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QMW-97-16NI97028-NQFhep-th/9705162May, 1997Gravitational Duality, Branes and ChargesC.M. HullPhysics Department, Queen Mary and West�eld College,Mile End Road, London E1 4NS, U.K.andIsaac Newton Institute, 20 Clarkson Road,Cambridge CB3 0EH, U.K.ABSTRACTIt is argued that D = 10 type II strings and M-theory in D = 11 have D � 5branes and 9-branes that are not standard p-branes coupled to anti-symmetrictensors. The global charges in a D-dimensional theory of gravity consist of amomentum PM and a dual D � 5 form charge KM1:::MD�5, which is related to theNUT charge. On dimensional reduction, P gives the electric charge and K themagnetic charge of the graviphoton. The charge K is constructed and shown tooccur in the superalgebra and BPS bounds in D � 5, and leads to a NUT-chargemodi�cation of the BPS bound in D = 4. K is carried by Kaluza-Klein monopoles,which can be regarded as D� 5 branes. Supersymmetry and U-duality imply thatthe type IIB theory has (p; q) 9-branes. Orientifolding with 32 (0,1) 9-branesgives the type I string, while modding out by a related discrete symmetry with32 (1,0) 9-branes gives the SO(32) heterotic string. Symmetry enhancement, thee�ective world-volume theories and the possibility of a twelve dimensional originare discussed.



1. IntroductionBPS states have played a vital role in the unravelling of the non-perturbativestructure of superstring theory and M -theory [1-13]. As these break some fractionof the supersymmetry, they carry some charge that appears on the right hand sideof the global supersymmetry algebra. The standard example of such a charge isthe electric or magnetic charge for some n-form anti-symmetric tensor gauge �eld.This can be a central charge, as in the case of the electric charge for a vector gauge�eld, but in general it is a p-form charge, and the standard example of a BPS statecarrying a p-form charge is a p-brane { an extended object whose world-volume isa p + 1 dimensional space of Lorentzian signature. For an n-form anti-symmetrictensor gauge �eld in D dimensions, the electric charge is carried by a p-brane withp = n� 1, while the magnetic charge is is carried by a ~p-brane with ~p = D�n� 3.The purpose of this paper is to re-examine the spectrum of BPS branes in stringtheory and M-theory. In section 2, the charges that occur in the correspondingsupersymmetry algebras are studied. In addition to the expected p-brane charges,there is an extra D�5 form charge K in D dimensions, and an extra 9-form chargefor the type IIB theory and for type IIA or M-theory.The D� 5 form charge is carried by Kaluza-Klein (KK) monopole space-times[14]. For example, the Kaluza-Klein monopole space-time N4 �RD�5;1, where N4is Euclidean Taub-NUT space, can be thought of as a D � 5 brane and carriesa D � 5 form charge proportional to the volume form of RD�5. On dimensionalreduction to D � 1 dimensions, the KK monopole gives rise to magnetic charge ofthe graviphoton, which in D�1 dimensions is a (D�1)�4 form charge ZD�5. Onreduction, the D�5 form KD�5 gives the magnetic charge ZD�5 and the K-chargefor D � 1 dimensions, which is a (D � 1) � 5 form charge.Thus in D dimensions, gravity has two global charges, the ADM momentumPM and the new charge KM1:::MD�5 which are `dual' in the same way that electricand magnetic charges are dual in Maxwell theory. Indeed, on dimensional reduc-tion, PM gives the electric charges and KM1:::MD�5 gives the magnetic charges of2



the graviphotons. Kaluza-Klein monopole space-timesN4�RD�5;1 can be thoughtof as D � 5 branes occurring in the purely gravitational sector of the theory; thiswas suggested in [2], where it was shown that the spectrum of compacti�ed stringtheories included BPS states arising from wrapping such D � 5 branes. In section3, the charge KM1:::MD�5 is constructed explicitly and is shown to occur in super-algebras evaluated in suitable backgrounds. The K-charge is related to the NUTcharge, and the supersymmetry-motivated formula for K gives a new expressionfor the NUT charge, which can be used to prove the generalisation of the gravi-tational Bolgomolnyi bound [15] due to NUT charge; this is done in section 4. Insection 5, the charge K is calculated for certain examples. The interpretation ofN4�RD�5;1 as a D� 5 brane would suggest that its collective coordinates shouldform a D� 4 dimensional supermultiplet including 4 scalars, corresponding to theposition of the brane in N4. However, no such multiplet exists in e.g. 7 dimensions(corresponding to D = 11). This problem is addressed and resolved in section 8,where the collective coordinate structure is found. There is a sense in which theKK monopole can be regarded as a `twisted' D � 4 brane [2], and the number oftranslational zero modes is that appropriate for a D � 4 brane.The con�gurations that preserve half the supersymmetry include pp-wave con-�gurations in addition to the p-branes and KK monopoles. On compacti�cation,the set of all BPS states in the compacti�ed theory includes p-branes and KKmonopoles wrapped around internal dimensions, together with pp-waves movingin the compactifying space [2]. These are all on an equal footing in the compacti�edtheory, and related by U-duality [2]; in particular, pp-waves in an internal directionare related to fundamental strings by T-duality [16]. There is then a sense in whichpp-waves are a type of string, so that pp-waves and KK monopoles can be thoughtof as gravitational branes, or `G-branes'. The pp-waves carry the charge P andKK monopoles carry the dual charge K, and on compacti�cation these G-branesare U-dual to p-branes which couple to anti-symmetric tensor gauge �elds [2].The type IIB theory has p-branes for p = 1; 3; 5; 7; 9 and in particular has aDirichlet 9-brane, which gives rise to Chan-Paton factors for open strings. The3



IIB superalgebra implies that the p-form charges carried by p-branes are singletsunder the SL(2;Z) duality symmetry for p = 3; 7 and are doublets for p = 1; 5; 9.For p = 1; 5, this is in accord with the existence of (p; q) strings and (p; q) 5-branes[25], with charge p with respect to the NS-NS (Neveu-Schwarz Neveu-Schwarz) 2-form and charge q with respect to the RR (Ramond-Ramond) 2-form. The algebrasuggests that there should also be (p; q) 9-branes. Indeed, acting on the Dirichlet9-brane with SL(2;Z) must either leave the brane invariant, or give a new 9-brane,and the superalgebra implies that the 9-brane charge must transform, so that theaction of SL(2;Z) on the Dirichlet 9-brane generates (p; q) 9-branes.Of course, this is rather formal as it is not consistent to have Dirichlet 9-branes in general backgrounds. However, orientifolding the type IIB string to givethe type I string [12], i.e. modding out the by the perturbative Z2 world-sheetparity reversal symmetry 
, requires the presence of 32 Dirichlet 9-branes, whichgive rise to SO(32) Chan-Paton factors [13]. This suggests that the new 9-branesmight play a role in similar constructions. This is addressed in section 6, where itis shown that there must be a non-perturbativeZ2 symmetry ~
 such that moddingout by ~
 in the presence of 32 (1; 0) 9-branes gives the SO(32) heterotic string.The strong-weak coupling duality of type IIB interchanges the (0; 1) 9-branes withthe (1; 0) 9-branes and 
 with ~
, so that this is consistent with the duality betweentype I and SO(32) heterotic strings [4,10-13]. The new (1; 0) 9-branes are essentialfor the construction and there are analogous constructions using (p; q) 9-branes.In section 7, it is argued using T-duality that the presence of a new (1,0) 9-branein type IIB theory implies the existence of a new 9-brane in the IIA theory, whichshould originate from a 9-brane in M-theory; in section 2, it is shown that such9-form charges can indeed occur in the relevant superalgebras. The possibility ofa 9-brane in M-theory has also been discussed in [24,54]. In section 8, the e�ectiveworld-volume theories describing the collective coordinates for all branes, includingG-branes, are found, with supersymmetry implying that the KK monopole has lesstranslational zero-modes than might have been expected naively. All M-theorycharges could naturally arise from a 2-form, a self-dual 6-form and a 10-form charge4



in 12 dimensions, but there is no way the e�ective world-volume theories of all M-branes can arise from covariant dynamics of branes in twelve dimensions. In section9, the gauge symmetry enhancement from coincident G-branes is discussed.With these `new branes' included, all the charges that can occur on the righthand side of the superalgebra in fact do occur, and are needed to get the rightcounting on compacti�cation, where the new branes give rise to branes related toknown ones by U-duality.2. Superalgebras and Brane ChargesThe most general super-Poincar e algebra in D dimensions includes some anti-symmetric tensor charges in the anti-commutator of two supercharges, and thesecommute with all generators except the Lorentz generators. The anti-commutatorof two supercharges gives? a symmetric bi-spinor Z�� de�ned by fQ�; Q�g = Z��,and Z�� can be rewritten as a sum of terms, each of which is of the formZMN:::Q��MN:::QC��� for some set of p-form charges ZM1:::Mp. The values of pwhich occur will depend on the dimension considered, but for a conventional su-peralgebra will include a 1-form corresponding to the space-time momentum PM .For a theory with N supercharges Qa� with a = 1; :::; N , the extended superalgebraincludes the anti-commutator fQa�; Qb�g = Zab�� + �Zab�� where Zab�� = Zba�� = Zab��and �Zab�� = � �Zba�� = � �Zab��.In D = 11 the N = 1 superalgebra has one 32-component Majorana super-charge Q� and these satisfy the anti-commutation relations [17,5]fQ�; Q�g = ��MC���PM + 12!��MNC��� ZMN + 15!��MNPQRC��� ZMNPQR :(2:1)The left-hand side is symmetric in its spinor indices and so has 32:33=2 = 528components in general. Anti-symmetric tensor charges are included on the right-hand-side to give a total of 11+55+462 = 528 components. Dimensionally reducing? The notation and conventions are as in [5]. The vector indices are M = 0; : : :D�1 and thespinor indices are �; �. The charge conjugation matrix isC�� and �MN:::P = �[M�N : : :�P ].5



to D = 10 gives the IIA algebra, with the anti-commutator of two Majoranasupercharges beingfQ�; Q�g =��MC���PM + (�11C)��Z + ��M�11C���ZM + 12!��MNC���ZMN+ 14!��MNPQ�11C���ZMNPQ + 15!��MNPQRC���ZMNPQR : (2:2)The IIB supersymmetry algebra has two Majorana-Weyl supercharges, Qa�,(a=1,2), of the same chirality withfQa�; Qb�g = �ab�P�MC���PM + �P�MC��� ZabM + 13!"ab�P�MNPC��� ZMNP+ 15!�ab�P�MNPQRC���(Z+)MNPQR+ 15!�P�MNPQRC���(Z+)abMNPQR (2:3)where ZabM and (Z+)abMNPQR are 2�2 traceless symmetric matrices in a; b, �abZabM =0 and �ab(Z+)abMNPQR = 0, and P = 12(1 + �11) is the chiral projector. All threeof the 5-form charges (Z+)MNPQR; (Z+)abMNPQR are self-dual 5-forms, �Z+ = Z+.The total number of components of all charges on the RHS of (2.3) is 10+2�10+120+126+2� 126 = 528, which again balances the number of components on theLHS.The PM on the RHS of (2.1)-(2.3) is theD-momentumwhile some of the p-formcharges ZM1:::Mp are carried by p-branes. An n + 1-form �eld strength FM1:::Mn+1satis�es the �eld equationsrN (� ~F )NM1:::Mn = JM1:::Mn (2:4)and rN (�F )NM1:::M~n = ~JM1:::M~n (2:5)where ~n = D � n � 2, and ~F is given by varying the action S with respect to F :~FM1:::M~n+1 � 1(n+ 1)!"M1:::M~n+1N1:::Nn+1 �S�FN1:::Nn+1 = �FM1:::M~n+1 + : : : (2:6)6



so that ~F = �F + : : : where �F is the Hodge dual, and the dots denote termsdependent on the interactions; for the free theory, ~F = �F . The currents J; ~Jsatisfy the conservation lawsrM1JM1:::Mn = 0; rM1 ~JM1:::M~n = 0 (2:7)In regions in which the magnetic source ~J vanishes, F can be written in terms ofan n-form potential A, F = dA, while in regions in which the electric source Jvanishes, ~F can be written in terms of a ~n-form potential ~A, ~F = d ~A.An electric p-brane source couples to a n = p+1 form potential A through theWess-Zumino term?Z dn� AM1:::Mn�m1:::mn@m1XM1 : : : @mnXMn (2:8)where �m are world-volume coordinates, m = 1; : : : ; n = p + 1, and XM (�) is theposition of the brane. This then leads to an n-form current densityJM1:::Mn(X) = Z dn� �m1:::mn@m1XM1 : : : @mnXMn�(XM �XM (�)) (2:9)A magnetic p = ~n� 1 brane source couples to ~A and leads to a similar formula for~J , with n replaced by ~n. A static con�guration carries an electric charge densityzi1:::ip = J0i1:::ip and a magnetic charge density ~zi1:::i~p = ~J0i1:::i~p where n = p + 1,~n = ~p + 1 and i; j = 1; : : :D � 1 are spatial indices. These charge densities giverise to total charges Zi1:::ip, ~Zi1:::i~p which are again anti-symmetric tensors carryingpurely spatial indices.These �-function sources can often be replaced by solitonic p-brane solutionsof the theory [18-24]. A spatial slice of a p-brane con�guration has an asymptotic`boundary' at spatial in�nity given by Rp � SD�p�2 for an in�nite brane, or by? The alternating symbol �M1:::M~n+1 is a tensor density while "M1:::M~n+1 is a tensor.7



Rp�q � T q � SD�p�2 if the p-brane is wrapped around q toroidal dimensions. Thecharge of an electric p-brane coupled to a n = p+ 1 form potential A and alignedin the directions given by the spatial p-form v is given byZ:v � 1p!Zi1:::ipvi1:::ip = 1
~n+1 ZS~n+1 ~F (2:10)where the integral is over the ~n+1 sphere at transverse spatial in�nity surroundingthe brane and 
d is the area of the unit d-sphere. Similarly, the charge of a magneticp-brane coupled to an ~n-form potential A with ~n = D � n� 2 = p + 1 is~Z:v � 1p! ~Zi1:::ipvi1:::ip = 1
n+1 ZSn+1 F (2:11)where the integral is over the n+1 sphere at transverse spatial in�nity surroundingthe brane.A p-brane carries a p-form charge Zi1:::ip with purely spatial indices. The spatialcomponents of the ZM1::Mp appearing in the algebras (2.1)-(2.3) can arise as p-brane charges, but this leaves the question of the interpretation of the componentsZ0i1:::iq. These can be dualised to a spatial q̂-form charge Ẑi1:::iq̂ given by the spatialcomponents of �Z, Ẑj1:::jq̂ = 1(q + 1)!"j1:::jq̂0i1:::iqZ0i1:::iq (2:12)which could arise as a q̂ = D � q � 1 brane charge, and this is the most naturalinterpretation of the charge Z0i1:::iq .y We can now compare this with the expectedp-brane spectrum for M-theory and type II strings.Consider �rst D = 11; M-theory has a membrane and a 5-brane coupling tothe 3-form gauge �eld. The algebra (2.1) has a 2-form ZMN charge which gives a 2-brane charge Zij and a 9-brane charge Ẑi1:::i9, and a 5-form charge ZMNPQR, whichy This interpretation has been suggested independently by Paul Townsend.8



gives a 5-brane charge Zijklm and a 6-brane charge Ẑi1:::i6. Thus the superalgebrahas charges that could correspond to an extra 6-brane and an extra 9-brane, sothat the question arises as to whether these actually occur and, if so, what is theirinterpretation.For the type IIA theory, the expected branes are a string and a 5-brane, to-gether with D-branes for p = 0; 2; 4; 6; 8. The central charge Z in (2.2) is the0-brane charge, the 4-form charge ZMNPQ gives a 4-brane charge Zijkl and a 6-brane charge Ẑijklmn, while the 2-form charge ZMN gives a 2-brane charge Zijand an 8-brane charge Ẑijklmnpq. The 5-form charge ZMNPQR gives two 5-branecharges, Zijklm and Ẑijklm, while the 1-form charge ZM gives a string charge Ziand a 9-brane charge Ẑi1:::i9. Comparing with the expected brane scan, we are�nding charges that could correspond to an extra 5-brane and an extra 9-brane.Finally, for the type IIB string, the expected branes are a string and a 5-brane,together with D-branes for p = 1; 3; 5; 7; 9 carrying Ramond-Ramond charge. Thereare also (p; q) strings carrying NS-NS string charge p and RR string charge q. Inthe quantum theory, q; p are integers and non-trivial bound states occur wheneverp and q are co-prime [25]. Similarly, there are (p; q) 5-branes, and for both stringsand 5-branes the 2-vector of charges (p; q) transforms as a doublet under the actionof SL(2;Z) U-duality transformations. In the algebra (2.3), the the 3-form chargeZMNP gives a 3-brane charge Zijk and a 7-brane charge Ẑijklmnp. The two 1-formcharges ZabM give two string charges Zabi and two 9-brane charges Ẑabi1:::i9. A general5-form charge ZMNPQR gives two 5-brane charges, Zijklm and Ẑijklm, but for aself-dual 5-form charge, these are equal, Zijklm = Ẑijklm. Thus the three self-dual 5-form charges (Z+)MNPQR; (Z+)abMNPQR give the charges for 3 �ve-branes,(Z+)ijklm; (Z+)abijklm.The SL(2;R) symmetry of the supergravity equations of motion acts through acompensating SO(2) transformation in symmetric gauge, so that the index a = 1; 2on the supercharges undergoes SO(2) rotations. The two charges Zabi are a doubletof SO(2) and arise from charges which are a doublet of SL(2) (see section 6), and9



correspond to the charges of (p; q) strings. Similarly, the two charges (Z+)abijklmcorrespond to the charges of (p; q) 5-branes. Similarly, the two 9-brane chargesẐabi1:::i9 could correspond to the charges of (p; q) 9-branes. Note that the 3-braneand 7-brane charges are singlets under the action of SO(2). This was expectedfor the 3-brane since the 4-form gauge �eld to which it couples does not transformunder SL(2;R). The 7-brane couples to the axion which does transform underSL(2;R). Acting on the 7-brane solutions of [23] with SL(2;Z) gives a new 7-brane with the same 7-brane charge (the coupling to the 8-form potential whichis dual to the axion is unchanged) but the SL(2;Z) monodromy changes and thecouplings to other branes also changes [26]. In the IIB algebra, there are thuscharges for an extra 5-brane and for (p; q) 9-branes.We now turn to the interpretation of the extra charges that arise in the abovecases. We have seen that in D = 10; 11 dimensions, there is an extra spatial(D � 5)-form charge that does not seem to have an interpretation in terms ofelectric or magnetic p-brane charges { we have already accounted for all of these.In the following sections, it will be seen that this (D�5)-form charge is non-zero forKaluza Klein monopole space-times in which all the anti-symmetric tensor gauge�elds vanish. It will be argued that in any theory of gravity in D > 4 dimensions,there is, in addition to the ADMmomentumPM , a (D�5)-form chargeKM1:::MD�5.This gives rise to the extra 6-brane charge in D = 11 and the extra 5-brane chargein both type II theories in D = 10. The algebras also suggest that there shouldbe a 9-brane in D = 11 and a 9-brane in both the IIA and IIB theories. Theseextra 9-branes can be formally thought of as coupling to a non-dynamical 10-formpotential, which could arise as an auxiliary �eld that is analogous to the 4-form infour-dimensional supergravity which couples to 3-branes that was discussed in [27].In the IIB theory, the 10-form to which the Dirichlet 9-brane couples is associatedwith the RR sector, suggesting that the new (1,0) 9-branes in the IIA and IIBtheory be associated with the NS-NS sector. The D = 11 9-brane gives rise to the8-brane and the 9-brane of the IIA theory, while the NS-NS and the RR 9-branesof the type IIB theory combine to form (p; q) 9-branes, with the SL(2;Z) U-duality10



acting on the (p; q) 9-brane charge lattice. This will be discussed further in section6. If the D-momentum PM were treated in the same way as the other charges,it would be split into the spatial momentum Pi which is analogous to a 1-branecharge, and the energy P0, which could be dualised to a D � 1 brane chargeP̂i1:::iD�1. The fact that states carrying momentum in compacti�ed dimensions areU-dual to states obtained by wrapping branes round the compacti�ed dimensions[2] means that for some purposes states carrying the gravitational charge PM shouldbe treated on the same footing as states carrying brane charges. The BPS statesassociated with the charge Pi are pp-waves moving in the i'th dimension withmomentum Pi and, as discussed in the introduction, these can be regarded asstrings or branes for some purposes. Indeed, if the i'th dimension is compact, thepp-wave with momentum Pi = ni say is T-dual to a string winding around thei'th dimension with winding number or string charge Zi = ni [16]. The fact thatthe energy appears to be associated with a D � 1 brane seems natural from a12-dimensional perspective, as will be discussed in section 7.3. Magnetic Charges in GravityWe have seen that the IIA; IIB and D = 11 superalgebras have an extra(D � 5)-form charge Ki1:::iD�5 that it would be natural to associate with a D � 5brane. On dimensionally reducing, the D = 11 6-form charge gives a 6-form chargeand a 5-form charge in D = 10. The 6-form charge is the magnetic charge for theRR vector �eld of the type IIA theory, which comes from the g�11 componentsof the D = 11 metric (where the reduction is in the x11 direction). Thus theD = 10 6-form charge is the magnetic charge of the graviphoton, which arises fromKaluza-Klein monopole solutions of the D = 11 theory [3], so that the new 6-formcharge in D = 11 should be non-trivial in Kaluza-Klein monopole space-times.The standard Kaluza-Klein monopole space-time in D dimensions is N4 �RD�5;1where N4 is 4-dimensional self-dual Euclidean Taub-NUT space (or its multi-centre11



generalisation [28]) and RD�5;1 is D � 4 dimensional Minkowski space. This is asolution of string theory with D = 10 and of M -theory with D = 11, since self-dual (multi-)Taub-NUT space is hyperkahler and so is the target space of a (4,4)superconformal sigma-model for which the beta-functions vanish [29]. The NUTcharge [30,31,45] of the Taub-NUT space is related to the magnetic charge of thegraviphoton on dimensionally reducing [14], so that we learn that the 6-form chargein D = 11 is related to NUT charge. However, the NUT charge is de�ned for the 4dimensional space N4, and can be readily generalised to D � 4 dimensions, whilethe D � 5 form charge K only exists in D � 5 dimensions, so that it cannot beprecisely the D-dimensional generalisation of NUT charge, although it is closelyrelated to this.Consider the Kaluza-Klein reduction of gravity from D to D � 1 dimensions.The D-dimensional metric gMN gives a metric g�� , a vector �eld A� and a scalar� in D � 1 dimensions. The D-momentum reduces to the D � 1 momentum P�and the electric charge Q. In D�1 dimensions, the magnetic charge for a Maxwell�eld A� is a (D� 1)� 4 = D� 5 form, which should have a D-dimensional origin.Postulating a charge Ki1:::iD�5 in D dimensions, the reduction to D�1 dimensionsthen gives a D � 5 form which can be associated with the magnetic charge ofthe graviphoton A� and a D � 6 form Km1:::mD�6 (where m = 1; :::;D � 2 labelsthe spatial dimensions in D � 1 dimensions) which corresponds to the K-charge(D � 1) � 5 form in D � 1 dimensions. Thus the gravitational charges P1;KD�5in D dimensions give the gravitational charges P1;K(D�1)�5 in D � 1 dimensions,together with the electric and magnetic charges Q;Z(D�1)�4 for the graviphotonA1 (where the subscript denotes the degree of the form).We now turn to the de�nition of the gravitational charges P;K. We shall beinterested in D-dimensional space-times M for which a spacelike slice is boundedby a D� 2 dimensional `surface at in�nity', �D�2. For asymptotically 
at spaces,this is a D� 2 sphere, �D�2 = SD�2, while for toroidally wrapped p-brane space-times it is �D�2 = T p � SD�p�2. In particular, for a D � 4 brane it is �D�2 =TD�4 � S2. For KK monopole space-times, it is a twisted version of these D � 412



brane asymptotics, in which one of the toroidal directions is a �bre for a circlebundle over S2. For a single monopole, this gives the Hopf �bration of S3 asa circle bundle over S2, so that topologically �D�2 = TD�5 � S3. The S3 hasa squashed metric { as a radial coordinate r ! 1, the size of the Hopf �brestends to a constant while the area of the 2-sphere increases as r2. For the s-monopole generalisation, the surface at in�nity is �D�2 = TD�5� ~�3 where ~�3 isthe (squashed) 3-sphere for s = 1 or a (squashed) Lens space L(s; 1) = S3=Zs fors > 1. (The Lens space L(s; 1) is de�ned by regarding S3 as the points (z;w) inC 2 with jzj2+ jwj2 = 1 and identifying (z;w) with (e2�i=sz; e2�i=sw).) We shall fornow suppose that �D�2 is compact, but later we will consider the limit in whichthe torus T p becomes large, so that �D�2 tends to Rp�SD�p�2; in this latter caseit will become necessary to de�ne the charge densities per unit p-volume insteadof the total charges, which become in�nite.The KK monopole space N4�TD�5�R can be thought of as a wrapped D�5brane or as a twisted form of a D � 4 brane, as N4 (with a set of �xed points orNUTs removed) has the structure of a circle bundle over a base �, so that locallyit has the wrapped D � 4 brane structure � � TD�4 � R. Indeed, as we shallsee, it has a D � 5 form charge, which is usually associated with a D � 5 brane,whereas it has the number of translational zero modes appropriate for a D � 4brane, as will be seen in section 8. On dimensionally reducing with respect to thetoroidal directions, the charges in the resulting D�p dimensional space correspondto charge densities per unit p-volume. For the KK monopole, the Hopf �bre cannotbecome non-compact without introducing irremovable Dirac string singularties inthe metric, although the connection and curvature remain well-de�ned. (It wassuggested in [31] that such singularities might be acceptable for some purposes,and it would be interesting to explore their consequences for string theory.) ForKK monopoles, one can divide by the length of the Hopf �bre to de�ne densities,as for a D � 4 brane.Suppose that there is an asymptotic region in which the space-time (M;gMN )becomes close to a background space-time ( �M; �gMN ), with gMN = �gMN + hMN13



with hMN asymptotically small. In the case of p-brane space-times, we shall con-sider the case in which �M is RD�p�1;1 � T p with a 
at metric �gMN , with hMNfalling o� as O(rD�3) as r ! 1, where r is a radial coordinate on RD�p�1, sothat for large r, r = constant de�nes a D � p � 2 sphere of area rD�p�2
D�p�2,where 
D�p�2 is the area of the unit D � p � 2 sphere.For the KK monopole, the question of boundary conditions is more subtle.We can take �M = R4;1 � TD�5 as Taub-NUT is topologically R4, while for themulti-monopole con�gurations R4 is replaced by R4=Zs. (For s > 1, it is sometimesconvenient to work with the covering spaceR4 instead of R4=Zs, and factor byZs atthe end.) There are two approaches to choosing the background metric �gMN . Oneis to �x a topological class of metrics, and consider only metrics within that class.The natural choice of background in this case is �N4 � TD�5 �R where �N4 is self-dual Taub-NUT space or the s-centre self-dual generalisation, and to consider theclass of spaces asymptotic to this, with the boundary surface at space-like in�nitygiven by �D�2 = TD�5 � S3=Zs. On dimensional reduction, this correspondsto �xing the magnetic charge, and considering only spaces with that magneticcharge. In discussing electromagnetism, however, it is more convenient for somepurposes to allow all possible magnetic charges, even though these correspond totopologically distinct U(1) bundles, and compare these to the vacuum which isthe trivial bundle with zero magnetic charge. Here, this corresponds to allowingboundary conditions with �D�2 = TD�5�S3=Zs for all values of s, and comparingwith the 
at background metric �gMN of the Kaluza-Klein vacuum TD�4 � R3;1,with boundary at space-like in�nity given by �D�2 = TD�4�S2. In much of whatfollows, either choice of boundary conditions could be used, and the formulae givethe di�erence between the charges P;K of the space-time (M;g) and the charges�P ; �K of the background ( �M; �g). However, it will be convenient to present theresults with respect to the KK vacuum, for which we take �P = 0; �K = 0.Introducing frames eAM with eAMeBN�AB = gMN etc and the correspondingtorsion-free spin-connection !MAB, Nestor's expression for the ADM momentum14



PM [32] can be generalised to D-dimensions to giveP [u] = 12
D�p�2 Z�D�2 u[MeNB eP ]C �!PBCd�MN (3:1)Here �!PBC = !PBC � �!PBC is the di�erence between the connection on Mand that on �M and so is an an asymptotic tensor, so that (3.1) is covariant. Thevector u is an asymptotic Killing vector, so that as r ! 1, u tends to a Killingvector of �M . Then P [u] is the conserved charge corresponding to u. If �M hastranslational Killing vectors kaM labelled by some index a, then uM = uakaM forsome functions ua tending to constants �ua as r ! 1. Then P [u] can be writtenas P a�ua, de�ning the ADM D-momentum P a = P [ka]. In the simplest cases inwhich there is asymptotic 
atness, the index a can be identi�ed with the index Alabelling the asymptotic frames (see [33]). This is equivalent to other forms of theADM momentum [32] and is properly the di�erence between the ADM momentumand that of the background. It can be written in form notation asP [u] = 12
D�2 Z�D�2 �(eÂeB̂u)^�!AB (3:2)where eA = eAMdxM , �!AB = �!MABdXM and u = uMdxM . If p toroidal direc-tions are Killing, so that �D�2 = ~�D�p�2�T p, then the momentum is proportionalto the volume Vp of the T p,P [u] = Vp ~P [u]; ~P [u] = 12
D�p�2 Z~�D�p�2 u[MeNB eP ]C �!PBCd�MN (3:3)de�ning the density ~P [u] which can be written as an integral over the surface~�D�p�2 at transverse spatial in�nity [34]. Then the density is well-de�ned in thedecompacti�cation limit in which Vp !1, de�ning the density of an in�nite branespace-time. This can be generalised to the case in which the toroidal directionscorrespond to asymptotic Killing vectors, in which case Vp is the asymptotic volumeof the p-torus [34]. 15



Consider a D � 5 brane space-time, so that the surface at in�nity is �D�2 =~�3�TD�5, and let v be a D�5-form tending asymptotically to the volume form �von TD�5. As we shall see, calculating the supersymmetry algebra in such a spacegives a K-charge in general, and the expression for this charge that arises motivatesthe following de�nition. The D � 5-form charge KK[v] = 15!Ki1:::iD�5vi1:::iD�5 (3:4)is given by K[v] = 116�2 Z�D�2 !^v (3:5)where ! is the 3-form whose components are the totally antisymmetric part of thespin-connection (minus the background), �![ABC],! = 12eB̂eÂ�!AB (3:6)Again, this is the di�erence between the K-charge and that of the background, andif the toroidal directions are asymptotically Killing,K[v] = Vp ~K[v]; ~K[v] = 116�2 Z~�3 ! (3:7)If ~�3 is a circle bundle with �bre generated by an asymptotic Killing vector and ifthe length of the �bre at in�nity is a constant over S2 and given by 2�R, then itis convenient to de�ne the densitiesP̂ [u] = 1R ~P [u]; K̂[v] = 1R ~K[v] (3:8)We now show that the charge K indeed occurs in the superalgebra. We shallsuppose that the background space �M is supersymmetric, with Killing spinors �0,16



satisfying ~r�0 = 0 (where the supervariation of the gravitino in the background�M is � M = ~rM�); if �M is 
at, a frame can be chosen in which each Killing spinor�0 is constant. We shall be interested in asymptotic Killing spinors � on M , i.e.spinors onM tending su�ciently fast to a Killing spinor �0 of �M , � = �0+O(1=rp)as r!1 where p = (D � 2)=2. There is a supercharge Q[�] for each commutingMajorana asymptotic Killing spinor � on M , i.e. for each spinor on M tendingsu�ciently fast to a Killing spinor �0 of �M , � = �0 + O(1=rp) as r ! 1 wherep = (D � 2)=2. The supercharge is, to lowest order in the gravitino  P ,Q[�] = 12
D�2 Z�D�2 ���MNP P d�MN (3:9)For asymptotic Killing spinors to exist, it is necessary that the spin structureon M agrees with that on �M asymptotically. Consider a background space-time�M which is the D = 5 KK vacuum R3;1 � S1. This has two spin structures, asspinors can be periodic or anti-periodic on S1. With the periodic spin structure,the vacuum has Killing spinors, and spaces M tending to �M asymptotically andwhose spin structure agrees with that of �M asymptotically will have asymptoticKilling spinors. Then there is a positive mass theorem and a Bogomolnyi boundfor such spaces, and the vacuum is stable against 
uctuations which have the samespin structure asymptotically as the vacuum. On the other hand, with the anti-periodic spin structure, the vacuum has no Killing spinors and is not supersymetric,and spaces M tending to �M with anti-periodic spinors at in�nity will have noasymptotic Killing spinors and so need not have positive mass. Indeed, thereare negative mass con�gurations with these asymptotics, leading to the instabilityof the KK vacuum [61]. The 5-dimensional Euclidean Schwarzschild space tendsasymptotically to the Euclidean vacuum R4�S1 with anti-periodic spin-structure,and can be continued to a Lorentzian expanding bubble solution responsible forthe decay of the KK vacuum [61]. Thus stability, positivity of the mass and aBPS bound can only be established for spaces with supersymmetric boundaryconditions. With non-supersymmetric asymptotics, the loss of supersymmetry17



means that there is nothing to prevent the ADM mass from becoming negative,and the vacuum is unstable. For example, the space Y � R, where Y is D = 4Euclidean Schwarzschild space, does not admit asymptotic Killing spinors, sincethe unique spin structure on Y �R requires the spinors to be anti-periodic in theS1 at in�nity generated by translations in the periodic Euclidean Schwarzschildtime. On the other hand, if Y is Euclidean Taub-NUT (with mass M and NUTparameter N), the spinor structure is periodic and there are asymptotic Killingspinors. If M = jN j, Y is self-dual and has covariantly constant spinors, while ifN = 0, Y reduces to Euclidean Schwarzschild space and the limit N ! 0 leads toa change in topology and spin structure. In what follows, we shall consider onlyspaces with asymptotic Killing spinors, and will prove stability and a Bogomolnyibound within this class of spaces.For commuting asymptotic Killing spinors �; �, the supercharges satisfy thealgebra [33] fQ[�]; Q[�]g= 12
D�2 Z�D�2 EMN (�; �)d�MN (3:10)in a bosonic background (otherwise there are corrections of second order in fermion�elds) where EMN (�; �) = 12 ���MNP r̂P� + c:c: (3:11)where r̂ is the supercovariant derivative occurring in the gravitino supersymmetrytransformation � M = r̂M � and c:c: denotes complex conjugate. In purely grav-itational backgrounds, r̂ is the usual gravitational covariant derivative r. Usingthe asymptotic behaviour of the spinors, (3.10) can be rewritten in terms of thecharges P;K asfQ[�]; Q[�]g= P [���M�]+K[�(���M1:::MD�5�)]+Xp 1p!ZM1:::Mp ���M1:::Mp� (3:12)where the ZM1:::Mp are the electric and magnetic anti-symmetric tensor charges,discussed in section 2; the values of p that occur depend on the algebra, and are18



given in section 2 for D = 10; 11. If � = �, (3.11) becomes the Nestor tensor[32] which can be used to derive a BPS bound for the mass in terms of K andthe anti-symmetric tensor charges, as in [15,34].? This then implies similar boundsfor the p-brane densities ~P ; ~K and for the KK monopole densities P̂ ; K̂. Thebound requires that the matter system satis�es a positive energy condition, andthat the energy density is bounded below by the appropriate charge densities, asin [15,34,35]. It also requires the existence of asymptotic Killing spinors satisfyingthe `Witten equation' [15,34,35]; when asymptotic Killing spinors exist, they canusually be chosen to satisfy the Witten equation and this has been proven in fourdimensions for asymptotically 
at spaces [36]. The requirement of the existence ofasymptotic Killing spinors implies that the bound only applies to systems satisfyingsupersymmetric boundary conditions, which in particular requires that the spinstructure agree asymptotically with that of a supersymmetric space.4. Bogomolnyi Bounds in Five Dimensions and Four DimensionsIn the case D = 5, K is a scalar and so occurs as a central charge in the D = 5superalgebra. The N extended superalgebra in D = 5 isfQa�; Qb�g = 
ab��MC���PM + 
abC��K+ ��MC���ZabM + 
abC��Zab + ��MNC���ZabMN (4:1)Here N is even, the supercharges Qa� with � = 1; : : : ; 4 and a = 1; : : : N=2 aresymplectic Majorana spinors and 
ab is the symplectic invariant of USp(N). Thecentral charges Zab satisfy Zab = �Zba and 
abZab = 0, the charges ZabM satisfyZabM = �ZbaM and 
abZabM = 0 while ZabMN = ZbaMN . The central charges Zab arise as0-brane charges, the Zabi arise as string charges, and there are also 2,3 and 4-branecharges given by Zabij , Ẑabijk and Ẑabijkl, respectively. The gravitational charges are? In certain cases, such as the IIB algebra (2.3) and the N = 2 algebra in D = 4, but not theD = 11 algebra or the IIA algebra, there is also a 3-form charge arising in the gravitationalsector; this will be discussed further elsewhere.19



the 5-momentum PM and the central charge K. For example, for N = 8 in D = 5,the supermultiplet contains 27 abelian gauge �elds giving 27 electric charges Zaband 27 magnetic string charges Zabi . On reduction to D = 4, the 28 electric centralcharges come from P5 and Zab, while the 28 magnetic central charges come fromZab5 and K. The D = 5; N = 8 algebra with central charge K was considered inthis context in [37]. The application of the positive mass theorem to D = 5 KKmonopoles was also considered in [38-41].The algebra (4.1) gives BPS bounds for p-branes, in the usual way[15,18,34,35,37] for spaces with supersymmetric boundary conditions with mat-ter satisfying a `local BPS condition' that its energy density is bounded below byan expression depending on charge densities. For 0-branes, or for asymptotically
at or KK (multi-) monopole space-times, in D = 5, the mass satis�esM � j�nj (4:2)where the �n, n = 1; :::; N=2 are the skew eigen-values of Zab+K
ab. In particular,this implies M � jKj (4:3)with equality for space-timesR�N4 whereN4 is self-dual or anti-self-dual. Dividingby the size of the S1 �bre, this givesM̂ � jK̂j (4:4)and as we shall see in section 5, K̂ can be identi�ed with the NUT charge N .Dimensionally reducing with respect to the time coordinate to N4 gives the boundM̂ � jN j (4:5)for four-dimensional Euclidean geometries with asymptotic Killing spinors withequality for spaces admitting covariantly constant spinors, i.e. for self-dual geome-tries. This can be obtained directly by considering the dimensional reduction of20



(3.10) to N4 (i.e. reducing in the time direction) given by12
3 Z~�3 EMN (�; �)d�MN (4:6)where EMN (�; �) = 12 ���5�NP r̂P� + c:c: (4:7)The bound then follows from standard arguments using EMN (�;�). For ALFboundary conditions, ~�3 is a circle bundle over S2. The quantity M̂ is the ADMmomentum P [k] corresponding to the asymptotic Killing vector k generating theS1 �bre. Including electric and magnetic charges Q;P , this becomesM̂2 +Q2 � N2 + P 2 (4:8)This can formally be continued to Lorentzian signature metrics. Wick rotatingthe S1 �bres (i.e. in adapted coordinates in which k = @=@y, we Wick rotate thecoordinate y! it) an argument similar to that of [15] givesM̂2 +N2 � Q2 + P 2 (4:9)with equality only for spaces admitting supercovariantly constant spinors �, r̂� =0. Such a bound was suggested in [42].
21



5. Evaluation of K[v] and Relation to NUT Charge.Consider a D dimensional manifold M with an isometry generated by aspace-like Killing vector k = @=@y. The main examples considered here will beM = N4 �RD�5;1 where N4 is 4-dimensional Taub-NUT space or its multi-centregeneralisation. The isometry de�nes a �bering � : M n F ! B where F is the�xed-point set of the action of G, so that B is the space of non-degenerate orbits.The metric GMN on M induces a Lorentzian signature metricgMN = GMN � V �1kMkN (5:1)on B, where V = kMkM . The metric GMN on M can be written asds2 = V (dy +A�dx�)2 + V �1g��dx�dx� (5:2)where V;A� and g�� do not depend on the coordinate y. The vector �eld A� isde�ned up to a gauge transformationA� ! A� + @�� (5:3)as such a change can be absorbed into the coordinate transformationy ! y � � (5:4)The invariant �eld-strength F�� = @[�A�] (5:5)is the twist or vorticity of the vector �eld k and can be written covariantly in Ddimensions as FMN = V �1g PM g QN rPkQ (5:6)On dimensional reduction with respect to the Killing vector k, the D-dimensional metric gMN gives a metric g�� , a graviphoton A� and a graviscalar22



V on the D � 1 dimensional space B. The kinetic term for the metric g�� is notconventionally normalised; the Einstein metric is given by gE�� = V �g�� where� = �1=D � 2. Note that the two metrics g�� and gE�� lead to di�erent ADMmomenta, P� and PE� respectively [40]. The vector �eld A� is an abelian gauge�eld on B, which will have electric charge q and a magnetic charge given by a D�5form Zm1:::mD�5, where xm are the spatial coordinates on B, withm = 1; : : : ;D�2.If the boundary of a spatial slice of B is RD�5��2 or TD�5��2 for some compact2-space �2, then Z:v = 14� Z�2 F (5:7)where v is the volume-form on RD�5. If M = N4 �RD�5;1, then the NUT chargede�ned in [30,31,45] can be generalised to a D � 5 form charge N�1:::�D5 [k] forM = N4 �RD�5;1 (or for the Euclidean space M = N4 �RD�5) given byN [k]:v = 18� Z�2 F = 12Z:v (5:8)(The factor of 8� in (5.8) is included to agree with the normalisation in [30,31,45].)If y is periodic with period P , y � y+P , then the length of the orbit of k at x� ispV (x)P which tends to 2�R, say, on �. The electric charge q of the graviphotonis proportional to the momentum in the y direction q / 1RPE[k], while, as we shallsee, the magnetic charge is Z:n / 12RK[n].The momentum P [k] and the corresponding NUT charge satisfy a Dirac quan-tization condition and the relation of the NUT charge to mass is similar to therelation of magnetic charge to electric charge. Two generalisations of the NUTcharge or dual mass to spaces without isometries are given in [30,31]. However,both invoke special structures at in�nity, whereas the de�nition of the charge K[v]is general and needs no such structures.23



Let eAM and êa� be frames on M;B respectively, satisfyingeAMeBN�AB = GMN ; êa�êb��ab = V �1g�� (5:9)A suitable choice of one-forms eA = fey; eag isey = V 1=2(dy +A�dx�); ea = êa�dx� (5:10)The corresponding spin-connection one-forms !AB; !̂ab satisfydeA + !AB^eB = 0; dêa + !̂ab^êb = 0 (5:11)so that !ya = 12V �1Vaey + V 1=2Fabeb;!ab = !̂ab � V 1=2Fabey (5:12)where Va = @�V e�a and Fab = e�ae�bF�� with F�� = 2@[�A�]. Then the 3-formcorresponding to the totally antisymmetric part of the spin-connection is! = F^k + !̂ (5:13)where k = V (dy +A�dx�) = kMdxM ; !̂ = eb̂ ea!̂ab (5:14)and F = 12F��dx�̂dx� . In what follows, we shall consider only the case in whichthe contribution !̂ to (5.13) from the geometry of B is zero. Such contributionscould have arisen, for example, if there were several Killing vectors giving rise toseveral magnetic charges, and their treatment is a straightforward generalisationof the case considered here. (Alternatively, instead of considering asymptoticswith respect to a 
at background, we could consider asymptotics with respect toa background with �!ab = !̂ab, so that ! � eb̂ eâ (!ab � �!ab) = F^k.)24



The isometry de�nes a �bering � : ~�3 n F 0 ! �2 where �D�2 = TD�5 � ~�3or �D�2 = RD�5 � ~�3 is the boundary of a spatial slice of M and TD�5 � �2 orRD�5 � �2 is the boundary of a spatial slice of B, and F 0 is the �xed-point set ofthe isometry action. Then F^k is proportional to the volume form of ~�3, so thatR ! is a winding number. From (5.13) and the fact that k is a Killing vector, itfollows that ~K = 116�2 Z~�3 ! = 116�2 ZS1 k Z~� F = R8� Z� F = RN (5:15)where 2�R = R k is the length of the �bre at in�nity. In particular, this impliesthat K̂ = N (5:16)In the case of Taub-NUT, ~�3 is S3 and �2 = S2, with � the Hopf �bration. Thiscase will now be examined in detail.The Euclidean Taub-NUT metric is of the form (5.2); taking x� as sphericalpolar coordinates r; �; �, it can be written asds2 = V (dy +A�d�)2 + V �1dr2 + r2f(d�2 + sin2 �d�2) (5:17)whereV = 1� 2(Mr +N2)r2 +N2 ; A� = 4N sin2 �2 ; f = 1 � 2Mr + N2r2 (5:18)The Killing vector k = @=@y can be used to de�ne a component of momentumP [k] and a NUT charge N [k] given by the parameters M;N respectively. Thelimit N ! 0 gives Euclidean Schwarzschild with `Euclidean mass' M (i.e. themass resulting from regarding y as the Euclidean time). The parameter M is thek-component of momentum P [k] and N is the corresponding NUT charge. Thecurvature is self-dual if M = N and anti-self-dual if M = �N . Regarded as a25



metric on R4 with spherical polar coordinates �; �, this metric has a Dirac stringor wire singularity along the half-axis � = �. This singularity can be removed byintroducing a new coordinate y0 = y + 4N� (5:19)The metric becomesds2 = V (dy0 +A0�d�)2 + V �1dr2 + r2f(d�2 + sin2 �d�2) (5:20)with A0� = �4N cos2 �2 (5:21)The �eld strength F = dA = dA0 is well-de�ned and given byF = 2N sin �d�^d� (5:22)The metric (5.20) is regular at � = � but not at � = 0. A non-singular metric isobtained by using t; r; �; � in the patch 0 � � < � and t0; r; �; � in the patch 0 <� � �. In the overlap, the transition (5.19) is consistent with the periodicity of � ifwe make the y coordinate periodic with period 8�jN j. This changes the topologyof the surfaces r = constant from S2 �R to S3 and leads to the requirement thatthe energy E of any particle moving in the space-time has to satisfy the Diracquantization condition 4NE = integer. Then  ; �; � are Euler angles on S3 with = y=2jN j. The S3 has a squashed metric: as r!1, the length of the S1 Hopf�bres tends to a constant, 8�jN j, while the area of the S2 base increases as r2.The three-form ! is given by! = 2NV sin �d�^d�^dy = 2NV sin �d�^d�^dy0 = 4N jN jV sin �d�^d�^d (5:23)and is proportional to the volume form on S3 (and is well-de�ned). Integrating on26



an S3 of constant r and taking the limit r!1 gives~K = 116�2 Z ! = 4N jN j (5:24)The S3 is a circle bundle over the 2-sphere � parameterised by �; � with �brecoordinate  . The NUT charge (5.8) is18� Z� F = 18� Z� 2N sin �d�d� = N (5:25)so that they are indeed related by K = RN , K̂ = N , where R is the radius of theS1, R = 4jN j.The self-dual multi-Taub-NUT solution [28] is also of the form (5.2), but withV �1 = 1 + sXi=1 2Nijx� � x�i j ; F�� = ����r�V �1 (5:26)and with g�� = ��� (5:27)and this 
at metric is used to raise and lower three-dimensional indices �; �; : : :.There are s nuts with parameters Ni at the positions x�i . The potential A willagain have Dirac string singularities in general, but if all the parameters ni areequal to a single value N , then all singularities are removed by identifying y withperiod 8�jN j. The surface at in�nity is the Lens space L(s; 1). As jx�j ! 1,V ! 1; F ! 2Ns sin �d�^d�; ! ! 2Ns sin �d�^d�^dy (5:28)so that integrating ! over the Lens space L(s; 1) at in�nity gives~K = 116�2 Z ! = 1s 116�2 Z 2Ns sin �d�d�dy = 4N jN j (5:29)27



while the NUT charge isN = 18� Z� F = 18� Z� 2Ns sin �d�d� = sN (5:30)so that they are related by K = RN , where R is the `size' of the �bre S1=Zs,R = 4jN j=s. 6. Nine-Branes in IIB TheoryWe now turn to the new 9-branes that have been proposed for the type IIBtheory. That such branes should be present in the theory follows from duality andsupersymmetry. It is known that there are D-9-branes with RR charge in the typeIIB string, and that they break half the supersymmetry, so that there should bea corresponding 9-brane charge in the IIB superalgebra. Consider now the actionof an SL(2;Z) duality transformation on the RR 9-brane. The 9-brane will eitherbe invariant, or will be mapped into a new 9-brane. However, we have seen fromthe superalgebra that the 9-brane charges that occur on the right hand side of(2.3) �t into doublets of SO(2), as do the 1-brane and 5-brane charges. For the 1-brane and 5-brane, the SO(2) doublet of charges is related (by a scalar-dependenttransformation) to an SL(2) doublet of charges, and in the same way the SO(2)doublet of 9-brane charges (Z1; Z2) can be converted to an SL(2) doublet of 9-brane charges ( �Z1; �Z2). The D-9-brane charge �Z2 is then not a singlet of SL(2;Z),so the D-9-brane is mapped to a new 9-brane, and the action of SL(2;Z) on thedoublet of 9-brane charges will give (p; q) 9-branes with p; q co-prime integers.In the type IIB theory, the RR 9-brane occurs as a D-brane and gives rise toChan-Paton factors for the fundamental string at weak coupling. A fundamentalstring can end on a D-brane, and the standard con�guration with n 9-D-braneswould be with the n branes coincident and each �lling D = 10 space-time. Thusstrings ending on a 9-brane would be open strings, with each end labelled by whichof the n 9-D-branes it ended on, giving rise to an n-dimensional Chan-Paton factor.28



In D = 10 Minkowski space, charge conservation forbids the presence of any 9-D-branes. However, if one mods out by world-sheet parity reversal 
 to construct anorientifold, the whole D = 10 Minkowski space is a source of 9-brane charge whichcan be cancelled by adding precisely 32 9-D-branes, giving rise to the type I stringwith SO(32) Chan-Paton factors.As the presence of 9-branes is usually not allowed without the presence of someother sources of charge, such as an orientifold, any discussion of 9-branes in generalis necessarily rather formal. Before discussing the possibility of generalising theusual orientifolds to give sources of (p; q) 9-brane charge so as to give consistentbackgrounds with (p; q) 9-branes, it will be useful to consider 9-branes and theirrelations to other branes further.The type IIB theory has an SL(2;Z) symmetry [2,10] which acts on the complexscalar � = � + ie��, where � is the dilaton and � is the RR scalar, and the twoanti-symmetric tensor �eld strengths HuMNP with u = 1; 2 where H1 = dB1 is theNS-NS �eld strength and H2 = dB2 is the RR �eld strength. The transformationsare �! p� + qr� + s;  H1H2! ! � H1H2! (6:1)where � is the SL(2;Z) matrix� =  p rq s! ; ps� qr = 1; p; q; r; s 2Z (6:2)The branes of the type IIB theory �t into representations of the SL(2;Z) symmetry.Some are singlets, while some of the branes transform as doublets of the SL(2;R)symmetry of the classical supergravity theory leading in the quantum theory to aspectrum of branes with charge (p; q) with p; q co-prime integers. The 3-brane isa singlet and the strings and 5-branes are doublets. The 7-brane is more subtle,as it couples to the scalar �elds which transform non-linearly under SL(2;Z).The solutions of [23] in which the axion ansatz involves the modular invariant j-function are SL(2;Z) invariant and lead to singlet 7-brane charges. Acting with29



SL(2;Z) on a 7-brane leaves its charge Zi1:::i7 invariant, but changes the SL(2;Z)monodromy and the couplings to strings and 5-branes [26]. This is consistent withthe superalgebra, which we have seen has singlet 3-brane and 7-brane charges, and1-brane and 5-brane charges that are doublets. The 9-brane charges are doublets,so that there should be 9-branes with charges (p; q) with p; q co-prime.Strings carry two one-form charges �Zui and 5-branes carry two 5-form charges�Zuijklm, which transform as doublets under SL(2);�Zi =  �Z1i�Z2i ! ; �Zijklm =  �Z1ijklm�Z2ijklm! (6:3)The scalars can be used to construct a 2 � 2 matrix V 2 SL(2;R) transformingunder rigid SL(2;R) from the right and under local SO(2) from the left, so thatunder SL(2;Z), V ! V��1. Fixing an SO(2) gauge gives an expression for IfV ! V0 at in�nity, for V in terms of the complex scalar �. some constant matrixV0, then Zi = V0 �Zi and Zijklm = V0 �Zijklm are SL(2)-invariant charges whichhowever transform as doublets under the SO(2) which also acts on the fermionsand supercharges; it is these charges Zi; Zijklm that enter into the superalgebra(2.3).A similar structure should hold for the 9-branes. The 2-vector of 9-branecharges Z0 (dual to Ẑabi1:::i9) in the algebra is an SO(2) doublet and should arisefrom an SL(2) doublet �Z0, with Z0 = V0 �Z0. The D-brane with p = 9 can bethought of as coupling to a 10-form potential A2 which is an auxiliary �eld of thetheory, occurring in the RR sector. (Strictly speaking, the RR construction givesonly physical �elds, but the 9-brane coupled to the 10-form is related by T-dualityto p-branes coupling to RR (p + 1) form gauge �elds.) As the charges �Z0 are anSL(2) doublet, there should be an SL(2) doublet of 10-form potentials, A1; A2.The �eld A1 is again non-physical, and it seems natural to attribute it to somegeneralisation of the usual NS-NS sector to include auxiliary �elds.At weak coupling, g �< e� >� 0, the perturbative states are described bythe NS-NS or (1,0) string while all the other branes are non-perturbative [7]. The30



perturbative theory is formulated as the usual type IIB superstring theory, with atopological expansion in terms of the genus of the world-sheet of the NS-NS string.At strong coupling, however, it is the RR or (0,1) string that gives the states thatare perturbative in an expansion in ~g = 1=g. The conjectured self-duality of thetheory implies that the strong-coupling theory is again a type IIB string theory,but now the formulation should be in terms of the world-sheet of the (0,1) string.The perturbation theory in ~g is a sum over (0; 1) string world-sheets with the powerof ~g corresponding to the genus of the world-sheet. At weak coupling, the (1,0)string can end on the D-branes carrying RR charge, which are the 3-brane, the7-brane, the (0,1) string, the (0,1) 5-brane and the RR 9-brane, which we will referto as the (0,1) 9-brane.? In the strongly coupled theory formulated in terms of theworld-sheet of the (0,1) string, the (0,1) string and (0,1) 5-brane carry charge thatappears in the NS-NS sector of the dual (0,1) string (as this couples to B2) whilethe new D-branes with density proportional to 1=~g on which the (0,1) string canend are the 3-brane, the 7-brane, the (1,0) string and the (1,0) 5-brane. These allcarry charge which occurs in the RR sector of the (0,1) string. This structure isobtained by acting with the SL(2;Z) transformation generated byS =  0 1�1 0! (6:4)which interchanges strong and weak coupling. For example, this takes a (1,0)string ending on (0; 1) strings or 5-branes to a (0,1) string ending on (1; 0) stringsor 5-branes.This should extend to 9-branes as follows. There are two basic 9-branes, withcharges (1,0) and (0,1). At weak coupling, the (0,1) 9-brane is a D-brane for theweakly coupled (1,0) string and carries RR charge. The strongly coupled theory isformulated in terms of the world-sheet of the (0,1) string and has the (1,0) 9-braneas a D-brane occurring in the RR sector of the (0,1) string. A general 9-brane has? The (1,0) string can also end on (n;�1) strings, 5-branes and 9-branes, as follows fromSL(2;Z) duality. However, it will be su�cient here to focus on the (0,1) Dirichlet branes.31



two charges (p; q) corresponding to the two 10-forms A1; A2 and can be thoughtof as a bound state of (1,0) and (0,1) branes. The two auxiliary 10-form �elds �tinto an SL(2;Z) doublet and one occurs in the RR sector of the (1,0) string, whilethe other occurs in the RR sector of the (0,1) string. (A naive extrapolation of theformulae of [7] suggests that for the weakly coupled string, the coupling constantdependence of the density of the NS-NS 9-brane is g�4. This is to be comparedwith that of the RR 9-brane and other D-branes which have densities of order g�1and that of the solitonic NS-NS 5-brane which has density of order g�2. Then ongoing to strong coupling and using the dual string metric, the (1,0) 9-brane wouldhave density ~g�1 and the (0,1) 9-brane would have density ~g�4. However, this israther formal as there are various problems in discussing the densities of p-braneswith p � 7 in ten dimensions.)Instead of acting with the SL(2;Z) transformation (6.4) that takes us fromweak to strong coupling, we could act with a general SL(2;Z) transformationgenerated by (6.2). The (1; 0) 1; 5; 9-branes are mapped to (p; q) 1; 5; 9-branes andthe (0; 1) 1; 5; 9-branes are mapped to (r; s) branes, while the transformation (6.1)of � leads to a new coupling constant ~g. Perturbation theory in ~g again gives a typeIIB string theory, but where now the (p; q) string is fundamental and formulatedin terms of the (p; q) string world-sheet. The D-branes of this dual world-sheetdescription are the (r; s) 1-branes, 5-branes and 9-branes, together with the 3-brane and the 7-brane. These couple to potentials that arise in the RR sector ofthe new fundamental string. The (p; q) 5-brane is now solitonic, and other stringsand 5-branes occur as various bound states.We turn now to the orientifold construction. At weak coupling, the type IIBtheory is formulated in terms of a fundamental (1; 0) string and has a symmetry
 which reverses the parity of the (1; 0) world-sheet. As the dilaton is invariantunder 
, this is a perturbative symmetry. The massless bosonic �elds of the IIBtheory are gMN ; B1MN ;� in the NS-NS sector and DMNPQ; B2MN ; � in the RRsector. Of these, the ones that are invariant under 
 are gMN ; B2MN ;�. Theorientifold of the IIB theory constructed using 
 gives the type I theory [12].32



The invariant sector is formulated in terms of closed type I strings, with masslessbosonic �elds gMN ; B2MN ;�. In addition there is an open string sector, which canin some ways be thought of as a twisted sector, with SO(32) Chan-Paton factorsarising from 32 RR 9-branes [13]. Acting with 
 projects out all branes except theRR string, 5-brane and 9-brane, although there is a sense in which the closed andopen fundamental type I strings can be associated with the fundamental NS-NSstring of the type IIB theory.Consider now the strongly coupled type IIB string, formulated as a world-sheettheory of the (0,1) string. This should be isomorphic to the usual type IIB string,and in particular has a symmetry ~
 which reverses the parity of the (0,1) stringworld-sheet. As ~
 leaves the dilaton invariant, this is a perturbative symmetry in~g perturbation theory. We can consider orientifolding by ~
, which should makesense in ~g perturbation expansion. It should be isomorphic to the usual orientifoldconstruction, and lead to a theory isomorphic to the usual type-I theory, and inparticular should have open strings and SO(32) gauge symmetry. The masslessbosonic �elds that are invariant under ~
 are gMN ; B1MN ;�, which occurred inthe NS-NS sector of the (1,0) string for g << 1. The Chan-Paton factors arenow carried by the 9-branes that are the D-branes for the (0,1) string; these areprecisely the (1,0) 9-branes that we have postulated.The next question is that of how the `new' type I string is related to theusual one. It is isomorphic to the usual one, but it �ts di�erently into the typeIIB theory { one is obtained by the usual orientifold construction, the other bydoing an SL(2;Z) transformation and then orientifolding. The two type I theoriesare physically indistinguishable; both are theories of non-orientible closed stringscoupled to open strings with SO(32) Chan-Paton factors and both have N = 1supergravity coupled to SO(32) super-Yang-Mills as the low energy e�ective �eldtheory. On modding out by 
, the (0,1) string, 5-brane and 9-brane of the IIBtheory survive as type I D-branes, while the (1,0) string which is fundamental forg << 1 leads to the fundamental type I strings which can end on the D-branes.The strong coupling limit of this type I theory is conjectured to be the SO(32)33



heterotic theory [4], with the (0,1) string becoming the fundamental heterotic stringat strong coupling [10,11,13]. On the other hand, on modding out by ~
 for g >> 1,the (1,0) string, 5-brane and 9-brane of the IIB theory survive as the new type ID-branes, while the (0,1) string which is fundamental in the IIB theory for ~g << 1leads to the fundamental strings of this new type I theory which can end on the(1,0) string, 5-brane and 9-brane.To proceed further, we shall suppose that the perturbative parity reversal sym-metry 
 extends to a Z2 symmetry of the full non-perturbative type IIB theory,which we will again denote as 
. We know how this acts on perturbative states andhence on the e�ective low-energy supergravity theory { gMN ; B2MN ;� are even andDMNPQ; B1MN ; � are odd under 
 { and this tells us how it acts on BPS states: the(0,1) string, 5-brane and 9-brane are invariant while the the (1,0) string, 5-braneand 9-brane together with the 7-brane and 3-brane are odd under 
. If there issuch a non-perturbative symmetry 
 it should in particular be a symmetry forall values of the coupling g. Then ~
 should also extend to a non-perturbativesymmetry and should be related to 
 by~
 = S
S�1 (6:5)where S is the SL(2;Z) transformation (6.4). Modding the non-perturbative IIBtheory by the Z2 symmetry 
 (or ~
) should then make sense for any value ofthe coupling g and would give a theory with N = 1 supersymmetry in D = 10and SO(32) gauge symmetry. Modding out by 
 requires a background with 32(0; 1) 9-branes (since it does for weak coupling, it must for strong coupling also)while modding out by ~
 requires 32 (1; 0) 9-branes. As modding out by 
 atweak coupling (g << 1) gives the type I string, and the strong coupling limit ofthis is the SO(32) heterotic string, this implies that modding the strongly coupledIIB string (with 32 (0; 1) 9-branes) out by 
 should give the heterotic string withcoupling constant ~g = 1=g. Similarly, modding out the weakly coupled type IIBstring (with 32 (1; 0) 9-branes) by ~
 should give the weakly coupled heterotic string34



with coupling constant g. The NS-NS sector of the type IIB string gMN ; B1MN ;�gives the N = 1 supergravity �elds of the heterotic string and in particular thetype IIB dilaton is identi�ed with the heterotic dilaton.The symmetry ~
 should be a perturbative symmetry of the weakly coupledIIB string. The weakly coupled type IIB string also has a perturbative symmetry(�1)FL where FL is the left-handed fermion number of the conventional NSR for-mulation of the type IIB theory. It also leaves gMN ; B1MN ;� invariant { the samesector preserved by ~
. This implies that (�1)FL and ~
 act in the same way on BPSstates { D-branes are odd and (1,0) strings and 5-branes are even under both. Thissuggests that (�1)FL is the same symmetry as ~
, and this could be taken as thede�nition of the extension of (�1)FL to a symmetry of the full non-perturbativetheory. Indeed, in [46] it was argued that (�1)FL = S
S�1 by considering theaction on massless �elds, while here ~
 = S
S�1 by de�nition. Similarly, extrapo-lating 
 to strong coupling should give (�1)F 0L where F 0L is the left-handed fermionnumber of the NSR formulation of the dual type IIB theory, acting on fermionsmoving on the (0,1) string world-sheet.It has been suggested (see e.g. [46]) that modding out the type IIB theory by(�1)FL should give the type IIA theory by considering the action on perturbativestates, while we have argued that modding out by ~
 should give a heterotic/type Itheory. If (�1)FL and ~
 are in fact the same symmetry and if it is indeed the casethat modding the type IIB theory by (�1)FL can give the type IIA theory, thenthis would mean that there are two di�erent ways of modding the IIB theory by thesame symmetry, in which di�erent `twisted sectors' are added to obtain a consistenttheory. In both cases the untwisted or invariant sector includes the g-perturbativestates from the product of the left-handed NS sector with the right-handed R andNS sectors. This theory is inconsistent as it stands, but a consistent theory canbe obtained by adding a `twisted sector'. One way of doing this is by introducinga left-handed R sector of the opposite chirality, to obtain a type IIA theory, whileanother is to introduce 32 (1,0) 9-branes and a heterotic sector which becomes theopen string sector of a type I theory as g ! 1. If this is correct, it would also35



mean that on taking an orientifold of the type IIB theory with 
, the resultingtheory can be �xed up either in the usual way to obtain the type I string, or byadding a IIA twisted sector so that the theory becomes the weakly coupled IIAtheory as the IIB coupling becomes large, so that the IIA and IIB couplings areinversely related. As the IIA theory becomes M-theory at strong coupling [4], thiswould mean that the twisted sector added to the orientifolded type IIB theory atweak coupling should be 11-dimensional. (It is of course conceivable that (�1)FLand ~
 are in fact two di�erent Z2 symmetries, which have the same action on themassless sector, but di�er in their actions on the full theory; modding out by onegives the type IIA theory and modding out by the other gives a type I theory. Thiswould mean that X = (�1)FL:~
 should be some as yet unknown symmetry thatpreserves the massless and BPS sectors but acts non-trivially on the full theory, sothat ~
 = (�1)FL:X.)This can be generalised to consider orientifolding the (p; q) string instead of the(1; 0) or (0; 1) string. Acting with an SL(2;Z) transformation � gives the discretesymmetry 
� = �
��1 (6:6)If � takes a (1; 0) string to a (p; q) string and takes the coupling constant g to g�,then perturbation theory in g� gives a type IIB theory in which the (p; q) stringis now the fundamental string and 
� acts as parity reversal on the (p; q) stringworld-sheet. Modding out by 
� should again give a type I string (for weak g�)and a heterotic string (for strong g�); each choice of � gives a physically equivalenttheory, but `embedded' di�erently in the type IIB string.
36



7. The IIA Theory and M-TheoryWe have argued that there should be an extra 9-brane in the type IIB theory.Dimensionally reducing on a circle to 9 dimensions, the 9-brane yields a new 8-brane in the D = 9 type II theory, in addition to the D-8-brane that comes fromthe RR 9-brane in the IIB theory. The same D = 9 type II theory can be obtainedby reducing the T-dual type IIA theory, so that the new 8-brane should also have atype IIA origin. It could have come from either a new 8-brane or a new 9-brane inthe D = 10 type IIA theory; however, a new type IIA 8-brane would give both an8-brane and a 7-brane in D = 9, and there is no evidence for an extra 7-brane fromthe type IIB side. Thus the type IIA theory should also have a new 9-brane, whichagain is not in the RR sector and is not a D-brane. The type IIA theory at �nitecoupling is M-theory compacti�ed on a circle, so that the new type IIA 9-braneshould have an M-theory origin. The simplest way in which this could happenwould be if M-theory had either a 9-brane or a 10-brane. A 10-brane would givejust a 9-brane in D = 10, while a 9-brane would give a 9-brane and an 8-brane.We have seen in section 2 that the D = 11 superalgebra (2.1) has a 9-brane chargethat reduces to an 8-brane charge and a 9-brane charge in D = 10, so we concludethat M-theory could have a 9-brane that gives rise to the new 9-brane and the8-D-brane of type IIA on reducing on a circle.Assuming the existence of an M-9-brane, M-theory then has p-branes for p =2; 5; 6; 9, and reducing to the D = 10 IIA theory, the M-membrane gives braneswith p = 1; 2, the M-5-brane gives branes with p = 4; 5, the M-6-brane gives braneswith p = 5; 6 and the M-9-brane gives branes with p = 8; 9. In addition, the 11-momentum PM gives a 0-brane charge and a 10-momentum on reduction. If theD-momentum PM were treated in the same way as the other charges, it would besplit into the spatial momentum Pi which is analogous to a 1-brane charge, andthe energy P0, which could be dualised to a D� 1 brane charge P̂i1:::iD�1. The factthat states carrying momentum in compacti�ed dimensions are U-dual to statesobtained by wrapping branes round the compacti�ed dimensions [2] means that37



for some purposes states carrying the gravitational charge PM should be treatedon the same footing as states carrying brane charges.If the D = 11 momentum PM is formally thought of as corresponding to a1-brane charge Pi and a 10-brane charge P̂i1:::iD�1 (dual to P0), then the M-theoryspectrum has branes with p = 1; 2; 5; 6; 9; 10. It is suggestive that these occur inthree pairs fp � 1; pg for p = 2; 6; 10. This would have a natural interpretationif these charges arose from a 12-dimensional theory with a 2-brane, a 6-braneand a 10-brane. Twelve-dimensional theories have been proposed for a number ofdi�erent reasons [7,47,48]. If the 12-dimensional space has signature (11; 1), thenthis reduction is straightforward. It has been suggested [47] that the superalgebrain 10+2 dimensions [17]fQ�; Q�g = ��MNC��� ZMN + ��MNPQRSC��� Z+MNPQRS : (7:1)(with Q� 32-component Majorana-Weyl spinors, and Z+MNPQRS a self-dual 6-form)should play a role in 12 dimensions. On dimensional reduction with respect to oneof the time-like directions, the D = 11 algebra (2.1) emerges, with the momentumPM arising from the D = 12 2-form charge ZMN . Choosing one of the two timesx0 as the `canonical time', the remaining coordinates are the other time coordinatex0̂ and the spatial coordinates xi (i = 1; :::; 10), which can be combined into 11-dimensional coordinates x�, with � = 0̂; i. The 2 charges ZMN ; Z+MNPQRS give riseto a 2-brane charge Z�� and a 6-brane charge Z�1:::�6, while Z0� is dualised to give a10-brane charge Ẑ�1:::�10; the dual 6-brane charge Ẑ�1:::�6 is equal to Z�1:::�6 becauseof the self-duality of Z+MNPQRS . Each of these p-brane charges with p = 2; 6; 10splits into one including an x0̂ component and one without, giving the charge for abrane with world-volume of signature (p; 1) and one for a brane with world-volumeof signature (p� 1; 2). On dimensionally reducing in the x0̂ direction, one obtainsin 11 dimensions a p-brane and a p � 1 brane, both with conventional Lorentziansignature. 38



12-Brane World-Volume Signature Charge M-brane2-brane (2,1) Zij 2-brane(1,1)-brane (1,2) Zi0̂ pp-wave6-brane (6,1) Zijklmn KK monopole(5,1)-brane (5,2) Zijklm0̂ 5-brane10-brane (10,1) Zi1:::i10 Energy P0(9,1)-brane (9,2) Zi1:::i90̂ 9-braneTable 1 Suggested branes in 12 dimensions and reduction to 11 dimensions.The conventional type IIA supergravity has no 8-brane solution, but it wasshown in [24] that Romans' generalisation of the type IIA theory involving a massm [49] does have such a solution. The 8-brane couples to a non-dynamical 9-formpotential A9 with �eld strength F10. The massive type IIA action was rewrittenin [24] in a form which included the termZ MF10 (7:2)where M is a scalar �eld. As A9 only occurs in the action through this term, itis a Lagrange multiplier imposing the constraint M = constant and the constantvalue of M is the mass m of the Romans theory. If m = 0, the standard type IIAsupergravity is recovered. This 8-brane should arise from the double dimensionalreduction of the 9-brane of M-theory, and the term (7.2) should also have an 11-dimensional origin. Indeed, it was argued in [24] that the term (7.2) necessarilyarises in the IIA string theory, which implies that a similar term must arise in M-theory, as the M-theory compacti�ed on a circle is the same thing as the type IIAstring at �nite coupling. This suggests that the low-energy e�ective �eld theory ofM-theory should include a term Z MF11 (7:3)where M is a scalar and F11 = dA10 where A10 is a 10-form potential whichcouples to the M-theory 9-brane. On reduction to D = 10, the potential A10 givesA9 which couples to the IIA 8-brane, and a 10-form A10 which couples to the 9-brane. However, it has been shown subject to certain assumptions that there is no39



conventional extension of D = 11 supergravity which includes a term of the form(7.3) [59], so that any modi�cation of the supergravity theory including the term(7.3) must be of an unusual form.8. World-Volume Theories and Collective CoordinatesThe zero-mode dynamics of a p-brane are described by a supersymmetric�eld theory on the p + 1 dimensional world-volume arising from gauge-�xing a�-symmetric supercovariant action. This world-volume theory has 8 fermionic and8 bosonic degrees of freedom for branes that break half the supersymmetry. Thebosonic degrees of freedom for a p-brane usually include D � p � 1 scalar �elds,corresponding to the collective coordinates for the position of the p-brane, and ifD � p � 1 < 8, there are in addition 9 + p �D bosonic degrees of freedom whichare typically collective coordinates for anti-symmetric tensor gauge �eld degreesof freedom. The D = 10 fundamental string is described by 8 world-sheet scalarsand 8 world-sheet spinors, while the D = 11 membrane is described by 8 world-volume scalars and 8 3-dimensional spinors; the scalars transform as a vector andthe fermions as a spinor under the transverse SO(8). A D-brane is described bya vector multiplet in its p + 1 dimensional world-volume with 9 � p scalars anda vector �eld, giving (9 � p) + (p � 1) = 8 bosonic physical degrees of freedom.The 5-brane of M-theory is described by a 6-dimensional self-dual vector multipletwhose bosonic degrees of freedom consist of 5 scalars and a 2-form gauge �eld withself-dual �eld strength.The description of the dynamics of the membrane in D = 11 requires 8 scalars,while the D = 10 membrane of the type IIA theory should have one less scalarcollective coordinate; this is indeed the case, and its e�ective world-volume theoryhas 7 scalars and a vector. In the three-dimensional world-volume, a scalar isdual to a vector, and the two membrane e�ective actions are related by a world-volume duality transformation. Similarly, the type IIA 5-brane should have 4scalars on its world-volume, while the M-theory 5-brane from which it is obtained40



by double dimensional reduction has 5 scalars. This suggests that the IIA 5-braneshould be described by the 6-dimensional multiplet obtained by taking the self-dual antisymmetric tensor multiplet and dualising one of the scalars to obtain a4-form. The scalar to be dualised is the one corresponding to translations in the11-th dimension, which is taken to be an isometry in the dimensional reduction, sothat the scalar only appears through its derivative and can be dualised. Thus thebosonic sector of the M-theory 5-brane e�ective theory has 5 scalars and a self-dual2-form gauge �eld, the IIA 5-brane has 4 scalars, a self-dual 2-form gauge �eld anda 4-form gauge �eld; the two multiplets are on-shell equivalent. In the IIB theory,the D-5-brane is described by a vector multiplet with 4 scalars and a vector. Thiscan be dualised to a multiplet with 4 scalars and a 3-form gauge �eld, and this isa natural candidate for the world-volume theory of the NS 5-brane of the type IIBtheory.In [48,50], explicit duality transformations were considered for D-brane ac-tions, and for the cases considered the results were consistent with the view thatthe transition from weak to strong coupling is accompanied by a world-volumeduality transformation. However, the determination of the zero modes from thesupergravity �eld equations, as in [20], does not distinguish between dual formsof the world-volume collective coordinate supermultiplet; the choice between dualforms of the multiplets seems to be a matter of convenience rather than of prin-ciple. For example, for the membrane the formulation with eight scalars makesthe (transverse part of the) 11-dimensional Lorentz invariance manifest, while it ismore convenient to write the non-abelian generalisation arising when a number ofmembranes are coincident in terms of the vector multiplet, as the correspondingaction written in terms of the scalars would be non-local. In what follows, we shallseek dual forms of the multiplet in which the number of scalars is the number oftranslational zero-modes, and di�erent branes have di�erent multiplets.We now turn to the question of the KK monopoles. We have argued that theycan be regarded as D � 5 branes, which should imply that they have 4 scalar de-grees of freedom (since a p-brane should haveD�p�1 scalar �elds). However, this41



cannot be correct, as this number of scalars cannot be �tted into supermultiplets ofhalf-maximal supersymmetry in general. For example, for D = 11 we would needa 7-dimensional N = 2 supermultiplet with 4 scalars, of which none are known. In7 dimensions, an N = 2 vector multiplet has three scalars and a vector, and thenumber of scalars can be decreased by dualising, but cannot be increased. Theresolution comes from considering the gravitational instanton moduli space. Thespace-time in question is Rp;1 � N4 where N4 is a gravitational multi-instantonspace. For a single instanton in four dimensions, one would expect four collectivecoordinates corresponding to the position of the instanton. However, this is notthe case for the Taub-NUT metric, which has a 3-dimensional moduli space; trans-lation in the direction @=@y gives an equivalent metric and so does not count asa deformation as that direction is Killing [51]. More generally, the multi-centremetrics (5.2),(5.26),(5.27), have only 3s moduli (corresponding to the s positionsx�i in R3) [51]. This would be consistent with the e�ective world-volume dynamicsof the KK monopole being described by a 7-dimensional vector multiplet, whichhas 3 scalars, or by the multiplet given by dualising the vector to give 3 scalars anda 4-form gauge �eld; these are the only possibilities as no other matter multipletshave 3 scalars. It is remarkable that supersymmetry would have led us to theconclusion that the moduli space dimension should be a multiple of 3.Double dimensional reduction to the KK monopole 5-brane in 10 dimensionsgives the dimensional reduction of the vector multiplet to D = 6, and shouldcontain 3 scalars again, corresponding to the instanton moduli. This leads tothe multiplet with 3 scalars, one 3-form and one 4-form gauge �eld, coming fromthe reduction of the multiplet with 3 scalars and a 4-form in 7 dimensions. Thissuggests that a convenient description is in terms of a multiplet with 3 scalars anda 4-form in 7 dimensions or the multiplet obtained by straightforward dimensionalreduction of this to 7-d dimensions for the KK monopole in D � d dimensions.Simple dimensional reduction of the KK monopole (taking a periodic array)gives the type IIA 6-brane in D = 10. The 7-dimensional world-volume descriptionis obtained by dualising the 4-form to a vector to give the D = 7 vector multiplet42



with 3 scalars and a vector. The picture that seems to be emerging is that doubledimensional reduction of an M-theory p-brane for p = 2; 5; 6 gives a p� 1 brane ofthe IIA theory with the world-volume theory obtained by dimensional reduction ofthe M-brane world-volume theory from p+1 to p dimensions. On the other hand,simple dimensional reduction (with a periodic array) to give a IIA p-brane givesequivalent world-volume theories for the IIA and M-theory p-branes, but relatedby a world-volume duality transformation. If this pattern persists for the M-theory9-brane, its world-volume theory must be a 10-dimensional supersymmetric theorywhose dimensional reduction to 9 dimensions gives the 8-brane world-volume the-ory which is given by a vector multiplet with a vector and a scalar. This �xes theM-theory 9-brane to be described by a 10-dimensional vector multiplet. One wouldhave expected a scalar representing the position of the 9-brane, but perhaps this ismissing for reasons similar to those for the absence of the expected fourth modulusfor the Kaluza-Klein monopole. Then the world-volume theory for the IIA 9-braneshould be the multiplet related to this by a world-volume duality transformation,with a 7-form gauge potential instead of a vector.Consider now the IIB theory. As the solitonic (NS) 5-brane is related to theKaluza-Klein monopole by T-duality (with respect to the isometry generated by@=@y for the metric (5.2)), the IIA theory in a 5-brane background is equivalentto the IIB theory in a KK monopole background, and the IIB theory in a solitonic5-brane background is equivalent to the IIA theory in a KK monopole background.This �xes the world-volume theory of the IIB KK monopole to be the six dimen-sional (2,0) supermultiplet with a 2-form A+2 with self-dual �eld strength and 5scalars, or a dual version of this. As there are 3 translational zero modes, it isnatural to seek a dual form with 3 scalars; if it is possible to dualise 2 scalars, thiswould give a multiplet with A+2 , 3 scalars and two 4-form potentials A4. (Note thatthe �ve scalars could have interpretation as translational zero modes of 7-brane in12 dimensions which reduces to this 5-brane in 10 dimensions.) It also �xes thesix-dimensional world-volume multiplet for the type IIB NS-NS 5-brane to be the(1,1) vector supermultiplet with 4 scalars and a vector, or a dual version of this.43



There should be 4 translational zero modes and so 4 scalars, but the vector couldbe dualised to give a multiplet with 4 scalars and a 3-form.Finally, we consider the pp-wave solutions. As there is a sense in which theycan be regarded as 1-branes and are T-dual to fundamental strings, we can askwhat their world-sheet e�ective dynamics should be. The pp-wave solution of M-theory [52] gives the 0-brane of the IIA theory on double dimensional reduction(i.e. on reducing the con�guration in which the wave travels in the compact 11thdimension) [3] and as the 0-brane world-line theory is a one-dimensional super-vector multiplet with a vector gauge �eld and 9 scalars, the pp-wave world-sheettheory which reduces to this must be a 2-dimensional theory with 8 scalars anda vector. If the pp-wave is moving in a compact dimension, then it is related byT-duality to a fundamental string wrapped around the compact dimension [16].Thus the IIA theory in such a pp-wave background is T-dual to the IIB theory ina fundamental string background, i.e. with a fundamental string wrapped aroundthe internal dimension [53]. This fundamental string is in turn dual to a D-string.The e�ective world-sheet dynamics is then described by a IIB Green-Schwarz stringwith 8+8 degrees of freedom in static gauge, or equivalently by a Born-Infeld actionwhich is equivalent to this via a world-sheet duality transformation [50]. Similarly,the IIB pp-wave is T-dual to the IIA fundamental string [53], and is described bya IIA Green-Schwarz superstring action.These world-volume dynamics are summarised in the following tables. Thebosonic �elds in the supermultiplet are listed, with An denoting an n-form gaugepotential, A+2 denoting a 2-form with self-dual �eld strength and m�� representsm scalars. The multiplets for the solitonic 5-branes have also been proposed in[55]. 44



M-Brane World-Volume Multiplet Suggested Dual Formpp-Wave A1; 8� � A1; 8� �2-Brane 8� � 8� �5-Brane A+2 ; 5� � A+2 ; 5 � �6-Brane (KK Monopole) A1; 3� � A4; 3� �9-Brane A1 A1Table 2 World-Volume Dynamics of M-Branes.IIA-Brane World-Volume Multiplet Suggested Dual FormDirichlet p-Branep=0,2,4,6,8 A1; (9� p) � � A1; (9 � p) � �1-Brane (Fundamental) 8� � 8� �pp-Wave A1; 8� � A1; 8� �5-Brane (Solitonic) A+2 ; 5� � A+2 ; A4; 4 � �5-Brane (KK Monopole) A1; 4� � A4; A3; 3� �9-Brane (Extra) A1 A7Table 3 World-Volume Dynamics of Type IIA Branes.IIB-Brane World-Volume Multiplet Suggested Dual FormDirichlet p-Branep=1,3,5,7,9 A1; (9� p) � � A1; (9 � p) � �1-Brane (Fundamental) 8� � 8� �pp-Wave 8� � 8� �5-Brane (Solitonic) A1; 4� � A3; 4� �5-Brane (KK Monopole) A+2 ; 5� � A+2 ; 3� �; 2�A49-Brane (Extra) A1 A7Table 4 World-Volume Dynamics of Type IIB Branes.In the last section, the possibility that the branes of M-theory could have a12-dimensional origin was discussed. If it is indeed the case that there is a 2-brane, 6-brane and 10-brane in 12 dimensions which reduce to the M-branes, it isinteresting to ask whether consistent world-volume dynamics could be attributedto them which gives the correct dynamics on dimensional reduction. The 2-branein 12 dimensions should give rise to the 2-brane and pp-wave in 11 dimensions, bothof which have 8 scalars, and so should itself have 8 scalars; this is one less thanwould have been expected for a standard 2-brane in 12 dimensions. The 6-brane is45



more problematic. On reduction to M-theory, it should give both the 5 brane witha 6-dimensional self-dual tensor multiplet and the 6 brane with a 7-dimensionalvector multiplet. If the D = 12 signature is (11,1), the 6-brane world-volume hassignature (6,1) and there is no 7-dimensional multiplet that is equivalent to thevector multiplet and reduces to the tensor multiplet. If the D = 12 signature is(10,2), the M-theory 6-brane arises from the D = 12 6-brane with world-volumesignature (6,1), and this should then have a world-volume vector multiplet. The M-theory 5-brane arises from the D = 12 6-brane with world-volume signature (5,2),and this should be described by a multiplet in (5,2) dimensions that reduces to theself-dual tensor multiplet in (5,1) dimensions. In particular, chiral fermions and aself-dual tensor must emerge on dimensional reduction, and this could not happenif the (5,2) theory was a conventional local theory with O(5; 2) Lorentz invarianceand with a standard dimensional reduction. Thus it appears that either theD = 12branes cannot have covariant dynamics { it might involve a particular vector, suchas a �xed null vector { or the reduction to D = 11 must be non-standard.9. ALE Branes, ALF Branes and Symmetry EnhancementWhen parallel D-branes of the same type approach one another, the world-volume gauge symmetry is enhanced to a non-abelian group with extra masslessstates arising from fundamental strings joining the D-branes. The symmetry en-hancement should be true for all values of the coupling, although the interpreta-tion can change. The type IIA string becomes 11-dimensional M-theory at strongcoupling, and D-branes for p = 0; 2; 4; 5; 6; 8 become, as we have seen, pp-waves,2-branes, 5-branes, KK monopoles and 9-branes respectively, which can be thoughtof as M-branes with p = 1; 2; 5; 6; 9. The con�guration of two p-D-branes joinedby fundamental strings, for which the world-volume theory has a U(2) gauge sym-metry when the branes coincide, becomes two M-branes joined by a 2-brane inD = 11. Indeed, it was shown in [54] (and references therein) that an M-theory2-brane can intersect a pp-wave, 2-brane, 5-brane or KK monopole in such a way46



that breaks 1=2 the supersymmetry and which reduces to a fundamental stringintersecting a D-brane with p = 0; 2; 4; 6 respectively. Then two parallel M-branesof the same type (pp-waves, 2-branes, 5-branes, KK monopoles or 9-branes) giveenhanced symmetry when they come together, giving a non-abelian gauge theoryor, in the case of 5-branes, a theory of tensionless self-dual strings [56]. As a re-sult, in the IIA theory two fundamental strings, two pp-waves, two 5-branes or KKmonopoles coming together gives enhanced symmetry. For the type IIB theory,enhanced symmetry also results from bringing together two fundamental strings,two solitonic 5-branes or two (1,0) 9-branes, as these are related by SL(2;Z) dual-ity to D-branes, and from bringing together two KK monopoles or two pp-waves,as these are related by T-duality to type IIA 5-branes and fundamental strings,respectively. We now examine this in more detail for the case of KK monopoles.?The Gibbons-Hawking gravitational multi-instanton metric [28,57] isds2 = V (dy +A�dx�)2 + V �1���dx�dx� (9:1)where V �1 = �+ sXi=1 2njx� � x�i j; F�� = ����r�V �1 (9:2)If � = 1, this is the multi-Taub-NUT space considered earlier with ALF (asymptot-ically locally 
at) boundary conditions. If � = 0, n can be scaled to 1 and the spaceis a multi-centre generalisation of the Eguchi-Hanson metric with ALE (asymptot-ically locally Euclidean) boundary conditions. The case � = 0; s = 1 is 
at space,while � = 0; s = 2 gives the Eguchi-Hanson instanton. The space RD�5;1 � N4where N4 is an ALF or ALE instanton is a solution of M-theory (D = 11) or ofstring theory (D = 10) as the gravitational instanton is hyperkahler [29].The multi-Eguchi-Hanson space behaves as R4=Zs at large distances, and canbe used to resolve an As singularity of an orbifold limit of K3, or blow up the? Some of the following was also considered in [60].47



orbifold singularity of R4=Zs. For example, one orbifold limit of K3 is T 4=Z2 andeach of the 16 orbifold singularities can be repaired by gluing in an Eguchi-Hansonmetric. In the limit jx1 � x2j ! 0, the Eguchi-Hanson space becomes R4=Z2with an orbifold singularity at x1. While the multi-Taub-NUT solution can bethought of as a solution with a number of parallel D � 5 G-branes, the multi-Eguchi-Hanson space can be viewed as a number of parallel D � 5 G-branes in atransverse space which is an orbifold; as a result, not all the branes are independentas some are `mirror images' of others. There is one instanton corresponding to eachpair fxi; xjg.As the y coordinate is periodic, each line segment in the R3 parameterised byx� is associated with a cylinder in N4, unless the line segment passes through oneof the points x�i at which the size of the y-circle shrinks to zero. In particular, aline segment joining x�i and x�j corresponds to a 2-sphere and the set of all such2-spheres corresponding to all pairs fxi; xjg forms a basis for the second homology.As one approaches a point in moduli space at which jxi � xjj ! 0, the area ofthe corresponding 2-sphere shrinks to zero and this is associated with symmetryenhancement.For type IIA string theory compacti�ed on K3, the equivalence with heteroticstring theory implies the existence of special points in theK3 moduli space at whichthe gauge symmetry is enhanced [2]. Indeed, it follows from supersymmetry thatthe mass of certain BPS states tends to zero at these special points [6,8] to givethe extra massless vector multiplets. At these points the area of certain homology2-cycles shrinks to zero to give an orbifold limit of K3 and the BPS states in 6dimensions arising from 2-branes wrapped around the shrinking 2-cycles becomemassless [4,6,8]. The behaviour of the theory as a particular set of 2-cycles shrinkscan be studied by looking at the theory on the space RD�5;1 � N4 in which theK3 is replaced by the appropriate multi-Eguchi-Hanson space [58]; this gives agood approximation when the radius of the 2-sphere is small compared to thesize of the K3. The enhanced gauge symmetry is then associated with parallelG-branes becoming coincident, so that homology 2-spheres shrink to zero size and48



the membranes wrapped around these give rise to massless states on the G-braneso that the G-brane world-volume theory becomes a non-abelian gauge theory.(The world-volume theory for each G-brane is a D = 6 vector multiplet, as for theALF case.) This is straightforward to check using duality; a T-duality relates thesolution to a multi-centre solitonic 5-brane solution of type IIB theory (in R4=Zs)and SL(2;Z) duality relates this to a con�guration of parallel 5-D-branes, andthere is symmetry enhancement as these become coincident due to strings joiningthe 5-D-branes becoming massless [58]. In the case of the Eguchi-Hanson space(s = 2), the instanton shrinks to zero size as the 2-sphere shrinks, so that thesymmetry enhancement is a gravitational analogue of the symmetry enhancementas certain Yang-Mills instantons shrink to zero size [61].There is a similar symmetry enhancement as KK monopole G-branes becomecoincident. This is to be expected from the fact that the 6-D-brane of type IIAarises from the KK monopole of M-theory [3]; the symmetry enhancement of theworld-volume theory as the 6-D-branes become coincident implies the same en-hancement as parallel KK monopole G-branes of M-theory become coincident, andthis in turn implies a similar e�ect for KK monopoles of the type IIA theory. Forthe 6-D-brane, the extra massless states come from strings joining the approaching6-D-branes, while for the KK monopole D � 5 G-branes, these come from mem-branes wrapping around the shrinking 2-cycles. The position of eachD�5 G-branecorresponds to a point xi in R3 and there is a 2-sphere for each pair fxi; xjg. Thuswhen two parallel G-6-branes of M-theory approach one another, the D = 7 U(1)vector supermultiplet on each brane combines with the BPS state from membraneswrapping the 2-cycle joining them to give a U(2) super-Yang-Mills theory on thecommon 7-dimensional world-volume. This enhancement can be understood in theIIA case from duality using the argument of [58]; the two parallel G-5-branes of theIIA theory are T-dual to two parallel solitonic 5-branes of the IIB theory, and theseare SL(2;Z)-dual to two parallel 5-D-branes, with the usual U(1) � U(1)! U(2)symmetry enhancement on the world-volume. The membrane wrapping the 2-cycleis replaced by the string joining the D-branes.49



Consider now the analogous situation in the IIB string on R5;1�K3 or R5;1�N4.In this case, three branes wrapping the 2-cycles gives rise to self-dual strings in 6dimensions that become tensionless in the limit in which the 2-cycle shrinks to zeroarea [9]. In particular, the limit in which two parallel G-5-branes become coinci-dent, the world-volume theory changes from an abelian self-dual anti-symmetrictensor multiplet to a non-abelian generalisation resulting from self-dual stringsbecoming null. This is related by T-duality to the case of 2 parallel 5-branes ofthe IIA theory becoming coincident, which in turn becomes the case of coincident5-branes of M-theory at strong coupling; in this latter case, the 3-brane wrappingthe 2-cycle have been replaced by a membrane ending on the two 5-branes [56].Acknowledgements: I would like to thank Jerome Gauntlett, Gary Gibbons,Michael Green, Ashoke Sen and Paul Townsend for valuable discussions.REFERENCES1. A. Sen, Nucl. Phys. B404 (1993) 109; Phys. Lett. 303B (1993); Int. J. Mod.Phys. A8 (1993) 5079; Mod. Phys. Lett. A8 (1993) 2023; Int. J. Mod. Phys.A9 (1994) 3707.2. C.M. Hull and P.K. Townsend, Nucl. Phys. B438 (1995) 109.3. P.K. Townsend, Phys. Lett. B350 (1995) 184.4. E. Witten, Nucl. Phys. B443 (1995) 85, hep-th/9503124.5. P.K. Townsend, in the Proceedings of the March 95 PASCOS/John HopkinsConference, hep-th/9507048.6. C.M. Hull, in Proceedings of Strings 95.7. C.M. Hull, Nucl. Phys. B468 (1996) 113, hep-th/9512181.8. C.M. Hull and P.K. Townsend, Nucl. Phys. B451 (1995) 525, hep-th/9505073. 50
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