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TRIANGULATED CATEGORIES IN THE MODULAR
REPRESENTATION THEORY OF FINITE GROUPS

JEREMY RICKARD

1. INTRODUCTION AND NOTATION

1.1. Introduction. There are two major examples of triangulated categories that have
assumed importance in modular representation theory in recent years: derived categories
and stable module categories. These are not unrelated: the stable module category of a
group algebra is equivalent to a natural quotient (in the sense of triangulated categories)
of its derived category: this is proved in [17]. However, in this survey we shall describe
some applications of the two kinds of category that are rather different in flavour.

In the first half, we shall discuss some important conjectures on equivalences between
derived categories of block algebras. Much recent work on the representation theory of
general finite groups in characteristic p has been concerned with investigating the rela-
tionship between the representation theory of a group G and of its ‘p-local subgroups’,
i.e., normalizers of non-trivial p-subgroups. A theme running through many recent conjec-
tures has been the belief that many aspects of the representation theory of G should be
‘determined locally’. For example, a famous conjecture of Alperin claims that the number
of isomorphism classes of non-projective irreducible representations of G over a field of
characteristic p should be determined locally in a precise manner. But among this circle
of conjectures, perhaps the most satisfying is a conjecture of Broué’s claiming that, in
certain circumstances, blocks of G and of its local subgroups should have equivalent :de-
rived categories. The reason that this seems so satisfying is that it makes such a precise
connection between the ‘global’ and the ‘local’ representation theory; it is to be hoped
that, at least conjecturally, a similarly precise statement will be found for general blocks.

In the second half of this survey, we shall discuss some recent work on stable module ca-
tegories whose flavour is more related to group cohomology and the theory of varieties for
modules. The theme of this work is to exploit an analogy between stable module categories
and the stable homotopy category of algebraic topology, borrowing techniques from ho-
motopy theory. These techniques require the use of limiting procedures which necessarily
take us outside the world of finite dimensional modules: this is probably unsurprising to
homotopy theorists, who have habitually used huge infinite dimensional spaces for many
years, but might seem more shocking to a representation theorist. We shall see that
this use of infinite dimensional modules sheds new light on the usual finite dimensional

representation theory.
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1.2. Notation. By a ‘module’ for a ring A, we shall mean a right module unless we specify
otherwise. We shall denote the category of A-modules by Mod(A) and the category of
finitely presented A-modules by mod(A).

Usually the rings we consider will be algebras over some commutative ring R (most
often, R is a field or a discrete valuation ring). When A and B are two such R-algebras,
then by an ‘A-B-bimodule’ we shall mean a bimodule on which the left and right actions
of R coincide: in other words an A? ® g B-module.

When we deal with complexes of modules, we shall try to be consistent in using co-
homological notation: i.e., our complexes will be cochain complexes, with the differential
increasing degree. When we refer to a complex X, we shall use X* for the degree i cochains,
and X[n] will be the complex X ‘shifted n places to the left’: i.e., X[n]’ = X**", with
the differentials of X [n] obtained from those of X by multiplying by (—1)". We shall use
the standard notation for the various categories of complexes: for example, the category
of cochain complexes of A-modules will be denoted by C(Mod(A)), and the category of
bounded complexes by C?(Mod(A)), the homotopy category of complexes will be denoted
by K (Mod(A)) and the derived category by D(Mod(4)).

2. EQUIVALENCES OF DERIVED CATEGORIES

Although equivalences of derived categories of module categories occur for all kinds
of rings, it is probably for blocks of finite group algebras that they are being studied
most intensively at present. This is because of conjectures of Broué [10] that predict that
such equivalences are widespread in modular representation theory and that they give a
structural explanation of why some long-standing character-theoretic conjectures should
be true.

There are some special properties of group algebras and their blocks that simplify and
enhance the general ‘Morita theory’ for derived categories when applied to such algebras.
For one thing, blocks are always symmetric algebras, and we shall see that this allows us
to slightly simplify the general theory. Another feature of group algebras is that they have
many special classes of representations, such as permutation representations, that seem
particularly natural to study; we shall see that such special representations also seem to
shed light on the derived equivalences that are expected to exist between blocks.

2.1. Some remarks on symmetric algebras. The usual definition of a symmetric
algebra over a field k (e.g., [2, Definition 1.6.1]) is as follows.
Definition 2.1. A finite dimensional k-algebra A is symmetric if there is a linear map

0:A—k

with the following two properties:
(i) 0 is symmetric, meaning that for all pairs of elements a,b € A, 6(ab) = 6(ba).
(ii) The kernel of @ contains no non-zero left or right ideals of A.
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The important motivating example is the group algebra kG of a finite group G over &,
where € can be taken to be the map

B(Z )‘gg ) = )‘1)
g9€eqG
taking a typical element of the group algebra to the coefficient of the identity element of
G. More generally, if kB is a block algebra of kG, then kB is also symmetric, via the
restriction of 8 to kB.

There is a well-known equivalent definition that is more convenient to use when it comes
to investigating module categories, and which generalizes more easily to coefficient rings
other than fields. For the readers’ convenience we shall include a proof that this alternative
definition is equivalent.

Theorem 2.2. A finite dimensional algebra A over a field k is symmetric if and only if
A and its k-linear dual AV = Homy (A, k) are isomorphic as A-bimodules.

Proof. Recall first that if M is any A-bimodule (e.g., M = A), then the natural A-bimodule
structure on MY = Homy (M, k), is given by the formula

(atpb)(m) = 3 (bma),

for any m € M, ¢ € MY and a,b € A.
Suppose that A is symmetric and that 8 : A — k is a map with the properties required
by Definition 2.1. Then we can define a map

$: A— AY
by
o(b) = bl

for b € A. Clearly ¢ is a left A-module homomorphism, since if a,b € A, then

@(ab) = abl = ap(b).
Using property (ii) of 8, it is also easy to see that ¢ is a right A-module homomorphism,
as

¢(ba)(z) = (bab)(z) = 6(zba) = B(azb) = (¢(b)a)(z)

for a,b,z € A. Suppose that b is in ker(¢), so b8 = 0, and hence

0 = (b6)(a) = 0(ab)

for all a € A. Then the left ideal Ab is contained in ker(6), and so b = 0 by property (ii)
of 8. So we have proved that ¢ is an injective A-bimodule homomorphism, and so ¢ must
be an isomorphism, since A and AV have the same (finite) k-dimension.

Conversely, suppose that

$: A— AY
is an A-bimodule isomorphism, and let
0=¢(1) e A.

Then, if a,b € A,
8(ab) = (b9)(a) = (b(1)) (a) = ¢(b)(a) = (¢(1)b)(a) = (6b)(a) = O(ba),
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and so 0 is symmetric. If b € A is an element of a right ideal of A contained in ker(8),
then
0 = 6(ba) = (6b)(a)
for all a € A, and so
0 = 6b = ¢(b),
and hence b = 0. Therefore ker(§) contains no non-zero right ideals and similarly contains

no non-zero left ideals. Thus @ satisfies both conditions of Definition 2.1, and so A is
symrmetric. O

In the case of a finite group algebra kG, the kG-bimodule isomorphism between kG and
kG takes an element h € G to the element 8, € kG with

0n(D _ Agg) = A1
geG

In fact, for any commutative coefficient ring R, this formula gives an RG-bimodule isomor-
phism between RG and RGY = Hompg(RG, R), so it makes sense to define a symmetric
R-algebra to be an R-algebra A which is finitely generated and projective as an R-module
and which is isomorphic to its R-linear dual AV as an A-bimodule.

Let us give an easy but important application of this way of thinking of symmetric
algebras. The following theorem tells us that, when dealing with symmetric algebras, all
reasonable notions of duality are equivalent.

Theorem 2.3. Let A and B be symmetric R-algebras, for some commutative ring R.

(i) The functors Hompg(?, R) and Homgu(?, A) are isomorphic as functors from right
A-modules to left A-modules (or vice versa).

(i) The functors Hompg(?, R), Homx(?, A) and Hompg(?, B) are all isomorphic as func-
tors from A-B-bimodules to B-A-bimodules.

Proof. The isomorphism of (i) holds since
Homy(?, A) = Homa (7, Homg (4, R))
=~ Hompg(? ®4 A, R)
= Hompg(?, R),
and the isomorphisms of (ii) follow from this by naturality. O

The following corollary will be important when we look at functors between module
categories and derived categories of blocks.

Corollary 2.4. Let A and B be symmelric R-algebras, and let M be an A-B-bimodule
that is finitely generated and projective as a left A-module and as a right B-module. Then
the functor

?7®p MY : Mod(B) — Mod(4),
where MY = Hompg(M, R), is both left and right adjoint to

7®4 M : Mod(A) — Mod(B).
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Proof. The right adjoint to the functor ? ® 4 M is Homp(M,?). For right B-modules X
and Y, consider the natural map of R-modules

X ®p Homp(Y, B) — Hompg(Y, X)

defined by
TR a+— [y — :za(y)]

forz€ X,y €Y and a € Homg(Y, B). If Y = B, it is straightforward to check that this
map is an isomorphism between the modules X ® s Hompg(B, B) and Hompg(B, X), which
are both naturally isomorphic to X. Hence, by additivity, the map is an isomorphism
whenever Y is a finitely generated projective B-module. Taking Y = M, we get, for any
B-module X, a natural isomorphism

X ®p HomB(M,B) — HomB(M,X)

which, by naturality in Mp, is an A-module homomorphism. Since Homp(M, B) = MV
by Theorem 2.3, it follows that

?®p MY 2 Homp(M,?)

is right adjoint to 7 ® 4 M.

Using Theorem 2.3 again, the R-linear dual Homg(P, R) of a finitely generated projec-
tive left A-module P is isomorphic to Homy4 (P, A), which is a finitely generated projective
right A-module (as can be seen by considering the case P = A), and similarly the dual
of a finitely generated projective right B-module is finitely generated and projective as a
left B-module. Hence the B-A-bimodule MV is finitely generated and projective as a left
B-module and as a right A-module. We can therefore apply what we have already proved
to MV to deduce that ? ® g M"Y is left adjoint to ? ® 4 (M")V. However, M is finitely
generated and projective as an R-module, and so the natural map

M— HOInR(HOInR(M, R), R)

sending m € M to 8+ B(m) is an isomorphism: even, by naturality, an isomorphism of
A-B-bimodules. Hence (MV)V = M, and we are done. O

It is fairly straightforward to generalize Corollary 2.4 to deal with functors between
chain homotopy categories or derived categories.

Corollary 2.5. Let A and B be symmetric R-algebras, and let X be a bounded complex
of A-B-bimodules which are finitely generated and projective as left A-modules and as
right B-modules. Then the functor 7 ® 4 X is both left and right adjoint to the functor
?7®p XV, where XV = Hompg(X, R). This is true whether we regard them as functors
between categories of complexes, chain homotopy categories of complezes or (since all the
functors involved are ezact) between derived categories.

Proof. The only slight refinement of Corollary 2.4 that we need is that the adjunctions
described there are natural in M, in the sense that if M and N are two bimodules satisfying
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the conditions of that corollary, and if v : M — N is a bimodule homomorphism, then,
for example, the diagram of bifunctors

Homp(? ®4 N,?) —— Homu(?,?®p NV)

! !

HomB(? ®4a M) ?) —_— HOHIA(?,?@B MV)

commutes, where the horizontal maps are the adjunction isomorphisms and the vertical
maps are induced by . This follows easily from the proof of Corollary 2.4.

Now if C is a complex of A-modules and D is a complex of B-modules, then we have,
by Corollary 2.4 and the remark we have just made, a natural isomorphism

Homp(C ®4 X, D) = Homa(C,D ®p XV)

of triple complexes of R-modules. Taking the ‘completed’ total complexes (i.e., the ana-
logue of the total complex where direct products rather than direct sums are used to form
the terms in each degree), we have a natural isomorphism of degree zero cocycles

Homg(moq(m))(C ®4 X, D) = Homgyioa(a)y(C, D ®8 X V)
and a natural isomorphism of degree zero cohomology
Hom g (moq(8))(C ®4 X, D) = Homg (moq(a))(C; D ®8 X ),

giving adjunctions at the level of categories of complexes and of the chain homotopy
categories. Since the functors involved are all exact, we also get an adjunction at the level
of derived categories.
Similarly ? ®p XV is also left adjoint to 7 ® 4 X.
O

Some more detailed results along these lines can be found in [9].

2.2. Derived equivalences between symmetric algebras. Throughout this section
R will be a commutative noetherian coefficient ring. The examples we will have in mind
are a field or a complete discrete valuation ring.

In [18] it was proved that if A and B are two R-algebras that are projective as R-
modules (which is certainly the case if they are symmetric R-algebras according to the
definition proposed above), and if they are derived equivalent, then there is an object X of
the derived category D?(Mod(A% ®g B)) of A-B-bimodules, called a two-sided tilting
complex, so that

L
?7®4 X : D*(Mod(A)) — D*(Mod(B))
is an equivalence.

Lemma 2.6. If A and B are symmetric R-algebras that are derived equivalent via a two-
sided tilting complez, then X is isomorphic (in D®(Mod(A°?®rB))) to a bounded complez
of finitely generated A-B-bimodules, projective as left A-modules and as right B-modules.
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Proof. By Proposition 3.1 of [18], X is isomorphic in D*(Mod(B)) to a bounded complex
of finitely generated projective B-modules. Therefore X has cohomology in only finitely
many degrees, and this cohomology is finitely generated over R. We can therefore choose
a projective A-B-bimodule resolution P of X whose terms are finitely generated. Since
P is isomorphic in D° (Mod(B)) to a bounded complex of projective modules, it follows
that the degree n cocycles of P form a projective B-module for all but finitely many n.
Similarly they form a projective left A-module for all but finitely many n, and so for n
small enough, the complex

i —0— 2" — P — Pl

where Z™" is the bimodule of degree n cocycles of P, will be isomorphic to X in the
derived category (since all the homology of P will be in degrees greater than n) and
will be a complex of finitely generated bimodules projective as left A-modules and right

B-modules.
O

Because of this lemma, we can always take our two-sided tilting complexes to satisfy
the conditions decribed: i.e., to be bounded complexes of finitely generated bimodules,
projective both as left and as right modules. This has the benefit that the functor 7® 4 X
is exact, and so we do not need to take the derived functor to get an equivalence between
the derived categories of A and B. Also, if X is such a complex, then Corollary 2.5 tells us
that the functor ?®p XV is left and right adjoint to ?®4 X, and so (at the level of derived
categories, at least, where ?®4 X is an equivalence) ?7®p X" is a ‘quasi-inverse’ to 7®4 X:
in other words, the two functors compose in either order to give functors isomorphic to
the identity functor. In terms of complexes, this is equivalent to the isomorphisms

X@pXVexA

in D®(Mod(A%” ®g A)), and
XV®sX=B

in D*(Mod(B° ®g B)). In other words, X ®p XV and XV ®4 X both have cohomology
concentrated in degree zero and isomorphic to 444 and pBp respectively.

In fact, the construction described in Lemma 2.6 gives more. The complex constructed
there has the property that all but one term is projective as a bimodule. The dual of this
complex has the same property, and so if we take X to be this complex, then every term of
X ®p XV except for the degree zero term is projective as an A-bimodule. This is because
the tensor product of an A-B-bimodule M that is projective as a left A-module and a
projective B-A-bimodule is projective as an A-bimodule, since it is a direct summand of
a direct sum of terms isomorphic to

MQ@p(B?®rA) = MQ@grA.

Since we also know that X ®p XV is self-dual and has homology concentrated in degree
zero, it follows that it must be split. In other words,

X®pXV'=>A
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in the chain homotopy category K® (Mod(A"P ®r A)), not just in the derived category.
Similarly,

X'®@aX=B
in K?(Mod(B? ®@g B)). In [20], we call a two-sided tilting complex with this extra
property a split endomorphism tilting complex, since X ® g XV is naturally isomorphic
to the complex Endp(X). We have proved the following.

Proposition 2.7. If A and B are symmetric R-algebras that are derived equivalent, then
there is a split endomorphism tilting complex that induces an equivalence of derived cate-
gories.

From the definition of a split endomorphism tilting complex, the following is clear.

Theorem 2.8. If A and B are symmetric R-algebras and sXp is a split endomorphism
tilting complex, then 7®4 X and 7®p XY are quasi-inverse equivalences between the chain
homotopy categories K®(Mod(A)) and K®(Mod(B)).

Actually, although we have proved that a two-sided tilting complex for symmetric alge-
bras can always be chosen to be a split endomorphism tilting complex, the complex that
our proof provides, with only one non-projective term, is not always the most suitable one:
in general there are many choices of such complexes that are isomorphic in the derived
category but not in the homotopy category.

2.3. Derived equivalences between blocks: generalities. Of course, all that we
have said in the last two sections applies to blocks of finite group algebras, and it is in this
situation that some of the most intriguing examples of derived equivalences are conjectured
to occur.

Let us specialize our general coefficient ring R. From now on, we shall be considering
blocks with coefficients in a field or a complete discrete valuation ring. Let us choose a
prime p, and let O be a complete discrete valuation ring with residue field &k of characteristic
p and with field of fractions K of characteristic 0. Since we shall not be concerned with
rationality questions, we shall also assume that these rings are all ‘large enough’, meaning
that k£ and K contain all the |Glth roots of unity for every group G under consideration.

First, let us recall the basic ideas of block theory. If G is a finite group, then there is a
unique decomposition

(1) l=e1te+---+ep

of the multiplicative identity of kG into primitive orthogonal central idempotents: in other
words, the e; are non-zero elements of the centre of kG, ef = ¢; (i.e., e; is idempotent)
and e;e; = 0 if i # j (i.e., e; is orthogonal to e;), and there is no way of writing any e;
as the sum of two non-zero orthogonal central idempotents. This implies that the group
algebra kG is a direct product

kG=A1XA2X---XAn

of k-algebras, where A; = kG.e; is an algebra with multiplicative identity e;, called a
block algebra, and is indecomposable as a two-sided ideal of k£G.
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One of the important elementary results of block theory is that the decomposition (1
lifts uniquely to a decomposition

(2) l=é+é&+ - +6
of 1 € OG into primitive orthogonal central idempotents. Hence
OG=A-1 XfizX XA'n,

where 4; = O0G.€;. Also A; & A; ®e k is the reduction modulo the maximal ideal of @ of
A;. Hence there is a natural 1-1 correspondence between block algebras over ) and over
k.

Of course, the decomposition (2) can also be regarded as a decomposition of 1 € KG
into orthogonal central idempotents, but €; is usually not primitive in KG. Since KG is
a semisimple K-algebra, and so is a direct product of matrix algebras over K (remember
that we are assuming that K is big enough), each factor KG.¢; is just the product of some
subset of this set of matrix algebras. Each irreducible character x of G corresponds to one
of these matrix algebras, and hence is associated to one of the idempotents é;: we say then
that the character x ‘belongs’ to the block é;. Perhaps we should point out that there
are differing opinions as to what a block ‘really is’. To some people it is the collection of
characters that belongs to the block, to some it is the block algebra, and to some it is the
corresponding central idempotent: these three sets of people are probably not disjoint.

There is one block that is of special interest; this is the block to which the trivial
character belongs, and is called the principal block. The corresponding principal block
algebra over k is the only one which does not annihilate the trivial module & (i.e., the
one-dimensional module on which each element of G acts as the identity). The structure
of the principal block is in many senses at least as complicated as that of any other block.
In what follows we shall tend to concentrate on the principal block, as this will allow us to
cover the more important ideas while avoiding many of the technicalities of block theory.

Let us now start to look at general consequences of equivalences between derived cate-
gories of block algebras; everything we will say here has been noted by Broué [10], but we
will try to give a slightly different perspective.

Beginning with the most trivial case, what can we say about derived equivalences over
K, where the algebras involved are just products of matrix algebras? Well, if A is any se-
misimple K-algebra, then the indecomposable objects of the derived category D? (mod(A))
are, up to isomorphism, just the objects S[n], where S is a simple A-module and n € Z.
So if A and B are both products of matrix algebras over K, with isomorphism classes of
simple modules represented by {S1,...,S5} and {T1,..., Ty} respectively, then if there is
an equivalence

F:Db (mod(4)) — Db (mod(B))
we must have a bijection
o:{1,...,1} —{1,...,m}
and an [-tuple (ny,...,n;) of integers, such that, for each i € {1,...,1},
F(8;) = Ty [ni]-

Conversely, for any such choice of data, there is a corresponding equivalence.
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If we have two finite groups G and H, central idempotents e € KG and f € KH, and
a derived equivalence between KG.e and K H.f, we therefore have a 1-1 correspondence
between the corresponding sets of characters. In fact, the equivalence of derived categories
induces an isomorphism of groups of virtual characters, where the virtual character of a
bounded complex C of finitely generated modules is

Z(—l)i ch(CY).
i€Z
This isomorphism takes ch(S;) to (—1)™ ch(T;), so we have a ‘correspondence with signs’
between the sets of irreducible characters, where the signs measure the parity of the
corresponding integers n;. Equivalently, this isomorphism is an isometry with respect to
the usual inner product of characters.
Any such isometry arises from some derived equivalence over K, but the isometries that
arise from derived equivalences over O have extra properties, as we shall now see.
Suppose that e and f are central idempotents in OG and OH, and that X is a two-sided
tilting complex of OG.e-OH. f-bimodules, which, as we saw in Section 2.2, we may as well
choose to be a bounded complex of finitely generated bimodules that are projective as left
and as right modules. Thus

?®oc X : D?(mod(OG.e)) — D®(mod(OH.f))

is an equivalence. It is trivial to check that X ®» K and X ®g & are also two-sided tilting
complexes, inducing equivalences

?®kc (X ®0 K) : D?(mod(KG.e)) — D*(mod(K H.f))

and

? ®ke (X ®o k) : D’ (mod(kG.e)) — D (mod(kH.f))
respectively (it should cause no confusion if we use the same letters e and f to denote the
images of these idempotents under the quotient maps OG — kG and OH — kH).

As we have seen, the derived equivalence over K induces an isometry of characters, but
we have the extra information that if P is a projective OG.e-module, then P Qpg X is
a bounded complex of projective OH.f-modules. It follows that the isometry takes the
character of any projective OG.e-module to a Z-linear combination of characters of pro-
jective OH. f-modules. A similar remark applies to the inverse isometry, so the following
theorem holds.

Theorem 2.9 (Broué). If G and H are finite groups, and e and f are central idempotents
in OG and OH respectively, then a derived equivalence between OG.e and OH.f induces
an isometry between the groups of wvirtual characters of KG.e and KH.f that preserves
the subgroups spanned by characters of projective modules for OG.e and OH.f.

An isometry with this property is called a perfect isometry by Broué [10], who also
gives a characterization of such isometries in terms of arithmetic properties of character
values, which allows the existence of perfect isometries to be tested with character tables.
Compared to proving that two derived categories are equivalent, therefore, it is a relatively
easy task to prove that there is a perfect isometry, and one often hears perfect isometries
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referred to as the character-theoretic ‘shadow’ of the deeper structural phenomenon of a
derived equivalence.

We have also seen that a derived equivalence between OG.e and OH.f induces an
equivalence

F : D’(mod(kG.e)) — D’ (mod(kH.f))

over k. In the same way that the equivalence over K induces an isomorphism of character
groups, this equivalence induces an isomorphism between the groups of virtual Brauer
characters of kG.e and kH.f, which are free abelian groups with bases consisting of the
Brauer characters of the simple kG.e-modules and kH. f-modules. Of course, this implies
that the number of simple modules is the same in each case, but in contrast to the situation
over K, there is no natural bijection, since if V' is a simple k(G.e-module, there is no reason
why F(V') should be isomorphic to a shift U[n] of any simple kH.f-module U, and so the
Brauer character of F(V') need not be an irreducible Brauer character, even up to a sign.

In fact, as Broué proves in [10], this equality between the numbers of simple modules over
k follows from the existence of a perfect isometry, which is a priori a weaker hypothesis.

Let us summarize the results of the preceding discussion.

Theorem 2.10. Let G and H be finite groups, and let e and f be central idempotents in
OG and OH respectively. If there is a derived equivalence between OG.e and OH.f then
(e) KG.e and KH.f have the same number of irreducible characters.
(b) kG.e and kH.f have the same number of isomorphism classes of simple modules,
although there need be no natural bijection.

2.4. Derived equivalences between blocks: Broué’s conjectures. In {10], Broué
conjectured that there are many examples of pairs of blocks of related groups that have
equivalent derived categories. As we saw in the previous section, this would have the
consequence that these blocks have the same number of characters and the same number
of simple modules over k; in many situations where the conjectures apply, even these
simple numerical equalities are not yet known to be true.

The most well-known of his conjectures is the ‘abelian defect group’ conjecture; to avoid
going into such aspects of block theory as Brauer correspondence, we shall state it here
only for principal blocks.

Congjecture 1 (Broué). Let G be a finite group with an abelian Sylow p-subgroup P and let
Ng(P) be the normalizer of P in G. There is a derived equivalence between the principal
block algebras of OG and ONg(P).

In fact, it is reasonable to hope that this equivalence should preserve the trivial module,
in the sense that the trivial module Og for OG should be sent to the trivial module Oy, (p)
for ONg(P).

This conjecture is known to be true in rather few cases. If P is cyclic, the equivalence
over k is known from [17], and it was then proved by Linckelmann {15] that this equivalence
also works over O. It is also known when p = 2 and G is SLy(4) or SLy(8) [22]. Since,
by Theorem 2.1 of [18], derived equivalences behave well with respect to taking tensor
products of algebras, it follows that if G and G’ are two groups for which Broué’s conjecture
is true then it is also true for G x G'.
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By Theorem 2.9, the following weaker conjecture would be a consequence of Broué’s
conjecture.

Conjecture 2. Let G be a finite group with an abelian Sylow p-subgroup P. There is a
perfect isometry between the principal blocks of G and Ng(P) in characteristic p.

This conjecture is much easier to check for a particular group than the previous one,
and has been verified in far more cases, although it is not known to be true in general. In
particular, Fong and Harris [13] have proved that it is a consequence of the classification
of finite simple groups that it is always true in characteristic two, and Fong has proved
a corresponding result in characteristic three. Of course, this provides evidence for the
more difficult conjecture on derived equivalences.

By Theorem 2.10, an even weaker consequence of Broué’s conjecture is the following.

Conjecture 3. Let G be a finite group with an abelian Sylow p-subgroup P. The principal
blocks of G and Ng(P) in characteristic p have the same number of irreducible characters
and the principal block algebras of kG and kNg(P) have the same number of isomorphism
classes of simple modules.

Even this conjecture is not known to be true in general. It is a special case of Alperin’s
weight conjecture [1], which gives a more complicated conjectural description of the number
of simple modules of a general block algebra in terms of normalizers of p-subgroups.
An interesting problem, on which little progress has been made, is to find a structural
explanation of Alperin’s conjecture along the lines of Broué’s conjecture.

Finally, the existence of derived equivalences between blocks is certainly not restricted
to the case of abelian defect groups, although it is in this case that the neatest general
conjecture has been formulated. To indicate a few examples, there are several cases of tame
blocks in characteristic two that are derived equivalent although not Morita equivalent.
Also, Enguehard [12] has proved that given any two blocks of two symmetric groups that
have the same defect group, there is a perfect isometry between the two blocks; it should
be true that there is also a derived equivalence, although this has only been proved in a
few cases.

2.5. Splendid equivalences. In the paper [10] of Broué studying perfect isometries, he
actually introduced a stronger version, called an isotypy. Again we shall restrict our
attention to principal blocks, for the sake of simplicity. He noticed that in all cases of
a group G for which he could find a perfect isometry between the principal blocks of G
and the normalizer H = Ng(P) of a Sylow p-subgroup P, there were actually families of
perfect isometries: for each subgroup @ < P there was a perfect isometry between the
principal blocks of the centralizers Cg(Q) and Cy(Q). What is more, these families were
compatible in a sense that he made precise. This raised the problem of formulating the
correct definition of a ‘compatible family’ of derived equivalences. For principal blocks, at
least, this problem was addressed in [20].

The solution depends on looking at permutation modules and their direct summands.
Recall that if G is a group and R is any commutative ring, then a permutation RG-
module is one which has an R-basis which is fixed setwise by the action of G: in other



TRIANGULATED CATEGORIES IN THE MODULAR REPRESENTATION THEORY OF FINITE GROURS

words, there is a G-set Q (i.e., a set on which G acts) so that the module is isomorphic
to R[S], the free R-module with basis Q on which the action of G is determined by
extending linearly its action on 2. There are various different names in currency for
direct summands of permutation modules over O or k: they are sometimes called trivial
source modules, because in Green’s theory of vertices and sources the source of each
of their indecomposable summands is the trivial module for some subgroup, and they are
sometimes called p-permutation modules, because they become permutation modules
on restriction to any p-subgroup.

Since, when we look at two-sided tilting complexes, we must deal with bimodules, let
us recall that an RG-RH-bimodule M for two group algebras can be regarded as an
R[G x H]-module via the action

1

m.(g,h) =g .m.h,

form € M, g € G and h € H. It therefore makes sense to refer to a bimodule as being a
‘permutation bimodule’, meaning it is a permutation module when regarded as a module
for the direct product of the two groups involved.

Of course, most modules for group algebras are not permutation modules or even p-
permutation modules. However, many of those that arise naturally are, and so it is not
unreasonable to hope that if a two-sided tilting complex arises naturally, then its terms
might be p-permutation bimodules. Indeed, many familiar exact functors are induced by
taking the tensor product with a p-permutation bimodule: for example, induction, restric-
tion, inflation, projection onto a block, and (for a subgroup U < G of order prime to p)
the functor from mod(OG) to mod(O[Ng(U)/U]) given by taking U-fixed points. Also,
it was proved in [19] that if a finite group G acts on a variety V, then the l-adic coho-
mology with compact support H}(V,Z;) can be realized as the cohomology of a complex
of l-permutation Z;G-modules (note that, for reasons of tradition, the characteristic has
changed briefly from p to [): this is relevant to the present discussion, since Broué [10]
makes precise conjectures relating derived equivalences for finite reductive groups in non-
defining characteristic / to the l-adic cohomology of Deligne-Lusztig varieties.

There is a construction, sometimes referred to as the Brauer construction, that is
of key importance when using p-permutation modules. To motivate this, consider first a
G-set Q. We can form the fixed point set QC, and this gives a functor

7G . G-sets — sets.

More generally, if H is a subgroup of G, then Ng(H) acts naturally on Qf, and so we
have a functor
78 . G-sets — Ng(H)-sets.

Of course, H acts trivially on Q¥, so we could regard this functor as taking values in
Ng(H)/H-sets.

If we try to linearize this, we run into a problem. If €2 is a G-set and H is a subgroup of
G as before, and if R is a commutative ring, then of course we can form the permutation
module R[QH)] for Ng(H). However, this is not in general a functor from permutation
RG-modules to permutation RNg(H)-modules, the problem being that R[Q¥] depends
on the choice of permutation basis for R[(2]. In fact, it is not too hard to produce examples
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of G-sets Qg and Q so that R[] and R[f;] are isomorphic as RG-modules, but 9§ and
Q§ have different numbers of elements.

There is one special case where we can recover functoriality. This is when R =k is a
field of characteristic p and H = @ is a p-group. In this case, we can give an alternative
description of k[29] that makes it clear that it is functorial in k[Q]. Recall first that if K
is a subgroup of H and M is a ZH-module, then the relative trace map

Try : MX — MY
is defined by
Te(m) = Z mh
K\H

for m € MX, where h runs over a set of representatives for the cosets K\H. Now it is
easy to check that k[Q®] is naturally isomorphic, as a kNg(Q)-module, to

K19/ D g (kI1),
Q<@

which is clearly functorial in k[Q): the point is that k[Q]? has a basis given by the sums of
the Q-orbits in 2, and a basis element corresponding to an orbit of length greater than one
is in the image of the relative trace from the stabilizer of an element of that orbit. This
functor, the Brauer construction with respect to @, extends additively to p-permutation
kG-modules, and the p-permutation kNg(Q)-module (or kNg(Q)/Q-module) obtained
by applying the functor to a p-permutation £G-module M is denoted by M(Q). More
details about the Brauer construction can be found in [8], where it is used systematically
to study p-permutation modules. One final comment that we should make is that it is very
important that the coefficient ring is a field of characteristic p: the Brauer construction
does not work over a discrete valuation ring O.

At first sight it seems that the Brauer construction does not mix very well with derived
categories, since it is far from being exact, and so does not induce a well-defined functor on
the derived category of kG-modules, or even the subcategory of complexes whose terms are
p-permutation modules. However, it is additive, and so does induce a well-defined functor
on the subcategory of K (mod(kG)) consisting of complexes of p-permutation modules. It
seems a good idea, then, to look at split endomorphism tilting complexes, as we did in
Section 2.3, since we are then essentially working with the homotopy category rather than
the derived category.

After this rather lengthy motivation, let us give the definition of a ‘splendid tilting com-
plex’: this is an abbreviation of ‘SPLit ENDomorphism tilting complex of p-permutation
bimodules Induced from Diagonal subgroups’. Here we give the definition in a special
case that will suffice for studying Broué’s conjecture for principal blocks; a slightly more
general definition is given in [20].

Definition 2.11. Let G be a finite group with a Sylow p-subgroup P, and let H < G
be a subgroup with P < H. Let R be either k or O, and let e and f be the principal
block idempotents in RG and RH respectively. A splendid tilting complex for RG.e
and RH.f is a split endomorphism tilting complex of RG.e-RH.f-bimodules that are,
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considered as R[G x H]-modules, direct sums of direct summands of permutation modules
of the form

Ind$ %7 (R)
for subgroups @ < P, where AQ is the ‘diagonal’ embedding of Q in G x Hj i.e.,

AQ={(g,9) EGxH:qeQ}.
A derived equivalence induced by a splendid tilting complex is called a splendid equi-
valence.

Notice the two main features of the definition: firstly, the split endomorphism property,
and secondly, the use of p-permutation modules. Both of these turn out to be important
for the main theorems about splendid tilting complexes.

The main motivation for introducing this idea was to provide a good concept of a
‘compatible family of derived equivalences’, at least for principal blocks, in order to give
a structural explanation of Broué’s isotypies. We do this over k¥ by using the Brauer
construction. Note that, with the notation of the definition, Ngx g (AQ) contains Cg(Q) X
Cu(Q) as a subgroup, and so the Brauer construction with respect to AQ can be regarded
as a functor from p-permutation £[G x H]-modules to k[Ce(Q) x Cx(Q)]-modules.

The following theorem is a special case of [20, Theorem 4.1].

Theorem 2.12. With the notation of Definition 2.11, suppose that P is abelian, and that
H = Ng(P). If X is a splendid tilting complez for the principal block algebras kG.e and
kH.f, then for each subgroup Q < P, X(AQ) is a splendid tilting complex for the principal
block algebras of kCq(Q) and kCu(Q).

Our proof of this theorem, which we shall not give here, depended on the fact that
H ‘controls fusion of p-subgroups’ in G: i.e., if Qp and @Q; are subgroups of P that
are conjugate in G, so @1 = Qf for some g € G, then they are conjugate in H and
the isomorphism from Qo to @ given by conjugating by g is also given by conjugation
by some element of H. This is not in general true if P is non-abelian, but Harris [14]
has shown that this condition is not essential for the proof. Also, Puig [16] has given
a remarkable generalization of this theorem to arbitrary blocks, and he shows that the
analogue of the ‘control of fusion’ condition is actually a consequence of the existence of
a splendid equivalence.

It should be fairly clear why the two main features of the definition are important for
this theorem: in both cases it is because we are using the Brauer construction.

As it stands, this theorem is not very satisfactory as an explanation of isotypies, since
the use of the Brauer construction requires us to work over k, but to deduce perfect
isometries we need derived equivalences over 0. Of course, it is easy to prove that a
derived equivalence over O gives one over k, as we saw in Section 2.3, but the converse
is not true in general. Luckily, it turns out that it is true when we have the ‘splendid’
condition. The next theorem is Theorem 5.2 of [20].

Theorem 2.13. With the notation of Definition 2.11, let X be a splendid tilting complez
for kG.e and kH.f. There is a splendid tilting complez X for OG.e and OH.f, unique up
to isomorphism, so that X = X ®o k.
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The way that the two main features of the definition enter the proof of this theorem is
as follows. An important property of p-permutation modules over k is that they, and maps
between them, can be lifted to . This means that the complex X can at least be lifted to
a sequence of p-permutation bimodules over O with maps between them: however, when
we do this we do not necessarily get a complex, since the composition of two ‘differentials’
is not necessarily zero. It turns out that there is a sequence of obstructions to being able
to lift the differentials so that they do compose to zero, and all of these obstructions lie
in the space

Hom g modk[ax o)) (X X [2])-
Now the split endomorphism property enters: this implies that the complex Homgg (X, X)
is split (as a complex of kH-bimodules) with cohomology concentrated in degree zero.
Applying the H-fixed point functor (for the diagonal action of H), we deduce that the
complex Homy gy f)(X, X) also has cohomology concentrated in degree zero, and the space
in which the obstructions lie is the degree two cohomology. We could not do this without
splitness, since the H-fixed point functor is not exact.

Putting the two theorems together, we get a very satisfactory structural counterpart of
isotypies: given a splendid equivalence over O between the principal block algebras of OG
and OH, we can reduce modulo the maximal ideal of O to get a splendid equivalence over
k, then we can apply Theorem 2.12 to get splendid equivalences between the principal block
algebras of £C(Q) and kCx(Q) for each Q < P, and finally we can apply Theorem 2.13 to
get splendid equivalences between the principal block algebras of OCg(Q) and OCg(Q).

Of course, all of this would be of little interest if splendid equivalences did not occur,
but to date the evidence suggests that the obvious strengthening of Broué’s conjecture is
true:

Congjecture 4. Let G be a finite group with an abelian Sylow p-subgroup P and let Ng(P)
be the normalizer of P in G. There is a splendid equivalence between the principal block
algebras of OG and ONg(P).

One interesting phenomenon that we explore in [20] arises when we look at Morita
equivalences, which are of course a simple special case of derived equivalences, in the light
of the idea of splendid equivalences. The obvious way that a Morita equivalence can be
‘splendid’ is that it can be induced by a p-permutation bimodule. However, there are
natural examples that do not arise in this way. In many cases these are splendid neverthe-
less: the bimodule inducing the Morita equivalence is the cohomology of a splendid tilting
complex (with more than one term) which happens to have its cohomology concentrated
in one degree. So even for Morita equivalences we are led to look at tilting complexes!

3. BOUSFIELD LOCALIZATION IN THE STABLE MODULE CATEGORY

In this section we shall give a brief taste of some new techniques that have recently
been introduced into the study of the stable module category of a finite group in work of
Benson, Carlson and the author [5, 21, 6, 7]. When we say these techniques are ‘new’,
we mean that they are new to representation theory: they are well-known in algebraic
topology, where they are applied to the stable homotopy category, and the stable module
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category (at least if we include infinite dimensional modules) is similar enough that the
ideas can be borrowed wholesale. The key construction is called ‘Bousfield localization’
and was introduced into stable homotopy theory in work of Brown, Adams and Bousfield.

‘We shall be working over a field k of characteristic p, which from now on we shall choose
to be algebraically closed.

3.1. The stable module category and varieties for modules. Let us start by recal-
ling the basic idea of the stable module category; we shall deal with all modules, not just
the finitely generated ones.

Definition 3.1. Let G be a finite group. The stable module category StMod(kG) of
kG-modules has the kG-modules as its objects, and if M and N are two such modules,
the set of morphisms between them is the set of equivalence classes

Ml_kG(Ma N) = HomkG(M, N)/ ™~

where two homomorphisms o and 8 from M to N are equivalent if their difference o — 8
factors through a projective module.
The full subcategory consisting of finitely generated modules is denoted by stmod(kG).

Every kG-module M is the direct sum of a projective module and a module (called the
projective-free part of M) that has no non-zero projective direct summands, and both of
these are unique up to isomorphism. Two modules are ‘stably isomorphic’, i.e., isomorphic
in StMod(kG), if and only if their projective-free parts are isomorphic as modules. Hence
there is a one-to-one correspondence between stable isomorphism classes and isomorphism
classes of modules with no non-zero projective summands.

The stable module category is a triangulated category, where the shift functor is given by
taking inverse syzygies: the shift of a module M is the cokernel Q7'M of the embedding of
M into an injective module. The distinguished triangles come from short exact sequences
of modules: if

0—L—M—N—0

is a short exect sequence of modules, the extension class gives an element of
" Ext!(N, L) = Hom(N, QL)

and hence a diagram
L—M-—N—Q1L

in StMod(kG). The distinguished triangles are the diagrams isomorphic to those arising in
this way. So, informally, a distinguished triangle is a ‘short exact sequence up to projective
summands’.

There are many épaisse subcategories of stmod(kG) defined in a homological way, in
terms of the theory of varieties for modules. A good exposition of this theory can be found
in [3, Chapter 5], and we shall just recall some of the basic properties of these varieties.

The cohomology ring H*(G, k) is a finitely generated graded k-algebra which, modulo
the ideal of nilpotent elements, is commutative, and so its maximal ideal spectrum Vg(k)
is an affine variety over k. Actually, since the cohomology ring is graded, it would be
more natural to consider the associated projective variety, but we shall follow tradition by
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using the affine variety. Given a finite-dimensional ¥G-module M, Ext*(M, M) is a graded
module for H*(G, k), and so its annihilator is a graded ideal of H*(G, k) and so defines
a closed homogeneous subvariety Vg(M) of Vg (k), called the ‘variety of the module M’.
The subvariety associated to the trivial module k is clearly the whole of Vig(k), and so the
notation is consistent (i.e., the two meanings of the notation Vg (k) agree). A module M
is projective if and only if V(M) = {0}, and if M and N are modules, then V(M & N) is
precisely the union Vg (M)UVg(N), and hence the variety of a module is an invariant of its
stable isomorphism class. The definition clearly makes sense even for infinitely generated
modules, but it turns out that it is not the ‘correct’ definition in this case.
We can now define various subcategories of stmod(kG).

Definition 3.2. Let W be a closed homogeneous subvariety of Vz(k). Then C(W) is the
full subcategory of stmod(kG) consisting of the modules M such that V(M) is contained
in W.

More generally, if X is a family of closed homogeneous subvarieties of Viz(k) that is
closed under taking finite unions and subvarieties, then C(X) is the full subcategory of
stmod(kG) consisting of the modules M such that Vg(M) € X.

For example, we could take X to be the family of closed homogeneous subvarieties of
Ve(k) whose dimension is no more than some constant ¢. In this case C(X) is the category
of modules with complexity at most c.

Many of the more elementary properties of these varieties can be summed up in the
following simple statement.

Proposition 3.3. With the notation of the last definition, C(W) and C(X) are épaisse
subcategories of stmod(kG).

Another easy property that we shall need is the following.
Propositien 3.4. If MV is the dual of a finite-dimensional module M, then
Ve(MY) = Vg(M).

Perhaps the deepest and most important general property of these varieties is the fol-
lowing ‘Tensor Product Theorem’ of Carlson.

Theorem 3.5. Let M and N be finitely generated kG-modules. Then
V(M ® N) = Vg(M) NVg(N).

3.2. Bousfield localization. Let C be any épaisse subcategory of stmod(kG). The first
thing to do is to extend C in a natural way to an épaisse subcategory of StMod(kG). It
turns out that all reasonable ways of doing this coincide. Let us give the definition that
is easiest to state.

Definition 3.6. C® is the smallest épaisse subcategory of StMod(kG) that contains C
and which is closed under arbitrary direct sums (i.e., is closed under taking direct sums
of possibly infinite sets of modules).
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It is not immediately clear from this definition, but it is true, that C® contains no
finitely generated modules other than those that were already in C.
There is another subcategory of StMod(kG) associated with C.

Definition 8.7. An object L of StMod(kG) is said to be C-local if Hom(C, L) = 0 for
every object C of C.

It is easy to see that the C-local objects form an épaisse subcategory of StMod(kG). This
subcategory is usually not of the form D® for any épaisse subcategory D of stmod{(kG).

The statement of Bousfield localization in this context is the following. A proof can be
found in [21], although this is really just a special case of a more general theorem that
goes back to Brown [11].

Theorem 3.8. Let C be an épaisse subcategory of stmod(kG). For each kG-module M
there is a distinguished triangle

Ec(M) — M — Fe(M) — Q7 16:(M)

such that

(a) Ec(M) is in C®, and

(b) Fe(M) is C-local.

This triangle is functorial in M: in fact, it is unique up to isomorphism, being charac-
terized by the properties (a) and (b).

Even if M is finite dimensional, the modules £¢(M) and F¢(M) are usually not, so this
is why we are forced to consider infinite dimensional modules.

Applications of this theorem to the study of finite dimensional representation theory
can be found in [21, 6, 4, 7]. Here we shall show how it can be used to classify the épaisse
subcategories of stmod(kG) when G is a p-group, a special case of a theorem proved in [7].
First we need to describe some of the properties of a generalization of the theory of varieties
to infinite-dimensional modules due to Benson, Carlson and the author.

3.3. Varieties for arbitrary modules. As we mentioned when we discussed varieties
for finite-dimensional modules in Section 3.1, the naive way of generalizing the theory to
arbitrary modules does not work too well. In particular, it turns out that the Tensor Pro-
duct Theorem 3.5 would no longer be true. This motivated a slightly more sophisticated
generalization [6]. Here we shall not give the precise definition, but merely describe very
briefly some of the more important properties.

To each kG-module M, possibly infinite-dimensional, we associate not a variety, but a
family V(M) of non-zero closed homogeneous irreducible subvarieties of Vz(k). Another
way of thinking of such a family is as a subset of the projective prime ideal spectrum of
H*(G, k).

If M is finite-dimensional, then V(M) consists of the set of all non-zero closed homoge-
neous irreducible subvarieties of Vg(M). Most of the important properties of the ‘classical’
varieties generalize. In particular, a module M is projective if and only if V(M) = 0,
and if M and N are modules, then

Vo(M ® N) =Va(M)NVg(N),
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so the Tensor Product Theorem generalizes.

3.4. The classification of épaisse subcategories of stmod(kP). Suppose that G = P
is a p-group. In this case we can combine the theory of Bousfield localization with the
theory of varieties for infinite-dimensional modules to prove the following classification
theorem, which is Corollary 3.5 of [7]. Note that this is a theorem about finite-dimensional
modules, although the proof makes heavy use of much larger modules.

Theorem 3.9. Every épaisse subcategory of stmod(kP) is of the form C(X) for some
family X of closed homogeneous subvarieties of Vp(k) that is closed under taking finite
unions and subvarieties.

Proof. Let C be an épaisse subcategory of stmod kP, and let X be the set of all closed
homogeneous subvarieties of Vp(k) that occur as the variety of some object of C. It is not
hard to show that X is closed under taking finite unions and subvarieties. We shall show
that C = C(X).

Clearly C is contained in C(X), and to prove the other containment it is enough to show
that if M is a finite-dimensional module and Vp(M) = W, then C(W) coincides with the
smallest épaisse subcategory (M) of stmod(kP) that contains M.

Let us simplify our notation by writing £x7(?) and Far(?) for £y (?) and Fian (?) and
by writing Ew (?) and Fw (?) for Eeawy(?) and Feaw)(?)-

Let N be a kP-module.

Since (M) is certainly contained in C(W), (M)}® is contained in C(W)®, and so Epr(N)
is an object of C(W)®.

Since Fpr(N) is (M)-local,

Since P is a p-group, and so the trivial module %k is the only simple kP-module, every
non-zero object of StMod(kP) has a non-zero map from k, and so MV ® Fy(N) must be
projective. Therefore

0= VP(MV ®fM(N)) = VP(M) ﬂVp(}-M(N)).
But if C is in C(W), and so
Ve(C) € Vp(M),
then
8 = Vp(C) NVp(Fu(N)) = Vp(C¥ ® Fu(N)),
so CV ® Far(N) is projective, and
0 = Hom(k, C¥ ® F(N)) = Hom(C, Far(N)),

which proves that Fjs(N) is C(W)-local.
The last two paragraphs prove that the distinguished triangle

Eu(N) — N — Far(N) — Q71E4(N)
shares the characterizing properties of
Ew(N) — N — F(N) — Q LEw(NV),
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and so these two friangles are isomorphic.

But finally,
Ne(M)e Fyu(N)=0
& Fw(N)=0
& N ec(w),
proving that {M) and C(W) coincide, as required. O

This theorem is not in general true for groups that are not p-groups. The general case is
investigated in [7], although with only partial success. Even for relatively uncomplicated
groups, such as C3 x S3 (with p = 3), there are many épaisse subcategories and no plausible
classification theorem seems visible.
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