subgroups of SO(8). As pointed out in [67], the holonomy analogywould lead one to expect the existence of intersecting D-brane con�gurations in whichone D-brane is rotated relative to another by an SU(4), G2 or Spin(7) rotation matrix.If so, there presumably exist corresponding solutions of IIB supergravity preserving 1/8,1/8 and 1/16 of the supersymmetry, respectively. These IIB solutions would presum-ably have M-theory duals, in which case one is led to wonder whether they could benon-singular (and non-compact) D=11 spacetimes of holonomy SU(4), G2 or Spin(7).By considering a generalised membrane solution involving the toric Hyper-K�ahlermanifold allowed us to construct solutions corresponding to branes overlapping non-orthogonally with an additional brane stretched in between them. In the case in which aD3-brane intersects overlapping IIB 5-branes, the fact that the solution preserves 3/1644
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