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AssTracT. Presentations “4 la Coxeter” are given for all (irreducible) finite com-
plex reflection groups. They provide presentations for the corresponding generalized
braid groups (for all but six cases), which allow us to generalize some of the known
properties of finite Coxeter groups and their associated braid groups, such as the
computation of the center of the braid group and the construction of deformations of
the finite group algebra (Hecke algebras). We introduce monodromy representations
of the braid groups which factorize through the Hecke algebras, extending results of
Cherednik, Opdam, Kohno and others.
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INTRODUCTION

In [DeMo] (17.20), Deligne and Mostow raised the following question :

“Let W C GL(V) be an irreducible finite group generated by complex reflec-
tions, and let V' be the complement in V of the fixed hyperplanes of the complex
reflections in W. For H the fixed hyperplane of a complex reflection in W, let sy
be the generator of the monodromy around the image of H in V/W. It is well de-
fined up to conjugacy in 7 := w1 (V'/W). The fundamental group = is an extension
of W by the fundamental group of V', and sy projects in W to the inverse of the
generator of the fixer of H, with non trivial eigenvalue of the form exp(2ni/ng).

Question 3. For each conjugacy class of each hyperplane H fixed by a complex
reflection, let qg(t) be a path in C*, starting at exp(—2mi/ng). Is it uniquely
possible to deform with t a representation p; of w, starting at t = 0 with the given
representation of the quotient W of m, so that p:(sp) is a complex reflection with
non trivial eigenvalue g (t) 7”7

As noticed by Deligne and Mostow, in the case where W is a Coxeter group, the
existence of the Hecke algebra as an image of the group algebra of the braid group
provides a positive answer to their question.

It is one of our purposes here to give a positive answer to the preceding question, at
least for all infinite series of irreducible finite complex reflection groups, and for some
exceptional ones (a more partial answer, without proofs, had been announced in [BMR]).
We shall get this answer by exhibiting a generalized Hecke algebra for these groups again
as an image of the group algebra of the associated “braid group” =.

Through recent work on representations of reductive finite groups and related topics
(like representations of finite Coxeter groups and associated Hecke algebras)! it has
become clearer and clearer that finite “complex reflection groups” (i.e., linear groups
generated by pseudo-reflections) behave very much like Coxeter groups, or even like
Weyl groups.

e Many of them behave as if they were the Weyl group of a reductive algebraic
group : in particular, they determine families of polynomials which share many
properties of the set of generic degrees of the unipotent characters of a reductive
algebraic group.

e Through suitable presentations by generators and relations, it has become pos-
sible to deform the complex group algebra of most complex reflection groups
in a way which generalizes the construction of classical Hecke algebras of finite
Coxeter groups.

Here we prove in particular that these presentations are naturally associated to pre-
sentations of the corresponding braid groups, thus providing a more intrinsic definition.

It should be noticed that some other nice properties of “Coxeter braid groups” extend
to this more general setting.

For example, generalizing a result of Deligne and Brieskorn—-Saito valid for Coxeter
groups, we check here, in most cases, that the centers of braid groups associated to
irreducible complex reflection groups are cyclic.

lsee for example [AlLu], [Ari], [ArKo], [BreMa], [BrMa], [BrMi}, [BMM], [Lu], [Mal], [Ma2].
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Also (at least in the case of the infinite series) the pure braid group of an r—dimensional
irreducible complex reflection group has a natural structure as an r—fold iterated semidi-
rect product of free groups (of finite rank).

Nevertheless, it should be emphasized that this must only be the beginning of a long
story which is still to be discovered. Our results are — almost — general, but few of our
proofs are. Moreover, new questions emerge now : how to characterize the distinguished
generators and the diagrams representing the relations ? How to explain the natural
“diagram invariants” like degrees, codegrees, zeta function (see §5 below) ?

1. COMPLEX REFLECTION GROUPS AND THEIR PRESENTATIONS

A. Background from complex reflection groups.

For all the results quoted here, we refer the reader to the classical literature on complex
reflections groups, such as [Bou], [Ch], [Co], [ShTo], [Sp], and also to the more recent
fundamental work on the subject by Orlik, Solomon and Terao (see [OrSol], [OrSo2],
[OrTel).

Let V be a complex vector space of dimension r. A pseudo-reflection of GL(V) is a
non trivial element s of GL(V') which acts trivially on a hyperplane, called the reflecting
hyperplane of s. Let W be a finite subgroup of GL(V') generated by pseudo-reflections.
The pair (V, W) is called a complex reflection group.

A parabolic subgroup of W is by definition the subgroup of elements of W which act
trivially on a subspace of V. The following result is due to Steinberg ([St], Theorem 1.5)
— cf. also exercises 7 and 8 in [Bou|, Ch. v, §6.

1.1. Theorem. Let V' be a subspace of V. Then the parabolic subgroup Wy, consisting
of all elements of W which fiz V' pointwise, is still generated by pseudo—reflections : Wy
s generated by those pseudo—reflections in W whose reflecting hyperplane contains V.

We denote by A the set of reflecting hyperplanes of (V, W), and we set N := |A.
We denote by N* the number of pseudo-reflections in W (note that for real reflection
groups we have N = N*).

For H € A, we denote by Wx the pointwise stabilizer of H, and we set ey := |Wg]|.
The group Wy is a minimal non trivial parabolic subgroup of W. All its non trivial
elements are pseudo-reflections. The group Wy is cyclic : if sy denotes the element of
Whr with determinant exp(2inw/er), we have Wy = (sg), the group generated by sz.

The centralizer Cyw (Wx) of Wy in W is also its normalizer, as well as the normalizer
(setwise stabilizer) of H.

For C € A/W an orbit of hyperplanes, we denote by N¢ its cardinality. We have
Ne = |W : Cw(Wgy)| for H € C. We also set ec := ey for H € C.

We denote by S the symmetric algebra of V, by R = SV the algebra of invariants
of W, by R, the ideal of R consisting of elements of positive degree, and we set Sy :=
S/RLS.

The following facts are known (they are introduced here in an order which is conve-
nient for the exposition, but not necessarily for their proof).
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e Degrees.

There is a family of r integers dj,ds, ..., d, called the degrees of (V, W), defined as
follows : the Poincaré polynomial of the graded module (V ® Sy )W i

g1l p gl 4. gt

‘We have o
(@+di—1)(g+d2—2)---(g+d-—1)= Y ¢
weWw

(where V(%) denotes the space of fixed points of w). It follows that

zz:(dj—l):Z(eH—l > Ne(ec—1)=N*.

HeA CeA/W

e Codegrees.

There is a family of r integers d},ds,...,d" called the codegrees of (V, W), defined
by the following condition: the Poincaré polynomial of the graded module (V* ® Sy )W
is

qd‘l‘+1 = qd;+1 4o qd:+1 )

We have
(g—di—1)(g—d;—1)---(g—d; —1) = Z detv(w)qdimv(“’) _
wew
It follows that _
j=r
Z(d* +1) Z Z N =
j=1 HeA CeA/W

and so

N+ N*= Z(d +d*)_ Z Ncee .

CeA/W

Remark. The “codegrees” have not been introduced as such in the quoted literature.
Nevertheless, the sets of degrees and the codegrees are related to the sets of exponents
{m1,ma,...,m,} and coexponents {m},m3,...,my} (which are defined in [OrSo2]) by

the formulae
mj=d;—1 and m;=d;+1 (j=12,...,7).

e Algebra of invariants — More on degrees.

The algebra of invariants R is generated by r algebraically independent homogeneous
elements of S respectively of degrees dj,ds, ... ,d,.

The order of W is |W| = d1dy - - - d.

If W is irreducible, its center Z(W) has order |Z(W)|=d1 Ad2 A--- Ad, (where we
denote d1 Ada A--- Ad, :=ged{d1,da,...,dr}).
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e Cohomology of the hyperplane complements — More on codegrees.

We set M :=V —|Jyc4 H. For H € A, let us denote by oy a linear form on V' with
kernel H, and let us define the holomorphic differential form wy on M by the formula

1 dOtH

Wi = ———

T % ay

1
which we also write wy = -2—7:—7;dLog(a 1) - We denote by [wg] the corresponding de Rham
cohomology class.
Brieskorn (cf. [Br2], Lemma 5) has proved the following result.

1.2. Let Cl[(wa)meAa] (resp. Z[(wu)mea]) be the C-subalgebra (resp. the Z-subalgebra)
of the C-algebra of holomorphic differential forms on M which is generated by {wy } He -
Then the map wy — [wg] induces an isomorphism between Cl(wy)gea] and the coho-

mology algebra H* (M, C) (resp. an isomorphism between Z[(wy)mea] and the singular
cohomology algebra H* (M, Z) ).

From now on, we write wy instead of [wg].
Orlik and Solomon (cf. [OrSol]) have given a description of the algebra H* (M, C).
Before stating their result, we need to introduce more notation.
o Let CA:= @y 4 en be the vector space with basis indexed by .4, and let AA be
its exterior algebra, endowed with the usual Koszul differential map §: ALA — AA
of degree —1.
e For B={Hy,H,,...,Hg} C A, we denote by Dp the line generated by ey, A
e, N---ANepy,.
e We say that B is dependent if codim((y .z H) < |B|.
e We denote by IAA the (graded) ideal of AA generated by the §(Dg) where B
runs overs the set of all dependent subsets of A.

1.3. Theorem. (Orlik and Solomon) The map ey — wpy induces an isomorphism of
graded algebras between AA/IAA and H* (M, C).

Let Int(A) be the set of intersections of elements of A. For X € Int(A), we set
H*)(M,C) := 3" Dg where the summation is taken over all B C A, |B| = codim(X),
Nueg H = X, and where Dg is the complex line generated by wy, Awg, A -+ Awg, if
B = (H.,Hs,...,H).

Then it follows from Theorem 1.3 that

1.4. for any integer n, we have

H*M,C)= @  HYIM,C).
(X eInt(A))
(codim(X)=n)

Moreover, we see that

1.5.

(1) the family (wi)mea is a basis of H' (M, C),
(2) for X an element of Int(A) with codimension 2, if Hx denotes a fized element
of A which contains X,
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o whenever H and H' are two elements of A which contain X, we have wg A
WH' = WHy \WH —WHx NWH,
o the family (Way AWH)(H-X)(H£Hx) 15 0 basis of HX) (M, C).

The codegrees are determined by the arrangement A, by the following consequence
of Theorem 1.3.

1.6. The Poincaré polynomial Pp(q) := ), ¢"dim(H" (M, C)) of the cohomology alge-
bra H*(M,C) is given by the following formulae :

Pu(g) =1+ (1 +d)g)(1+(1+d5)g)---(1+ (1 +d7)g)

codim(V (¥
= Z dety (w)(—q)odmV™)
weWw

B. Presentations.

The tables in Appendix 2 provide a complete list of the irreducible finite pseudo—
reflection groups, as classified by Shephard and Todd, together with presentations of
these groups symbolized by diagrams “a la Coxeter”, as well as some of the data attached
to these groups. Many of these presentations were previously known. This is the case of
the rank r groups which are generated by r reflections, studied by Coxeter [Cx]. Some
others (the ones corresponding to the infinite series) occurred in [BrMa] or were inspired
by [Ari].

The reader may refer to Appendix 2 to understand what follows.

Isomorphisms between diagrams.

We may notice that the only isomorphisms between the diagrams of our tables are
between the diagrams of G(2,1,2) and G(4,4,2), between the diagrams of &, and
G(2,2,3), between the diagrams of G3 and G(3,3,2), and between the diagrams of
G2 and G(2,1,1).

Cozeter diagrams.
Note (see tables) the following correspondence of notation :

e S,y (r>0) is the Coxeter group of type A,
e G(2,1,7r) (r > 2) is the Coxeter group of type B,
e G(2,2,7r) (r > 3) is the Coxeter group of type D..

Indeed (see table 2 for notation) since e = 2, t; and ¢, commute, and it is enough to
show that the “ double-link” braid relation t3thtatstots = thtatststats is a consequence of
the other relations.

Applying successively the fact that ¢ and ¢, commute, the braid relation between t;
and t;, and the braid relation between ¢; and tp, we get tzthiatsthts = talathtsthts =
tatatathtsts = tatatathtsty = totsthtatats = totathtstats = tathtsthlats = thiatsthtsrts.

G(e, e,2) (e > 3) is the dihedral group of order 2e,
Gas is the Coxeter group of type Fy,
G35 is the Coxeter group of type Eg,
Gg is the Coxeter group of type Er,
G37 is the Coxeter group of type Eg,
Go3 is the Coxeter group of type Hs,
G3o is the Coxeter group of type Hy.
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Admissible subdiagrams and parabolic subgroups.

Let D be one of the diagrams. Let us define an equivalence relation between nodes
by s ~ s and, for s # t,

s~t <= sandt are not in a homogeneous relation with support {s,t}.

Then we see that the equivalence classes have 1 or 3 elements, and that there is at most
one class with 3 elements.

If there is no class with 3 elements, the rank r of the group is the number of nodes
of the diagram, while it is this number minus 1 in case there is a class with 3 elements.

¢
Thus s@@ has rank 2, as well as
5 w s t

Remark. One must point out that, in the first of the preceding two diagrams, s, ¢t and
u must be considered as linked by a line (so ¢t and « do not commute).

An admissible subdiagram is a full subdiagram of the same type, namely a dia-
gram with 1 or 3 elements per class.

t
Thus, the diagram s@@ has five admissible subdiagrams, namely the empty
5

U

diagram, the three diagrams consisting of one node, and the whole diagram.

1.7. Fact. Let D be the diagram of W as given in tables 1 to 4 in Appendiz 2 below.

(1) If D' is an admissible subdiagram of D, it gives a presentation of the correspond-
ing subgroup W(D') of W. This subgroup is a parabolic subgroup.

(2) Assume W is neither Gor, Gag, G3z nor Gag. If P, C P, C --- P, is a chain of
parabolic subgroups of W, there exist g € W and a chain D1 C Dy C ---D, of
admissible subdiagrams of D such that

(P, Py,..., Py) = S(W(Dy),W(Dy),...,W(Dy)).

Remark.

For groups Ga27 and Gag, all isomorphism classes of parabolic subgroups are rep-
resented by admissible subdiagrams of our diagrams, but not all conjugacy classes of
parabolics subgroups are represented by admissible subdiagrams, as noticed by Orlik.

For groups G's3 and G4, not all isomorphism classes of parabolic subgroups are repre-
sented by admissible subdiagrams of our diagrams. In these cases, it seems that a second
diagram should be introduced, as suggested by [Hu|. Then all parabolic subgroups can
be found somewhere inside one of the two diagrams given.

More precisely, for G3, the second diagram is only needed for parabolic subgroups of
type D4, while for Ga4 it is needed for parabolic subgroups of type D4, D5 and the second
copy of As.
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2. BRAID GROUPS AND THEIR DIAGRAMS

For X a topological space, we denote by P(X) its fundamental groupoid, where the
composition of (classes of) paths is defined so that, if y; is a path going from z¢ to z;
and s is a path going from z; to x2, then the composite map going from zy to z3 is
denoted by s - 71.

Given a point o € X, we denote by m1(X, zg) (or w1 (X) if the choice of zg is clear)
the fundamental group with base point zo. So we have m1(X,xo) = Endpx)(xo). If
f: X — Y is a continuous map, we denote by P(f) the corresponding functor from
P(X) to P(Y). We also denote by m1(f,zo) (or m1(f)) the group homomorphism from
m1(X, zo) to m1 (Y, f(zo)) induced by P(f).

We choose, once for all, a square root of (—1) in C, which is denoted by 7. Moreover,
for every z € C*, we identify 71 (C*, z) with Z by sending onto 1 the loop A;: [0,1] — C*
defined by A, (t) := z exp(2int).

A. Generalities about hyperplane complements.

What follows is probably well known to specialists of hyperplane complements and
topologists. We include it for the convenience of the reader, and because of the lack of
convenient references.

Let A be a finite set of affine hyperplanes (i.e., affine subspaces of codimension one)
in a finite dimensional complex vector space V. We set M :=V — |y 4 H.
Let zo € M. We shall give now some properties of the fundamental group 71 (M, zo).

Generators of the monodromy around the hyperplanes.

In Appendix 1, we explain what we mean by the generator p,) of the monodromy
around H, associated to a path v “from zg to an affine hyperplane” H € A.

For H € A, let ay be an affine map V — C such that H = {z € V | au(z) =0} . Its
restriction to M — C* induces a functor P(ag): P(M) — P(C*), and in particular a
group homomorphism 71 (ap, Zo): m1(M,z0) — Z

2.1. Lemma. For H H' € A and v a path from zo to H (see Appendiz 1), we have

m1(am )(Py)) = 0u,u -

Proof of 2.1.
Let us set Mg := H — Jarea H'. Let 4 := (1) and let B be an open ball
H'#£H
with center z, contained in M U Mpg. Let u € [0,1] such that y(t) € B for t > u.
We set 1 := v(u). Then, the restriction of oy to B N M induces an isomorphism

mi(ag): m(BNM,z1) = Z. Let X be a loop in BN M, with origin z;, whose image
under m (o) is 1. Let 7, be the “restriction” of v to [0,u], defined by ~,(t) := v(ut)
for all t € [0,1]. Define py x := ¥, "1+ A -7, . Then the loop p, » induces the generator
of the monodromy p, (see Appendix 1), and

mi(an:)(py,a) = mi(an)(A) = éum -
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2.2. Proposition.

(1) The fundamental group m1(M,zo) is generated by all the generators of the mon-
odromy around the affine hyperplanes H € A.

(2) Let w1 (M, o) denote the largest abelian quotient of 71 (M, zo). For H € A, we
denote by p3? the image of py . in w1 (M,z0)??. Then

m(M,20)* = [] (03),
HeA

where each (p3P) is infinite cyclic. Dually, we have

Hom(my (M, 0),Z) = [] (m1(em)) .
HecA

Proof of 2.2.
(1) is a special case of Proposition Al (see Appendix 1 below).
(2) is immediate and left to the reader. [

Remark. Let us recall that we have natural isomorphisms
m (M, xo)a’b;Hl (M, Z) and HOIIl(7T1 (M, .’L‘o), Z) ;Hl (M, Z) .

Moreover, the duality between 1 (M, z0)?® and H'(M, Z) may be seen as follows. For
« a loop in M with origin zy and for w a holomorphic differential 1-form on M, we set
<Y, w> = f7 w. It is then clear that, under the isomorphism

Hom(m; (M, x0), Z)—H(M, Z)

1 d
the element m;(ay) is sent onto the class of the 1-form wy = T—ali (see 1.2 for more
iT oy

details).
About the center of the fundamental group.
In this part, we assume the hyperplanes in A to be linear.

2.3. Notation. We denote by m the loop [0,1] — M defined by

7t — g exp(2int).

2.4. Lemma.

(1) = belongs to the center Z(m (M, x0)) of the fundamental group w1 (M, xo).
(2) For all H € A, we have m1(ag)(w) =1.

Proof of 2.4.
(1) results from a more general lemma, for which we need to introduce more notation.
Let z = |z|e? be a complex number with argument @, chosen so that —7 < 6 < 7.
For t € [0,1], we set 2% := |z|’e*®®. For z € M, we denote by 7, , the path in M, with
initial point  and terminal point zz, defined by

Yz, - [071] - M, t 2tz
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2.5. Lemma. Let v be a path in M, with initial point x and terminal point y. Then
the paths v,y -y and 27+, 5 are homotopy equivalent (where 27y denotes the path defined
by t — 2v(t)).
The proof of Lemma 2.5 is easy and left to the reader. Note that Lemma 2.5 holds
whenever M is a subset of V' which is stable under multiplication by C*.

1 1 d(ag(w(t)))

- . _ 1 _ 1
(2) is immediate since 1 (g )(w) = 2mi 0 ag@) fodt. O

2.6. Proposition. Let M be the image of M in (V —{0})/C*, and let Ty denote the
image of o in M.

(1) The map w1 (M, zo) — 71(M,Tp) is surjective, and its kernel is ().

(2) The center of w1 (M, xo) is {m) if and only if the center of m1 (M, o) is trivial.

Proof of 2.6.

(1) Since the 7 (t) are scalar multiples of xg, it is clear that 7 belongs to the kernel
of the map 71 (M, 79) — 71 (M, Tp).

The homotopy exact sequence --- — 71 (C*) — w1 (M, o) — 71 (M, Tp) — 1 shows
that the morphism (M, o) — m1(M,Tp) is surjective, and that its kernel is cyeclic.
Since 7 belongs to this kernel, it suffices to prove that o is a primitive element of
71 (M, zg), i.e., that w has no proper root in m1(M,zp). But this results from Lemma
2.4, (2).

(2) Let us notice that, by Lemma 2.4, (2), the group (@) maps injectively into the
largest abelian quotient of 71 (M, zg). So it suffices to prove the following elementary
lemma.

2.7. Lemma. Let G be a group, and let H a normal subgroup of G which maps in-
jectively into the largest abelian quotient G/|G,G| of G. Then the natural morphism
G — G/H sends the center of G onto the center of G/H.

Proof of 2.7. Indeed, let z be an element of G which becomes central in G/H. Then
[2, G] C H. But by hypothesis we have H N [G,G] = 1. Thus we have [2,G] =1. O

O

Generating with one loop per hyperplane.

With a little more work, Proposition 2.2 can be made more precise ; one (well-
chosen) generator of the monodromy around each affine hyperplane suffices to generate
the fundamental group :

2.8. Proposition. There is a set R = {pu}wea of generators of m1(M,zo), where py
is a generator of the monodromy around H.

Proof of 2.8.

We may assume that A is not empty. We prove the proposition by induction on the
dimension of V.

e The linear case.

Let us first consider the case where the intersection of the affine hyperplanes of A is
non trivial. Up to translation, we can assume that O is contained in this intersection,
i.e., the hyperplanes of A are linear.
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Let H; be a hyperplane of A and H; be the affine hyperplane of V parallel to H;
and containing zg.
We consider the conic projection on Hy with center O :

f:(V—-Hy)— Hy, x+— CxnN H;.

Both f and its restriction M — M; = H; N M are locally trivial fibrations (see for
example [Spal, chap. 2) with fiber F' ~ C*z.
The associated exact sequence of fundamental groups is

7r1(F,:c0) — Wl(M,mo)ﬂ)ﬂ'l(Ml,xo) — 1.

Let A" = A — {H;}. By induction, we can assume the proposition holds for the
affine hyperplane arrangement A; = {H N Hy}gcar in H; : there is a set {pr}rca, of
generators of w1 (M3, f(zo)) where py, is a generator of the monodromy around L.

Let 7 be the inclusion M; — M. Then, pg = m1(i)(prnn,) is a generator of the
monodromy around H € A’. Note that fi is the identity on My, hence m1(f)m1 () = 1.
In particular, the exact sequence shows that m1 (M, zg) is generated by the set {pg } e,
together with 7, the image of the positive generator of 71 (F, zg), which is central in
m (M) :EO)'

Let pu, be a generator of the monodromy around Hj;. Then, there exists « in the
subgroup generated by {pg}reca such that 71(f)(pm,c) = 1, that is, py,a = =" for
some integer 7. Since m1(ag, )(pn,) =1, m(am,)(pg) =0for H € A" and 71 (an, ) () =
1 by Lemmas 2.1 and 2.4, we obtain 7 = 1. Hence, 7 is in the subgroup generated by
{pr}Heca and this proves that {pm} e generates m1 (M, zo).

e The affine case.

Let A’ be a finite set of affine hyperplanes of V disjoint from A and let M’ =
V —Ugecaua H. Assume zo € M’. Since one gets M’ by removing a sub—variety of
(real) codimension 2 from M, the injection M’ — M induces a surjection w1 (M, zg) —
m1{M, xo) (see for example [Go], chap. x, th. 2.3.). Under this morphism, a generator of
the monodromy around a hyperplane H’ € A’ becomes trivial. Hence, if the proposition
holds for M’, then it holds for M. Note also that we can change the base point zg in
order to prove the result.

We choose an affine hyperplane H; of V outside A, a new origin 0 € V — H; for V
and a new base point zo € H; N M such that

e there is an open ball Q with center 0, containing ¢ and which doesn’t intersect
any of the non-linear hyperplanes of M,

e the line Cxgy never intersects two distinct affine hyperplanes of A at the same
point, and

e no translate of the line Czg lies in an affine hyperplane of A.

Then, adding to A

e the linear hyperplane H; parallel to H;,

e the linear hyperplanes parallel to the affine hyperplanes of A,

e given two distinct non-linear hyperplanes H, H' of A, the linear hyperplane con-
taining H N H',
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we may and will assume that A satisfies the following assumption :
Let A’ be the set of linear hyperplanes of A distinct from H, A" the set of non-linear

hyperplanes of A, A1 = {H1 N H}pear and My = H1 — U4, L. Then, the map

f:M—>M1
z+— CxNH,;

is a locally trivial fibration.

CSEO

Note that the restriction of f to 2N M — M, is also a locally trivial fibration.

The associated exact sequences of fundamental groups give rise to the commutative
diagram :

T (2N (Czo — {0}), z0) — m (AN M, zp) — 11 (M, f(z0)) — 1

! l |

7r1(F, :1:0) 7T1(M,.’L‘o) B 7T1(M1; f(xo)) —1

where F' = f~1(f(20)) = Czo — ({0} U{Czo N H}pear) -
The study of the linear case above shows that there is a set {pp, } yearun, of generators
of the monodromy around the linear hyperplanes in QNM which generates m; (2NM, zo).
There are generators of the monodromy pg around the points Czo N H (H € A”) in
F, such that, together with the image of m1 (2N (Czo—{0}), zo), they generate w1 (F, zo).
Now, the set {pm}Heca generates m3 (M, zo). O
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B. Generalities about the braid groups.

More notation.

We go back to notation introduced in §1. In particular, A is now the set of reflecting
hyperplanes of a finite subgroup W of GL(V) generated by pseudo-reflections. We
denote by p: M — M /W the canonical surjection.

Let 2o € M. We introduce the following notation for the fundamental groups:

P:=m(M,z0) and B :=m(M/W,p(xo)),

and we call B and P respectively the braid group (at o) and the pure braid group (at
xo) associated to W. We shall often write m1(M /W, zq) for 1 (M/W, p(xo)).

The covering M — M /W is Galois by Steinberg’s theorem (see Theorem 1.1 above),
hence the projection p induces a surjective map B -» W |, 0 — G, as follows :

Let 5: [0,1] — M be a path in M, such that §(0) = zo, which lifts . Then 7 is
defined by the equality 7 (zo) = (1) .

The map o — 7 is an anti-morphism. Indeed, if o’ is another loop in M /W with origin

Ty, and if o' is lifted onto a path &' with origin zy in M, we may lift the loop (¢’c) onto

the path @(¢") - &, whose image in W is clearly 35’ (here we set &(6')(t) := (6’ (¢)))-

Denoting by W°P the group opposite to W, we have the following short exact se-
quence :

(2.9) l1-P—-B—-WP-1,

where the map B — W°P is defined by o — 7.

The spaces M and M /W are conjectured to be K (m, 1)-spaces.

The following result is due to Fox and Neuwirth [FoNe] for the type A,, to Brieskorn
[Br2] for Coxeter groups of type different from Hs, Hy, Eg, E7, Es, to Deligne [Del] for
general Coxeter groups. The case of the infinite series of complex reflection groups
G(de, e,r) has been solved by Nakamura [Na|. For the non-real Shephard groups (non-
real groups with Coxeter braid diagrams), this has been proven by Orlik and Solomon
[OrSo3]. Note that the rank 2 case is trivial.

2.10. Theorem. Assume W has no irreducible component of type Ga4, Gor, Gag, G31,
Ga3z or Gag. Then, M and M /W are K(x,1)-spaces.

Generators of the monodromy around the hyperplanes.

For H € A, we set (g := exp(2im/en), and we denote by sy the pseudo-reflection in
W with reflecting hyperplane H and determinant (r. We set

LH = im(sH - Idv) .
For z € V, we set £ = pry(z) + pry(z) with prg(z) € H and pr;(z) € Lg.
Thus, we have sg(z) = (upry(z) + pry(z) .

If t € R, we set C}; := exp(2int/ey), and we denote by s’ the element of GL(V) (a
pseudo-reflection if ¢ # 0) defined by :

(2.11) sk () = (gpr(z) +pry(z).
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For z € V, we denote by op , the path in V from z to sy (z), defined by :
onz: [0,1] =V, tsh(z).

For any path v in M, with initial point z¢ and terminal point zy, the path defined by
sa(y™Y): t— sg(y~1(t)) is a path in M going from sg(zg) to sy (o).

Whenever v is a path in M, with initial point z¢ and terminal point x g, we define
the path op , from zy to sy (zo) as follows :

(2.12) Oty ' =SH(Y ) Olgy -7

It is not difficult to see that, provided zg is chosen “close to H”, the path oy, is in M,
and its homotopy class does not depend on the choice of zp, and the element it induces
in the braid group B is actually a generator of the monodromy around the image of H
in M/W (see Appendix 1 below).

The following properties are immediate.

2.13. Lemma.
(1) The image of s in W is sg.
(2) Whenever ' is a path in M, with initial point zo and terminal point zg, if T
denotes the loop in M defined by 7 :=~' —1% one has

UH77’ =T O-Ha'y : T_l

and in particular sy, and sy are conjugate in P.
(3) The path H;-ng_l T8, (y) » @ loop in M, induces the element S, in the braid
group B, and belongs to the pure braid group P. It is homotopy equivalent, as a
loop in M, to the generator p,| of the monodromy around H in P (see Appendix

1),

2.14. Definition.

e A distinguished pseudo—reflection in W is a pseudo-reflection s with the following
property : if H denotes its reflecting hyperplane, and if ey is the order of the minimal
parabolic subgroup Wi, then s is the element of Wy with determinant e2™/ex

o Let s be a distinguished pseudo-reflection in W, with reflecting hyperplane H. An
s—generator of the monodromy is a generator of the monodromy s around the image of

H in M/W such thats = s.

The discriminants.

Let C be an orbit of W on A. Recall that we denote by ec¢ the (common) order of the
pointwise stabilizer Wy for H € C. We call discriminant at C and we denote by d¢ the
element of the symmetric algebra of V* defined (up to a non zero scalar multiplication)

by
(SC = (H aH)ec .
Hec

Since (see for example [Col, 1.8) é¢ is W-invariant, it induces a continuous function
d¢: M/W — C*, hence induces a functor P(d¢): P(M/W) — P(C*), and in particu-
lar it induces a group homomorphism 7y (é¢): B — Z.
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2.15. Proposition. For any H € A, we have

1 ifHeCc,
m1(0c)(sm,y) = {o ifH ¢C.

Proof of 2.15.
Let us set C# :=C — {H} (so C* =Cif H ¢ C), and dc# := ([Igrccn omr)® .
Recall that Wy denotes the (parabolic) subgroup of W generated by sg. Then the
maps

Oc#, aff: M — C*
are both Wy-invariant, and so define maps

dc# , O3F : M/Wy — C*.

The following diagram summarizes where the maps are defined :

MW
MWy be
/ an)*H, bop
M ik Cx

The computation of 71(d¢(sw,y)) may be performed at the level M/Wg, and so it
suffices to check

(1) m1(dc#)(sm,4) =0,

(2) m(ay)(saq) =1.
Let us check (1) and (2).

(1) It suffices to check that m1(d¢c#)(s3,) = 0, and this follows from Lemmas 2.1 and
2.13, (3).

(2) We have

mi (o )(SH) =

L [ denlem) )

247 ag(sty(za))es

Since

an(sy(za)* = ex(prp(en) + Chpry (za))
= (" an(pry(zm))™”

= exp(2imt)oy (pr; (zH))"

we see that 71 (a3 )(SH,y) = fol dt=1. O

Generators and abelianization of B.
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2.16. Theorem.
(1) The group B is generated by the generators {sm ~} (for all hyperplanes H € A
and all paths v from xo to H in M) of the monodromy (in B) around the elements of

A.
(2) We denote by B the largest abelian quotient of B. For C € A/W, we denote by

sgb the image of sg . in B2b for H e C. Then

Bo— I ),

CEA/W

where each (s2P) is infinite cyclic. Dually, we have

Hom(B,Z) = [[ (m(éc)).
CeA/W

Remark. We have natural isomorphisms
B*® H,(M/W,Z) and Hom(B,Z)>H'(M/W,Z),
and, under the second isomorphism, we have

1 daH 1
mle) e 2 S oy = 2in
HecC H

dLog(éc) .

Proof of 2.16. The second assertion is immediate by the first one and by Proposition
2.15. Let us sketch a proof of (1).

Since W is generated by the set {sx } (¢ .4) and since we have the exact sequence (2.9),
it is enough to prove that the pure braid group P is generated by all the conjugates in
P of the elements sftf,y. This is a consequence of Proposition 2.2, (1). O

Let us denote by Gen(B) the set of all generators of the monodromy in B (see
Definition 2.14 above). For s € Gen(B), we denote by es the order of .
In other words, if s is a generator of the monodromy around the reflecting hyperplane
H € A, we set now (using the notation of Definition 2.14) : e5 := eg.
The following property is a consequence of general results recalled in Appendix 1

below.

2.17. Proposition.

(1) The pure braid group P is generated by {5° }sccen(B)-
(2) We have

W ~ B/(Ses)sEGen(B) .

Proof of 2.17. The two assertions are obviously equivalent. The first one results from
Propositions A2 and A3, (2) (see Appendix 1 below). O
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Length.
Let

0:= H 5(:

CeA/W

be the discriminant, and let w1 (8): B — Z be the corresponding group morphism.
Let b € B. By Theorem 2.16 above, there exists an integer k¥ and for 1 < j < %,
H; € A, a path v; from zp to H; and an integer n; such that

— g1 12 . .etk
b - sHl:'VlsH2l72 SHk)’Yk )

The following proposition results from Proposition 2.15 above.

2.18. Proposition. We have
=k
m(8)(b) =D n;.
j=1

We call the length of b and we denote by £(b) the integer 71 () (D).

If {s} is a set of generators of the monodromy around hyperplanes which generates B,
let us denote by B* the sub—monoid of B generated by {s}. Then for b € B™, its length
£(b) coincide with its length on the distinguished set of generators {s} of the monoid
BT,

About the center of B.

2.19. Notation. We denote by B the path [0,1] — M defined by
B: t — zgexp(2int/|Z(W)]).

The following result is a consequence of Corollary 2.25. Notice that it generalizes
a result of Deligne [Del], (4.21) (see also [BrSa]), from which it follows that if W is a
Coxeter group, then £(m) = 2N. It was noticed “experimentally” in [BrMil, (4.8).

2.20. Corollary. We have £(8) = (N + N*)/|Z(W)| and £(7) = N + N*.

From now on, we assume that W acts irreducibly on V. Note that, since W is
irreducible on V/, it results from Schur’s lemma that

Z(W) = {exp(2ink/|Z(W)|) | (k€ Z)},

and so in particular 8 defines an element of B, which we will still denote by 3.

2.21. Lemma.
(1) The image B of B in W is the scalar multiplication by exp(2in/|Z(W)|). It is a
generator of the center Z(W) of W.
(2) We have B € Z(B), w € Z(P), and ® = BlZW)I,

Proof of 2.21. We only have to check that 8 € Z(B). This results from Lemma 2.5. 0O
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2.22. Proposition. Let M be the image of M in (V — {0})/C*. Then, we have a
commutative diagram, where all short sequences are exact :

1 1 1
1 () (8) ZW) ——1
1 —— m (M, 2o) — m1 (M/W, zo) w 1

Proof of 2.22.
It is clear that 3 belongs to the kernel of the map 3 (M /W, zo) — 71 (M/W,Tp).
By Lemma 2.21, we know that the map (3) — Z(W) is onto. The three horizontal
sequences are exact, as well as the last vertical one. So it suffices to check that the
first vertical sequence is exact, i.e., to show that () is equal to the kernel of the map
n1(M, o) — 71 (M, Tp). This is Proposition 2.6, (1). O

The following statement is known for Coxeter groups (see [Del] or [BrSa)]). The result
holds as well for Gs5, Gog, G32, since the corresponding braid groups are the same as
braid groups of Coxeter groups. We shall prove it for all the infinite series in §3 below
(see Propositions 3.4, 3.10, 3.33), and we give below a proof for the particular case of
groups in dimension 2.

We conjecture it is still true in the case of G31, as well as for Gay4, Ga7, Gag, Ga3,
G3a.

2.23. Theorem. Assume W different from Gaa, Ga7, Gag, G31, G33, G34.

The center Z(B) of B is infinite cyclic and generated by 3, the center Z(P) of P is
infinite cyclic and generated by 7, and the short exact sequence (2.9) induces a short
exact sequence

1—Z(P)—Z(B)—Z(W)—1.

Note that, by Propositions 2.22 and 2.6, (2), Theorem 2.23 is equivalent to the fol-
lowing statement :

2.24. The center of the “projective braid group” mi(M,To) is trivial.

Proof of 2.23 in dimension 2. Assume thai V has dimension 2. The space M is homeo-
morphic to P!(C) minus N points, so 71 (M, Zo) is isomorphic to a free group Fy_1 on
N — 1 generators. Since W is irreducible, we have N > 2 and so 2.23 is proved. [J
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2.25. Corollary. Let 3°° be the image in B*® of the central element 3 of B. Then we

have
,Bab — H (Sgb)ech/lZ(W)l i
CeA/W

Proof of 2.25. It suffices to prove that, for all C € A/W, we have m1(6)(82%°) =
ecN¢/|Z(W)|. This is immediate :

. dag (zo exp(2imt/|Z(W))]))
m1(8c)(B*) = 2”1—_/ a:xooexp(2z7rt/|Z(W)|))

- Z |Z2$,)|/0 dt = ecNe /| Z(W)).

O

C. The braid diagrams.
Let us first introduce some notation.

Let (V,W) be a finite irreducible complex reflection group. As previously, we set
M :=V —Upges H, B := m(M/W,20), and we denote by o — G the antimorphism
B — W defined by the Galois covering M —» M/W.

Let D be one of the diagrams given in tables 1, 2, 3 (Appendix 2 below) symbolizing
a set of relations as described in Appendix 2.

e We denote by Dy, and we call braid diagram associated to D the set of nodes of
D subject to all relations of D but the orders of the nodes, and we represent the braid
diagram Dy, by the same picture as D where numbers insides the nodes are omitted.

t t
Thus, if D is the diagram s@ , then Dy, is the diagram SO@
(u u

and represents the relations

stustu - - - = tustus--- = ustust- -

¥ Ve Vo

e factors e factors e factors

Note that this braid diagram for e = 3 is the braid diagram associated to G(2d,2,2)
(d > 2), as well as G7, G11, G19. Also, for e = 4, this is the braid diagram associated
to G132 and for e = 5, the braid diagram associated to G22. Similarly, the braid diagram

¢
s({o) is associated to the digrams of both G5 and G(44d, 4, 2).
5

u

e We denote by D°P and we call opposite diagram associated to D the set of nodes
of D subject to all opposite relations (words in reverse order) of D. Thus, if D is the

(bt
diagram s@ , then D°P represents the relations
(Ou

s*=1"=u®=1and utsuts--.= sutsut--. = tsutsu---

g~

N W
e factors e factors e factors
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(b)t
Note that D°P is the diagram u . Finally, we denote by DY the braid dia-
S

t
gram associated with D°P. Thus, in the above case, Dpr is the diagram uOCg

s

Note that if Dy, is a Coxeter type diagram, then it is equal to Dpr.

The following statement is well known for Coxeter groups (see for example [Brl] or
[Del]). It has been noticed by Orlik and Solomon (see [OrSo3], 3.7) for the case of non
real Shephard groups (i.e., non real complex reflection groups whose braid diagram —
see above — is a Coxeter diagram). We shall prove it below for all the infinite series. We
also checked it case by case for all the exceptional groups but Ga4, Go7, Gag, G31, Gas,
G'34 — for the case of groups of rank 2, we made use of [Ba].

We conjecture it still holds for G31. The question whether it is possible to find right
diagrams for Ga4, Ga7, Gag, G33, G34 is still open (see remark below).

2.26. Theorem. Let W be a finite irreducible complex reflection group, different from
Ga4, Ga7, Gog, G3s, G4 — and also different from Gz for which the following assertions
are still conjectural.

Let N(D) be the set of nodes of the diagram D for W given in tables 1-3 below,
identified with a set of pseudo-reflections in W. For each s € N (D), there exists an
s—generator of the monodromy s in B (cf. Definition 2.14) such that the set {s}scn (D),
together with the braid relations of DyY, is a presentation of B.

2.27. Questions. Let W be a finite irreducible complex reflection group, different from
G4, Ga7, Gag, G33, Gz4. We denote by Bt the monoid defined by generators and
relations as follows : a set of generators is {s}scar(p), subject to the braid relations
represented by Dpr .

(1) Is the natural morphism Bt — B injective ?
(2) Do we have
B={n"b| (n€Z)(be B")}?

Remark. This is true for Coxeter groups (see [Del]). But the answers to the above
questions are negative for diagrams given above for Ga4, Ga7, Gag, Gs3, G34.

3. PROOFS OF THE MAIN THEOREMS FOR THE BRAID GROUPS B(de,e,r)

In this paragraph, we shall prove Theorems 2.26 and 2.23 for the infinite series of
irreducible complex reflection groups G(de, e, r).

A. Notation and prerequisites.

Notation.

Let d, e and r be positive integers. We denote by (21, 22, ..., 2-) a general element of
C". Let G(de,e,r) be the subgroup of GL,(C) whose elements are :

[a,0]: zj — Qj Ze(5)

for 0 € G, and a = (ay,... ,a,) where a; € C, a;-iezl and (a; ---a,)? = 1.



Complex Reflection Groups, Braid Groups, Hecke algebras 21

The group G(de, e, r) is a subgroup of index e of G(de, 1,7) and G(de, 1,7) ~ (Z/deZ)
S,
For de # 1 and (d,e,r) # (1,2, 2), the group G(de, e, r) acts irreducibly on C", while
G(1,1,r) is isomorphic to &, in its permutation action on C".

Note that the center Z(G(de, e,r)) of G(de, e, r) is cyclic, of order d(e Ar). We denote
by A(de, e, ) the abelian normal subgroup of G(de, e, r) given by

A(de, e,r) == {[a, 1]} .

The group A(de, e, r) is of order d(de)" 1.
For the following notation, we assume that de # 1 and (d,e,r) # (1,2,2) (i.e., that
G(de, e, r) acts irreducibly on C").
For m € N — {0}, let {, := exp(2imw/m). We set
Sm = [({m, 1,-.. ,1),1]

(3.1) #(m) = [(Gih G -+ 5 1), (1,2)]
t;:=[L0G—-1,7)] for2<j<r.

Let S(de, e, r) denote the set of pseudo-reflections of G(de, e, r) given by

{sa,t5(de),ta,... ,t,} whene#1,d #1
S(de,e,r) :=={ {sd,t2,... ,tr} whene=1,
{t5(e),ta,... ,tr} whend =1.

The following result is proved, for example, in [Ari].

3.2. Proposition. The set S (de, e,r), together with the relations described in Appendiz
2 and its tables 1 and 2, give a presentation by generators and relations of G(de,e,r).

Note that S(de,e,r) consists of distinguished pseudo-reflections (see Definition 2.14
above) for G(de,e,r).

Reflecting hyperplanes.
The following lemma is well known and easy to check.

3.3. Lemma. Let m be a positive integer.

(1) For e | m and e < m, the complement in C" of the union of the reflecting
hyperplanes of G(m,e,r) is

MH(m,7) = {(21, 28, ., 2) | (Y, k, 1 < j # k <7)(Va € Z)(2 # 0)(25 # (o)}

(2) For all e € N, the complement in C" of the union of the reflecting hyperplanes
of Gle,e,r) is

M(m,r) = {(z1,22,...,2r) | (V5,k,1 < j <k <7)(Va € Z)(z; # (S 2)}-
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Choosing an appropriate base point, we denote by B(de,e,r) and P(de,e,r) respec-
tively the corresponding braid group and pure braid group associated with G(de, e, r).

Remark. By Lemma 3.3 above, P(de, e, r) depends only on (de, ) :
P(de,e,r) = P(de,1,7) (for all d #1).

On the other hand, we shall prove (see Proposition 3.8 below) that B(de, e,r) depends
only on (e,r) for d # 1 (so that B(de,e,r) = B(2e,¢e,T1)).

Preliminary : the case of the symmetric group.

Here we quote some well known results about the usual braid groups, mainly due to
Artin [Ar] - see also [Bi], th. 1.8.

Let us introduce some specific notation.

We set M(r) := M(1,r) and M#(r) := M#(1,r) (see Proposition 3.3 above).

For all j < r, we denote by H J(H'l) the hyperplane of C™*! defined by the equation
(r+1)
j
H J(.H'l). The set {s§-r+1)}(13j5,.) generates a subgroup of GL,1(C) which we identify
with the symmetric group &, 1, and the set M(r + 1) is the complement of the union
of the reflecting hyperplanes of G, 1.

z; = 241, and we denote by s (or simply s;) the reflection in C™*! with respect to

We choose a base point z € R™*! with coordinates z1,zs,... ,Zr+1 such that ; <
Zy < +++ < Zr41. Note that z is in one of the alcoves of M(r + 1) NR"+! delimited by
(the real part of) the hyperplanes H. J(-TH).

We set
P(r+1)=mM(r+1),z) and B(r+1):=mM(r+1)/Grt1,z).

For each j < r, we denote by £§r+1) (or simply £;) the generator of the monodromy

around H J(TH) in M(r +1)/&,41 associated to a path contained in R™1/&,. 4.
The following well known proposition establishes Theorem 2.26 for the case where
G = G,41. The second assertion has been proved by Chow [Cho].

3.4. Proposition.
(1) The group B(r + 1) has a presentation described by the following diagram

&1 &2 &

(2) Let w(r + 1) be the element of B(r + 1) defined by
w(r+1):=(61ba--- &) .
Forr > 2, we have

Z(B(r+1)=Z(P(r+1)=(w(r+1)).

We will often consider B(r) = m1(M(r)/G, (z2,... ,Zr+1)) as a subgroup of B(r+1)

through the injection fj(-r) — & j(-:jil). This induces an injection of the pure braid group
P(r) = m(M(r), (z2,... ,Zrs1)) into P(r +1), as well as an injection of &, in &, as

the subgroup fixing the first coordinate.
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3.5. Proposition. The map
pr: M(r+1) > M(7), (z1,22,...,2r41) — (22,. .., Zr41)
18 a locally trivial fibration, and it induces a short exact sequence
1—-F(r)—>P(r+1)—P(r)—1,
where F(r) is a free subgroup, on the set of generators

{6,686, ... & - &&EGG 67}
We have P(r + 1) = F(r) x P(r).
B. Computation of B(de,e,r) and of its center for d # 1.

B1. Proof of Theorem 2.26.
Let us use the notation introduced above about B(r + 1) and P(r + 1), as well as
notation introduced in (3.1).

3.6. Theorem. Assume d # 1.

(1) For s equal to respectively sq,t2,ts,... ,tr, there exist s-generators of the mon-
odromy denoted respectively by 0,73, 73,... ,7 in B(d,1,7) and an injective group mor-
phism

o &

i B(d,1,r) = B(r+1) , : .
¢(d,1, ) ( 'r) - (T + ) ¢(d,1a7') {Tj > & for§ > 2

which induces an isomorphism of B(d,1,r) onto the subgroup of B(r + 1) generated by
{6%7527635 e 7§’F} .

(2) This isomorphism, as well as the isomorphism between B(r) and the subgroup of
B(r + 1) generated by {£€2,&3, ... ,&}, induce the following commutative diagram :

P(d,1,r)——— s P(r+1)

B(d,1,r)C——— > B(r+1)

Proof of Theorem 3.6.
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The map
(21,22, .+ ,2r) = (23, 28,... ,29)
identifies the quotient of M#(d,r) by the action of the diagonal group A(d, 1,r) with
the space M7 (r).
The map

.f : M(Ir+1) —)M#('f‘) y (Z]_,Zz,... 7z7'+1) = (21 T R2,R1 T 23,.-..,21 _ZT-I-I)

is a trivial fibration with fiber C, which is &,-equivariant with respect to the action of
S, on M(r + 1) defined by the embedding of &, into &, as the pointwise stabilizer
of the first coordinate.

Since

G(d,1,7) = A(d,1,7) x &,

we have the following commutative diagram :

M#*(d,T)

—fibration

M#(d,r)/A(d, 1,7) —~—> M#(r) <

|

M#*(d,r)/G(d,1,T7) —>= M#(1) /G, <—— M(r +1)/6,

M(r+1)

M(r+1)/6r 1

The horizontal arrows induce isomorphisms between fundamental groups.
Let y € M#(d,r) with image f(z) in M#(r). Let 1 be the isomorphism

m(M#(d,r)/G(d, 1,7),y) — m(M(r +1)/&r, z)

and ¢(d,r) be the injection

T (M#(d,r)/G(d,1,7),y) = T (M(r +1)/Gr,z) = T (M +1)/Cry1, 7).

Note that £ is a generator of the monodromy around H YH) in M(r+1)/6, (Propo-
sition A3, Appendix 1). Since P(r + 1) is contained in the subgroup of B(r + 1) gener-
ated by £2,&,,... ,& and since the image of this subgroup in &, is &,, it follows that
m1(M(r+1)/6,, z) is the subgroup of 71 (M(r+1)/6,+1, z) generated by £2,&,, ... , &,

Let o = ¢~1(£%) : this is a generator of the monodromy around the hyperplane
z1 = 0. Let ; = ¢~1(¢;) for j > 2 : this is a generator of the monodromy around
the hyperplane HJ(.T). Then, m (M#(d,r)/G(d,1,7),y) is generated by o, 73,... ,7, and
Theorem 3.6 follows. [

Let us now explain why Theorem 3.6 above implies Theorem 2.26 (for the case which
is presently considered, namely the case of B(de,e,r) with d > 1).
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1. The case e = 1.

By Theorem 3.6, the group B(d, 1,r) is isomorphic to the subgroup of B(r+1) gener-
ated by {€2,62,&5,...,&-}, and from now on we identify B(d, 1,r) with this subgroup.

In particular, it follows from Theorem 3.6 above that P(r+1) C B(d,1,r). Since the
image of B(d, 1,7) in G4, (recall that &,4+1 = B(r +1)/P(r 4 1)) is isomorphic to &,
the index of B(d, 1,7) in B(r+1) is (r+1). Hence the set {1,£1,&1&2,... ,61€2--- &} isa
set of right coset representatives of B(d, 1,7) in B(r+1). By construction, it is actually a
Schreier set of right coset representatives, and it results from the Reidemeister—Schreier
method (see [MKS], Theorem 2.8) that the braid relations defined by the diagram

6? 52 £3 fr

are indeed defining relations for B(d,1,r).

Remark. The group G(2,1,r) is actually a Coxeter group, since it is isomorphic to the
Weyl group of type B,. So we have reproved in this case a result which is known for all
Coxeter groups by [Del] or [Bri].

Note also that

3.7. the injection B(d,1,7) — B(r + 1) induces an injection

P(d,1,r) = P(r+1).

2. The general case e > 1.
Let us set &) := £7£,¢7 2. Note that (with notation introduced in Part A above) that

¢} is a th(de)-generator of the monodromy in the braid group B(de,e,r).
Note also that, since we have the following coverings

M#(de,r) — M¥(de,r)/G(de,e,T) — M#(de,r)/G(de,1,7),

it results from Proposition A3 (Appendix 1 below) that £3¢ is an ss—generator of the
monodromy in the braid group B(de,e,r).

By Lemma 3.3 above we may identify P(de,1,7) and P(de,e,r) for d # 1. Fur-
ther, G(de, e, r) acts as a subgroup of G(de,1,7) on M#(de,r), so we have the natural
embeddings

P(de,1,7) — B(de,e,r) — B(de,1,7),
and the index of the latter embedding equals e. Let « : B(de,1,7) — G(de, 1,7) denote

the canonical epimorphism. Set £ := £2. Now {1,k(£),...,s(€57 1)} is a set of right
coset representatives of G(de, e,r) in G(de, 1,7), so, since

[«(B(de,1,7)) : k(B(de,e,r))] = e = [B(de, 1,7) : B(de,e,r)] ,

the set {1,€,...,£°7 1} is a right (Schreier) transversal of B(de,e,r) in B(de, 1,7).
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An application of the Reidemeister—Schreier method then proves, starting from the
presentation for B(de,1,7) on the set £2,&,... ,&, (proved above) that the braid rela-

tions defined by the diagram
&2
g?e @)
e+ 3 §a 3%

3

are indeed defining relations for B(de,e,r). This proves Theorem 2.26 for B(de,e,r)
and d > 1 assuming the corresponding statement for B(de,1,7). O

Note that the above diagram is indeed the opposite diagram to the braid diagfam
describing the relations between the set S(de, e, r) of the corresponding family of distin-
guished generators of the finite group G(de, e, r), namely

ON
s---®.
AN@ st b

It will be useful to note that we have proved for G(de,e,r) a statement similar to
(and more general than) Theorem 3.6, (1), namely :

3.8. Proposition. For s equal to respectively sq,th(de),ta,ts,... ,t,, there exist s-
generators of the monodromy denoted respectively by 0,75, 72,7s,... ,7r in B(de,e,r)
and an injective group morphism
o€ — g%e
¢(de,e,r): B(dea e,r) — B(T + 1) ) ¢(de,€,7‘): Té = gé (where fé = 6?5261_2)
Tj — &5 for j > 2

which induces an isomorphism of B(de,e,r) onto the subgroup of B(r + 1) generated by
{5]2.67653627537 s 751*} -

On the pure braid group.

Let us note a result about the structure of P(d, 1, r) which is analogous to Proposition

3.5.
Let F(r) be the free subgroup of P(r + 1) introduced in Proposition 3.5. Let us set

p1:=¢ and
pj = (&) (6163 &) forj=2,... 7.

Then F(r) is the free group on {¢1,¥a2,... , ¢}

The map 71 (M(r + 1),z) ~ w1 (M#(r), f(z)) — A(d, 1,r) provides by restriction a
morphism F(r) — A(d,1,7). We denote by F(d,r) the kernel of this morphism. Thus
we have a short exact sequence

1— F(d,r) = F(r) - A(d,1,r) - 1.
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3.9. Lemma.
(1) We have F(d,r) = F(r)NP(d,1,r), and F(d,r) is a free group on ((r—1)d" +1)
generators.

(2) We have P(d,1,r) = F(d,r) x P(r).

Proof of 3.9.

The equality F(d,r) = F(r) N P(d,1,r) expresses the definition of F(d,r). Since
F(d, ) is a subgroup of index d" of the free group F(r), it is a free group on ((r—1)d"+1)
generators.

Since P(r +1) = F(r) x P(r), the second assertion follows from the fact that P(r) C
P(d,1,r)Cc P(r+1). O

B2. The center of B(de,e,r) for d # 1.

Let us denote by B(de, e,7) the central element of B(de, e, ) defined as in 2.19.

The following proposition proves Theorem 2.23 for the braid groups B(de, e, r) with
d > 1. We use the notation introduced in Proposition 3.8. In particular, B(de,e,r) is
defined by generators and relations represented by the diagram

3.10. Proposition. We have :
(1) ,B(de, e, 'r) — o'er/(e/\r) (7—57-27-3 e Tr)e(r_l)/(e/\'r) 5
(2) Z(B(de,e,r)) = (B(de,e,T)),
(3) Z(P(de,e,)) = Z(B(de,e,1)) N P(de, e,r) = (B(de, e, )" ").

Proof of 3.10. Note that for e = 1 the result is already known by [Del}, since by Theorem
3.6 we have B(d,1,7) = B(2,1,r), the braid group associated to a Weyl group.

In what follows, we identify B(de,e,r) with its image in B{r + 1) (see Proposition
3.8 above).
Step 1. We prove that

(3.11) Z(P(de,e,r)) C (mw(r +1)).

Let z € Z(P(de,e,r)).

Since P(r) C P(de,e,r) C P(r+1), the element z belongs to P(r+1) and centralizes
P(r). Since (cf. Proposition 3.5) P(r+1) = F(r)xP(r), where F(r) is the normal closure
in P(r + 1) of the subgroup generated by &7, in order to prove that z € Z(P(r + 1)) it
suffices to prove that z centralizes £2. But z centralizes £22¢. Thus the elements z£227!
and £2 both belong to the free group F(r), and their (de)-th powers are equal. This
implies that they are equal (see for example [MKS], 1.4, ex. 2). This proves (3.11).

Thus we have

(3.12) (Z(B(de,e,r)) N P(de,e,r)) C Z(P(de,e,r)) C (w(r + 1)) N B(de,e,r).
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Step 2. Let us now prove that
(3.13) (m(r +1)) N B(de,e,r) = (m(r + 1)/ ),
We have (see [Bi], 1.8.4) :
(3.14) m(r + 1) = 67 (626163) (E3€2616263) - - (6 -+ E362616263 -+ &1 -
Since &3 = £72€5€7, we have €367 = €25, and (3.14) becomes
(3.15) m(r +1) = £1(616263) (E3(E7€262)E3) -~ - (6r -+ €3(ET6260)E3 - -~ &1) -
Since £2 commutes with (£2€3), as well as with £; for j > 3, we deduce from (3.15) that
(3.16) 7(r+1) = &7 (€26)(6(€263)63) - -~ (& - Ea(€a6)Ea - -+ &) -
and then for all n € N,
(3.17) w(r +1)" = 6™ ((€263)(E3(€262)63) - - (6 -+~ E3(€26D)Es - -~ &))" -
Since, for ¢’ € N, we have (B(de, e,T),£2¢') = B(de, (e A ¢),r), it follows from (3.17)
that 7r(r+1)™ € B(de, e, r) if and only if e divides rn, i.e., if and only if e/(e Ar) divides

n, which proves (3.13).
Step 3. Let us now check that

(3.18) (£265)(E3(€265)Es) -+ (& -+ - €3(E26) 83 - - - &) = (€2&38s -+ - &) .
Let us introduce the group B(2,1, — 1) together with its distinguished set of gener-
ators {a, ag,... ,ar_1}, which satisfy the relations described by the diagram :
O=O—O—++— 0
o a3 Q3 Qr—1

Then the map
a8, aj— &y forj>2

defines a morphism B(2,1,7—1) — B(de, e,r). Thus, in order to prove (3.18), it suffices
to prove that

a(aaos)(asazaazas) - - (Qr-1 - - agazaaas - ar_1) = (@azas - - -ozr_l)r'l .

This last equality expresses a known property of reduced expressions of the longest
element in the Weyl group G(2,1,r — 1), i.e., the Weyl group of type B,_; (see for
example [Bou], chap. v, §6, ex. 2). The proof of (3.18) is complete.

Last step. Let us (temporarily) set 8’ := w(r + 1)¢/(¢A") | By (3.12) and (3.13), we see
that

(3.19) Z(B(de,e,r)) N P(de,e,r) C (3,
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and by (3.18) and (3.16), we see that

B =& Gyl - &) I,

or, with the identification made in Proposition 3.8,
(3.20) ﬂ, = 0.67‘/(6/\7‘) (7'57-27—3 - Tr)e(r—l)/(e/\'r') .

On the other hand, it is not difficult to check that
3.21. the canonical epimorphism «: B(de,e,7) — G(de,e,r) sends (3’ onto the scalar
multiplication in V by exp(2in/|Z(G(de,e,T))|) -

Since the map k: Z(B(de,e,r)) — Z(G(de,e,r)) is onto, and since (by (3.19)) its
kernel is contained in {3'), it follows from 3.21 that

(3.22) Z(B(de,e,r)) = (@) .

Using (3.11), it is then easy to prove that Z(P(de,e,r)) = (,B’d(e/\r)) :

It remains to check now that B’ = B(de, e, r). This follows from the fact that,

e on one hand, we have (by (3.22) and Lemma 2.21, (2)) B(de,e,r) € (3),

e on the other hand, B3(de,e,r) and 3’ have both the same image under the discrim-
inant map m1(6): B(de,e,r) — Z (cf. §2, B above). 0O

C. Computation of B(e,e,r) and of its center, e # 1.

In this section we study the braid group of type B(e,e,r) and in particular prove
Theorems 2.26 and 2.23 for type G(e, e, r).
Note that the construction in the proof of Theorem 3.6 above gives an identification
of m1(M#(e,r)/G(e,e,r)) with the subgroup of the braid group B(r + 1) generated by
2e ¢1,&,&s, ... ,& with presentation

£2
(3.23) 5?5(@)—0—' e
e+ ,{3 £4 fr

&2

Since M#(e,r) is obtained from M/(e,r) by removing the hyperplanes {z; = 0} for
1 <€ 7 < r we have a natural map

W wl(M#(e,T)/G(e,e,r)) — m(M(e,7)/G(e,e,T)),

which is surjective since the complement M(e,r)/G(e,e,7) — M#(e,r)/G(e,e,r) has
complex codimension 1.
The following proposition follows from Proposition Al in Appendix 1.

Proposition 3.24. The kernel of ¥ is the normal closure of the subgroup generated by
2¢ in the group w1 (M7 (e,7)/G(e,e,1)).

Note that Theorem 2.26 follows immediately from this. Indeed, by the above Propo-
sition the presentation of B(e,e,r) is obtained from (3.23) by suppressing the node
corresponding to £%¢.

Complements on B(e,e,r).
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Theorem 3.25. Lete,r > 2, and let B(e, e, r) be the braid group of type G(e,e,r), on

standard generators T2, T4, Ta,- .. ,Tr ordered such that (T27473)% = (TaT27s)?
'fz@\
e e @.
T2, T3 T4 Tr

Let B(e,1,7 — 1) be the preimage of the subgroup G(e,1,7 — 1) of G(e,e,r) fizing the
first coordinate. Then B(e,1,r — 1) has index r in B(e,e,r) and has a presentation on

generators
{aj,Bi1,]2<j<r0<1<e—1}

subject to
( Bii ifi#2,5,j+1
Bj+1,1 fi=j5+1
(3.26) o 1B 10u =4 ﬁj_,ll_‘_lﬂj—l,Hlﬁj,l ifi=7#2
,32,1+1,3j,l/62_,¢1 ifi=2<j
L Bji+2 ifi=j=2

(where the subscript [ of B;, is taken modulo e),
(3.27) Bje-1Bje-2"-Bjo=1  for2<j<r,

and oy, ..., satisfy the relations of the standard generators of B(e,1,r — 1).
In terms of the generators of B(e,e,r) we may take

’ . -1 =1
O = ToTy, a; =7 for3< 1<, Boo =ToTy P21 =Ty Ta.

In particular, B(e, 1,7 — 1) has a semidirect product decomposition

B(e, ].,T - 1) = F(e—l)('r—l) A B(e, 1,’)" - 1) )

where F(e_1y(r—1) denotes the free group on the (e— 1)(r —1) generators B2 0,... ,Bre—1-

Proof. The assertion can be proved by the Reidemeister—Schreier method (see for ex-
ample [MKS)], Theorem 2.8). Assume first that » = 2. Then B(e, e, 2) is generated by
{72, 74} subject to the single relation 7747y - - - = T4T27y - - - with e factors on each side. A
right transversal for B(e, 1,1) in B(e, ¢,2) is given by T := {1,7}. Let p: B(e,e,2) = T
be the transversal map which to every element of B(e, e, 2) associates its coset represen-
tative in T. Then by the Reidemeister-Schreier theorem B(e, 1,1) is generated by the
elements (tg)~1p(tg) where t € T and g runs over the generators of B(e,e,2). In our
case this yields the generators

-1
(3.28) Qo = ToTy, Bop = ToTy +, Yo 1= Ta.

Furthermore, by the Reidemeister-Schreier algorithm the relations for Ble, e, 2) yield

(3-29) age+1)/z = ﬂz,o(’)’zﬁz,o)(e_l)/zaz = (72,32,0)(6_1)/2’)’2 if e is odd,
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2 . .
(3-30) 5% = (1262,0)/% = (Ba012)*/? if e is even,

as defining relations for B(e,1,1). By introducing B21 = 7'5_17'2 = a;'v; we may
eliminate vy, and arrive at the statement of the theorem in this case.
Now assume that 7 = 3. Here a transversal is given by T' := {1, 73, 7a73}. We obtain

and oz, 2, f2,0 from (3.28) above, subject to the relations

(aza3)® = (azes)?, C“3_1’72053 =73, Q37372 = V37203,
(3.31) B2,00 = azf20, 03B =1073, vz = Y3203,

Y282,0030773 = 30v37202,0 = Y3Y252,0030,
and the relations (3.29) respectively (3.30). We may eliminate 73 = a3 'y203 and
0 =0, 3013,6270. With 831 = oy v, as above we find the stated presentation.

Finally, for r > 4 it follows easily from the presentation for B(e,e,r) given in Theo-
rem 2.26 (proved by Proposition 3.24) that

T:={1,72,7278,... ,ToT3 - Tr}
is a right transversal for B(e, 1,7 — 1) in B(e,e,r). This yields the generators
— — 2_—1 —1_—1 .
o :=7; and vy i=TeTRc AT T T3 Ty (3Li< 7)),

i ' 2 e 1 o 1—1 ’
O i= ToTy, VY2 i=Ty, P01 =TyT; , 0:=1TaTy T3TyT,

Furthermore, by the Reidemeister-Schreier algorithm the relations for B(e, e, r) yield as
relations for B(e, 1,7 — 1) the relations of the standard generators for B(e, 1,7 — 1) on
a2, ..., 0., the commutator rules

[yisaj] =1for j #4441, o viair1 = vyiqr for 2 <4,
and
O41Yi+1Yi = Yir1Vicir for 2 <4, ,

as well as
[B2,0,05] =1for j >4, [b,a]=1forj>4, [6,7;]=1forj>4,

S0l = agboy, (@3bay)® = (agas3d)?.

and the relations (3.31), (3.29) respectively (3.30). Note that the generators vs, ... , ¥,
may be eliminated from this presentation using the relation v,11 = o +11'yz-ai+1. This
reduces the assertion to the case r = 3. [

This result has some nice consequences, like the following analogue of Proposition 3.5
and Lemma 3.9.
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Corollary 3.32. The pure braid group P(e,e,r) is a semidirect product
P(e,e,r) = Fe_1y(r—1) X P(e,1,7 = 1)

of the free group of rank (e — 1)(r — 1) with the pure braid group of type G(e, 1,7 — 1).

This follows immediately by descent to the pure braid groups (see [Na], p. 6, for a
related result). We also obtain Theorem 2.23 for type G(e, e,r):

Corollary 3.33. Fore,r > 2, (e,r) # (2,2), the center of the braid group B(e,e,r) is
generated by (1o - - Tr)e(?‘—l)/(e/\r)'

Proof. Let k : B(e,e,r) — G(e,e,r) be the canonical projection. If z is central in
B(e,e,r) then so is k(2) in G(e,e,r). Hence k(z) = (72--- 7)™ with n a multiple of
e(r—1)/(e Ar), and z = (12 -+ - 7o-)"w for some w in ker(x). But then we already have
z € Ble,1,r — 1) (defined as above).

Let A: B(e,1,r — 1) — B(e, 1,7 — 1) be the canonical projection with kernel F' :=
Fe—1)(r—1) the free group on (e — 1)(r — 1) generators emanating from Theorem 3.25.
Since the center of A(B(e,1,7 — 1)) = B(e,1,7 — 1) is generated by (az---a,)" =
(t2-++7)" we deduce that z = (72 -- - 7,.)"w for some w € F. But (72---7,)" is central
in B(e, 1,r—1), while the center of the free group F is trivial (note that (e—1)(r—1) > 2).
Thus the center of B(e,1,r — 1) is generated by (13- --7,.)s("=1/(eAr) -

Remark 3.34. For the braid group B(2, 2,r) of Coxeter type D, Theorem 3.25 specializes
to the following: B(2,1,r — 1) has a presentation on

{ai7/6j1| 2 S Z’J S 7'}

subject to
( B i #£2,5,5+1
Bir1 fi=j+1
o7 o = BiB7B;  i=j#2
BrlBiByt fi=2<j
e ifi=j=2
and ag, ... ,q, satisfy the relations of the standard generators of B(2,1,r — 1).

Remark 8.35. The subgroup B(e, 1,1) of index 2 of the braid group B(e, e, 2) of Coxeter
type I2(e) has a presentation on {az,;,| 0 < I < e — 1} subject to

az_lﬂla2=ﬁl+2 for0<l<e-1
(where the subscript of §; has to be taken mod e), and

:Be——lﬂe—z cee ,30 =1.

Remark 3.36. The action of B(e,1,7—1) on Fie_1)(-—1) in Theorem 3.25 can be extended
to an action of the Artin braid group B(r). More precisely, let dg,as,... ,a, be the
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standard generators of B(r). Then B(e, 1,7 —1) is isomorphic to the subgroup generated
by &2, a3, ... , o by Theorem 3.6. We extend the action (3.26) of ay, ... , @ to an action
of B(r) on Fie_1yr—1y = {Bjs | TI;o Bz = 1) by
1, = BaaB;, 5 #2,
ay Bjda = { e
Bigy1  Hfj=2

It is easy to verify that this does in fact extend the action of B(e, 1,7 — 1).

On the other hand the action (3.26) can be viewed as an action on the free group
Fe(r—1) on free generators (B;; | 2 < j < 7,0 <1 < e— 1) by just omitting rela-
tions (3.27). The homomorphism defined by

¢: Fe(r—l) — (t) 2 Z, Bji—t forall j,l,

is B(e,1,7 — 1)-equivariant (with trivial action on the right side), so it gives rise to a
Magnus representation (see [Bi], Th. 3.9)

®: B(e,1,7 — 1) = GLg(r-1)(Z(2))

with
( 0ik01m ifi#£2,5,5+1
6j+1,k5lm ifi=j5+1
D) .0y, (kym) =8 (6j—1,k0041,m — OikO141,m )t + Ojbim I i=7F#2
02k0141,m + (6jx0im — O2k0im )t ifi=2<y
\ 85%0142,m ifi=j=2

(where 2 < 4,5,k <r,0<l,m<e—1)of Ble,1,7r—1).
A general statement for pure braid groups.
Let us first introduce some notation.
e We make the convention that G(1,1,r) := &,1, and we denote by P(1,1,r) the
corresponding pure braid group.
e Let m)(de,e,r) be the co-exponent (see §1.A above) of G(de, e, r) such that the
set of co-exponents of G(de, e, r) consists of the set of coexponents of G(de, 1, r—
1), together with m(de,e,r). We have m}(de,e,r) = (r—1)de+1 for d # 1 and
m; (e e,r)=(r—1)(e—1).
e For any natural integer m, let F,,, be the free group on m generators.

3.37. Proposition. For all positive integers d, e, r, we have a split short exact sequence
0 = Frns(de,e,ry — P(de,e,r) — P(de,1,7 — 1) = 0.

In particular, P(de,e,r) is the semidirect product of a free group on m}(de,e,r) genera-
tors by the pure braid group associated with a complex reflection subgroup of G(de,e,r)
of rank (r —1).

Proof of 3.87. We assume d # 1, since for d = 1, the result was proven in Corollary
3.32.
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Consider the map f : M#(de,7) = M#(de,r — 1), (z1,...,2,) = (21,... ,2r_1).
This is a locally trivial fibration, with fiber isomorphic to C minus (r — 1)de + 1 points.
By Theorem 2.10, M#(de,r — 1) is a K(m,1)-space. Hence, we have a short exact
sequence of fundamental groups associated to the fibration :

0 — Fy_1)det+1 — P(de,e,r) = P(de, 1,7 —1) = 0.

The locally trivial fibration M#(de,r) — M#(r), (21,...,2,) — (28%,... , 2%¢) induces
a commutative diagram with exact rows and columns :

1 1 1

1 —— Flr_1)det+1) — P(de,e,7) — P(de,e,7 — 1) ——= 1

1 F, P(r) Plr—1)—=1

11— 7Z/deZ —— A(de,1,7) — A(de, 1,7 — 1) ——=1

1 1 1

The splitting of the map P(r) — P(r — 1) together with the splitting of A(de,1,7) —
A(de,1,r — 1) given by identifying A(de,1,r — 1) with the subgroup of A(de,1,7) of
elements acting trivially on the last coordinate give then a splitting of P(de,e,r) —
P(de,e,r —1) and the proposition follows. [

4. HECKE ALGEBRAS

We extend to the case of complex reflection groups the construction of generalized
Knizhnik-Zamolodchikov connections for Weyl groups due to Cherednik ([Ch1], [Ch2],
[Ch3]; see also the constructions of Dunkl [Du], Opdam [Op] and Kohno [Ko1]).? This
allows us to construct explicit isomorphisms between the group algebra of a complex
reflection group and its Hecke algebra.

A. Background from differential equations and monodromy.

What follows is well known, and is introduced here at an elementary level for the
convenience of the unexperienced reader, since we only need this elementary approach.
For a more general approach, see for example [De2].

We go back to the setting of §1. Let A be a finite dimensional complex vector space.
We denote by 1 a chosen non zero point of A — in the applications, A we will be an
algebra. We set E := End(A). Let w be a holomorphic differential form on M with

2This construction has also been noticed independently by Opdam, whom we thank for useful
and friendly conversations.
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values in FE, i.e., a holomorphic map M — Hom(V, E), where Hom(V, E) denotes the
space of linear maps from V into F, such that (see 1.2 and 1.5, (1)) we have

w= ZwaH’

HeA
. 1 daH
with wg = ——=, and fg € E. For z € M and v € V, we have w(z)(v) =
Zzw)aH
1 O!H(’U
% EHGA H( )fH

We consider the following linear differential equation
(Eq(w)) dF = w(F),

where F is a holomorphic function defined on an open subset of M with values in A.
In other words, for z in this open subset, we have dF(z) € Hom(V, A), and we want
F to satisfy, for all v € V, dF(z)(v) = w(z)(v)(F(z)), or in other words dF(z)(v) =

7 Srrea 2 fu(F (@),

For y € M, let us denote by V(y) the largest open ball with center y contained in M.

The existence and unicity theorem for linear differential equations shows that for each
y € M, there exists a unique function

Fy:V(y)— A, z— Fy(.’E),
solution of Eq(w) and such that Fy,(y) = 1. From now on, we set
F(z,y) := Fy(z).

Assume now that the finite group W acts linearly on A through a morphism ¢: W —
GL(A). Then it induces an action of W on the space of differential forms on M with
values in F, and an easy computation shows that w is W-stable if and only if, for all
weW,

(4.1) w(w(z)) = p(w)w(z) - w)ew™),

which can also be written, for allz e M andv eV :

S wnwa)w)fn = 3 wn(@) ™ @)ew) fap(w™).

HecA HeA

An easy computation shows that this is equivalent to

da, doy,
(42) > Futmn— ;H) 3 o) fapw) 2D

HeA HeA aH

In particular we see that
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4.3. If fum) = e(w)fae(w™") for all H € A andw € W, then the form w is W -stable.
From (4.1) (and from the existence and unicity theorem), it follows that

4.4. Ifw is W-stable, then for ally € M, z € V(y) andw € W, the solution z — F(z,y)
satisfies
p(w)(F(z,y)) = F(w(z), w(y)).

The case of an interior W -algebra.

The following hypothesis and notation will be in force for the rest of this chapter.

From now on, we assume that A is endowed with a structure of C-algebra with unity,
and that w takes its values in the subalgebra of E consisting of the multiplications by
the elements of A — which, by abuse of notation, we still denote by A. With this abuse
of notation, we may assume that

W= E OGHWH ,

HeA

where ag € A, and the equation Eq(w) is written

dF = wF or dF(z)(v) = L Z on (V) agF(z).

Let v be a path in M. From the existence and unicity of local solutions of Eq(w), it
results that the solution z — F(z,y(0)) has an analytic continuation ¢ — (y*F)(t,v(0))
along v, which satisfies the following properties.

Let us say that a sequence of real numbers tg = 0 < t; < ... < t_1 < th = 1is
adapted to (v, Eq(w)) if for all 1 < j < n, we have v([t;_1,t;]) C V(7v(t;)).

Then :

(1) there exists € > 0 such that (v*F)(¢,v(0)) = F(y(t),7(0)) for 0 < t < ¢,

(2) whenever g =0 < t; <... <tnp_1 <t, =1 is adapted to (v, Eq(w)), we have
(v F)(t;,7(0)) = F(v(t;),7(t;—1)) (V" F)(tj-1,7(0)) for all j > 0.

We see that

j=1
(4.5) (v F)(1,7(0)) = H F(y(t),v(tj-1)) -

Note that there is always an adapted sequence for (v, Eq(w)).

The case of an integrable form.

We recall that the form w is said to be integrable if dw +w Aw =0.

The following fact was noticed, for example, by Kohno (see [Ko2], 1.2).
4.6. Lemma. The formw =} 4 agwgy is integrable if and only if, for all subspaces
X of V with codimension 2, and for all H € A such that X C H, ag commutes with

Y. (H'eA) GH'-
(H'DX)

Indeed, this is an immediate consequence of 1.5, (2).
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If w is integrable, the value (v*F')(1,+(0)) depends only on the homotopy class of .
By (4.5), we see that we get a covariant functor

g, {PM) - A
"y (FF)(,9(0)

Action of W.

Assume now that A is an interior W-algebra, i.e., that there is a group morphism
W — A* (through which the image of w € W is still denoted by w), which defines a
linear operation ¢ of W on A by composition with the injection A* — GL(A). So, with
our convention, for w € W and a € A we have p(w)(a) = wa.

The form w is then W-stable if and only if, for all w € W and z € M,

w(w(z)) = w(w(z) - w Hw™?,
which can also be written, forallz e M andv eV :

Z wy(wz)(v)ag = Z wr () (w™(v))wagw™?.

HecA HecA
By 4.3, we have the following criterion.

4.7. If, for all H € A and w € W, we have aymy = wagw™?!, then the form w is
W -stable.

By 4.4, the solution F' of Eq(w) then satisfies
(4.8) wF(z,y)w™" = F(w(z), w(y)).

4.9. Definition—Proposition. Assuming that w is W -stable, we define a group mor-
phism

T: m(M/W, zo) — (A*)°P

(or, in other words, a group anti-morphism T: mi(M/W,xz9) — A* ), called the mon-
odromy morphism associated with w, as follows.

For o € B, with image @ in W through the natural anti-morphism B — W (see 2.B
above), we denote by & a path in M from xg to T(xo) which lifts o. Then we set

T(o):= S 1)7.

Let us check that T is a group anti—-morphism.
Notice first that, by (4.8) and by (4.5), for w € W and <y a path in M, we have

wS(ryw™t = S(w(v)).
Thus we have
T(02)T(01) = S(62~1)728(61 17,
= S(2 "1 S(F2(d171))725:
= S(6y " ‘T (17 1)) T
= 8((72(d1)d2) " !)7102

which proves that T'(o3)T(01) = T(01032), since 72(d1)d2 is indeed a path in M with
origin zg which lifts (o102). O
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Dependence of parameters.

Suppose the form w depends holomorphically on m parameters ti,...,%ty,. De-
noting by O the ring of holomorphic functions of the variables t4,... ,t,,, we have
W =) peafrwg where f € O®c E. Then, for y € M, the function Fy, is a holomor-
phic function of ¢1,... ,tn, i.e., Fy has values in O ®c A.

Then, given a path v in M, the analytic continuation ¢ +— (y*F)(t,v(0)) depends
holomorphically of ¢1,... ,ty.

If w is integrable and W-stable, then the monodromy morphism depends holomor-
phically on the parameters t1,... ,t,. It follows that we have a monodromy morphism

T: 7['1(M/I/V,£Co)°p — (0 ®C A)X

B. A family of monodromy representations of the braid group.

From now on, we assume that A = CW.

Notation and hypothesis.

We denote by O the ring of holomorphic functions of a set of > .. 4 /w €c variables
z = (2¢,5)(ceA/W)(0<j<ec—1) -

Let

t := (tc,j)cea/w)0<j<ec—1)

be a set of ZCE.A/W ec complex numbers. For H € C, we set tg ; :=tc ;.

We put

gc,; = exp(—tcj/ec) forCe A/W,0<j<e—1.

For H € C, we set gy j := qc,j-
Let C € A/W and let H € C. For 0 < j < ec — 1, we denote by £;(H) the primitive

idempotent of the group algebra CWy associated with the character det?, of the group
Wyg. Thus we have

k:ec—l . .
1 —2imjk, 1
ei(H)=— exp 8%y .
(D= 30 e(= s
We set
Jj=emg—1
apg = Z tpjei(H) and w:= ZanH.
j=0 HeA
In other words, we have
j=ec—1

w= Z Z Ztc,jsj(H)wH.

CceA/W j=0 HeC

The following lemma is clear.

4.10. The map A — A, H — ag has the following properties :

(1) it is W-stable, i.e., for allw € W and H € A, we have a,g) = wagw!,
(2) for all H € A, ay belongs to the image of CWg in A.

The following property follows from 4.10.
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4.11. Lemma. The form w is W -stable and integrable.

Proof of 4.11. The form w is W-stable by 4.7. It is integrable by 4.6. Indeed, let X be a
codimension 2 subspace of V' and let H be an element of A containing X. By 4.10 above,
it is enough to check that, if w € Wy, then w commutes with Z( H'c A)(H'>X) OH'- This
is the case since w centralizes X, hence normalizes {H' € A | (H' > X)}. O

The main theorem.

4.12. Theorem. We denote by T: B°? — (CW)* the monodromy morphism associ-
ated with the differential form w on M. For all H € C, we have

j=ec—1

[ Ty — andety(su)) =0.
7=0

Furthermore, T depends holomorphically on the parameters tc ;, i.e., arises by special-
ization from a morphism T: B°P — (OW)*.

Proof of 4.12.

First step : case of rank 1

Here we assume dim(V) = 1. So we may assume that W is the cyclic group of order
e generated by the multiplication s by exp(2ir/e). We have M = CX*.

For 0 < j < e—1, let €; be the primitive idempotent of CW corresponding to the
character of W which sends s onto exp(2irj/e).

There are e complex numbers tg,t1,... ,t._1 such that
S
- Q dz
w = _T_Ej__-
, 2T 7 oz
j=0

A function F': C* — CW may be written

j=e—1
F = Z Fj&‘j
7=0

where F;: C* — C.
The equation Eq(w) becomes

dr; _ t; F(2)

— 3
dz umw  z

for0<j<e—1.

Hence the solution F(z, 1) is given by the formula

j=e—1

F(z,1) = Z ghi/Bme
Jj=0
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The analytic continuation of F along the path o : t — exp(2int/e) gives

j=e—1
S@)= Y elts/o)e;
hence et
T(s) = S(o) 's= Z exp(—t;/e) exp(2inj/e)e; .

Thus we see that, with g; := exp(—t;/e), we have

j=e—1

(4.13) [1 (T(s) - g5 exp(2imi/e)) =0,

as claimed.
Second step : towards the reduction to the case of rank 1
We are back to the general case. Here we use notation introduced in §2.B.

1. First we prove that, to compute the relation satisfied by the monodromy of sy .,
we may assume that zg is “close to H”, namely that o = zg.

Let us denote by
Tpp: m(M/W,zg)P — A

the monodromy morphism associated with w, and let us denote by sy the element of
m1(M/W,zg) defined by the path op 5, .

4.14. Lemma. For any path v from g to sg(xo), we have

T(sH,y) = S(Y) ' Tep (s)S() .

Proof of 4.14. By (2.12), we have og  := sg(Y™!) -0 H 2y -7, from which it follows that

T(suq) = S(oq,,)sH
=S(y N80, )S(su(7))sH
=S(v )80, )5S (Y)
= S(v " )Toy (sH)S()

O

2. Now we prove that we may reduce to rank one.

Choose and fix H € A. We still use notation introduced in §2.

The elements of the affine line (g + Ly) are the elements zy(2) := pry(cy) +
zpry (zg) with z € C. We may adjust the choice of zy so that, if

Dp :={zu(z) | 0<|2| <2},
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we have Dj; C M. Note that D} is stable by the operation of the group Wp.
We have oy (zy(2)) = zag(pri(zg)). For H' # H, we set ag (pry(ry)) = ugy,
and ag(pry(zg)) = vy Recall that zy has been chosen so that
2ug + vy 750 on Dy if H' # H .
Then the function

RuF: Dy — CW , zy(2) — F(zu(2),zH),

satisfies the following differential equation :

dRuF) [ 1 ag

dz 2m z

1 Uy
+ 3 ' _ap | RuF(an(2).
HZH 2im UH'Z + VH!

In other words, Ry F satisfies the differential equation associated with the differential
form Ryw defined on D} by

1 '
(4.15) Ryw = — a—H -+ Z LGHI dz.
2 z HZH ugr2 + vy

Note that Rgw is Wx-stable.
3. Now we reduce to the case of the action of the cyclic group Wy on Dj.

Let RyS: P(Dj7;) — CW be the monodromy functor associated with the form Ryw.
By the existence and unicity theorem for linear differential equations, since the loop og
takes its values in Dj;, we see that

(4.16) S(ou) = RuS(oH).
Let us still denote by sy the image of the path og in 71 (D};/Wx). Let
RHTIH . Wl(D}_(I/WH)Op — A

be the monodromy morphism associated with the differential form Rgw. Then it results
from (4.16) and from Lemma 4.14 that

4.17. T(su,y) is conjugate (in (CW)* ) to RyTy, (sm).

Third step : reduction to the case of rank 1

Let Ty: 71(Df /Wi, 2z )°® — CWg be the monodromy morphism associated with
the Wp-stable differential form defined on D}; by agwpy. By (4.13), we know that the
characteristic polynomial of Ty (sp) (viewed as acting on CWy by left multiplication)

1s
j=ec—1

Py(t) == H (t — gqc,; exp(2imj/ec))
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where C denotes the W-orbit of H. We want to prove that Py (RyTy, (sg)) =0.
By the first two steps, it is clear that our problem may be reformulated as follows.

Weset D:={2€C | (|]z2| <2)} and D*:=D - {0}, and we view D and D* as
endowed with the action of Wy defined by (w, 2z) — dety (w)z for w € Wy and z € D.

In order to simplify the notation, we also set e := ec(= en), and for 0 < j <

e—1, ¢ = g;(H),tj == tc;,q = qc,j, anda := ag = E;;étjsj. We define a
1 uy

hol hic function b on D by the f la b(2) = =— > vy —————an (not

olomorphic function b on y the formula b(2) i doHIAH o ——— aps (note

that ug-z + vy # 0 on D)

We have two differential equations for holomorphic functions (locally) defined on D*
with values in CW :

(Ba(a)) B () = 2 (2)
(Ba(a, ) 2 ()= +b)F().

Both these equations correspond to Wy-stable differential forms on D* : a commutes
with the action of Wy, and we have b(w.z) = dety (w) wb(z)w™? for w € Wx and
z€D.

We denote by Sy and S the functors from P(D*) to (CW)* associated respectively
to the equations Eq(a) and Eq(a,b), and by Ty, T: m1(D*/Wg,1) — (CW)* the
corresponding morphisms.

4.18. Proposition. Assume that, for all j,k,0 < 5,k <e—1, qjq,:l is not an e-th
root of the unity. Then there exists an invertible element u of CW such that, for all
o € m(D* /Wy, 1), we have T(c) = uTg(c)u?t.

Proof of 4.18.

1. Equivalence of Eq(a) and Eq(a, b).

Here we follow [Ha], 1.4.
Let us consider the following differential equation

(B (o,5)) T ) = 2 (a2(2) — B(2)a) + b(2)2(z)

for ® a function (locally) defined on D* with values in CW. The following assertion is
proved, for example, in [Ha|, 1.4. (see in particular 1.4.2, and proof of 1.4.1). Here we
o U te—l}
2im’ 24’ 2w

use the fact that the spectrum of the multiplication by a in CW is {

t
(each ﬁ with multiplicity |W : Wyl).

4.19. Lemma. Assume that, for all j,k,0< j,k < e—1, we have t; —ty ¢ 2inZ— {0}.
Then there is a unique solution ® of Eq'(a,b) satisfying the following two conditions :

(1) @ is holomorphic on D,
(2) ®(0)=1.
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Now it is immediate to check that, if z — Fg(z, zp) is the solution of Eq(a), defined in
the neighbourhood of zg, and such that Fg (zg, z0) = 1, then the function z — F(z, z) :=
®(2)Fy(z, 20)®(20) " is the solution of Eq(a, b), defined in the neighbourhood of z, and
such that F(zp,z2p) = 1.

By the formula (4.5), we see that, for all homotopy classes of paths v in D*, we have
then

(4.20) S(v) = @(v(1))Su()@(+(0)) " .

2. Wy-equivariance and proof of Proposition 4.18

By the unicity property of @ (see Lemma 4.19), it follows from the Wy invariance of
a and b that ®(dety (w)z) = w®(2)w™! for all w € Wg and z € D. Then the formula
(4.20), together with the definition 4.9 of the monodromy functors, imply Proposition
4.18 with u := ®(1), i.e., for all 0 € m(D* /Wy, 1), we have

T(o) = ®(1)Ty(c)®(1)L.
0

Conclusion : end of proof of Theorem 4.12
From what precedes, we see that Theorem 4.12 is proved provided the family

a = (gc,j)(ce A/W)(0<j<ec—1)

satisfies the condition that (for all C and all j, k) gc,;qc }c is not an ec-th root of the
unity, i.e., if the family t has the property that ¢ ; — tc x is not a non-zero integer,
for all C and all j, k. Since the set of such families is a dense open subset in the space
C* ceacc of all families t, we see that Theorem 4.12 follows by continuity, since the
solution z — F(z,y) is a holomorphic function of t. [

C. Hecke algebras.

We define a set
u= (uC,j)(CGA/W)(OSjgec—l)

of 3 "cc 4w (€c) indeterminates. We denote by Z[u,u"!] the ring of Laurent polynomials
in the indeterminates u.
Let J be the ideal of the group algebra Z[u, u™!]|B generated by the elements

(S~ —Uuco)(SHy —uc,1) - (SHy — UC,ec—1)

where C € A/W, H € C, sg, is a generator of the monodromy around H in B (cf.
(2.12)) and s is the image of sy, in W.

4.21. Definition. The Hecke algebra Hy(W) is the Z[u,u™!]-algebra Z[u,u=1]B/J.

Now assume that W is a finite irreducible complex reflection group (see §2.C above
for notation and references). Let D be the diagram of W, and let s € A(D) be a node
of D. We set ug ; :=uc j for j =0,1,...,ec — 1, where C denotes the orbit under W of
the reflecting hyperplane of s.

The following proposition is an immediate consequence of Theorem 2.26 :
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4.22. Proposition. Assume W is different from Ga4, Ga7, Ga2g, G33, Gas — and
also different from G3; for which the following assertion is still conjectural. The Hecke
algebra Hy(W) is isomorphic to the Z[u,u™']-algebra generated by elements (Ty)sen (D)
such that

o the elements T, satisfy the braid relations defined by DY,

o we have (Ts — tg0)(Ts —us,1) -+ (Ts — us,e,—1) =0.

Notice that through the specialization us ; — dety (s)? (for s € N(D) and 0 < j <
es— 1), the algebra H, (W) becomes the group algebra of W°P over a suitable cyclotomic
extension of Z.

Hecke algebras and monodromy representations.

By Theorem 4.12, we see that the monodromy representation T factors through
Hu(W). Indeed, let us set .

te,; := dety(s)uc;
for all (C, 7), and
t:= (tC,j)(CeA/W)(OSjSec—l) )

and let us denote by O the ring of holomorphic functions of the set of variables t. Then
we have the following commutative diagram :

OB T OWep

\/

0 ®Z[u,u—l] Hu(W)

Let K be the field of fractions of O.

The following lemma is a key point to understand the structure of Hy(W). It is well-
known to hold for Coxeter groups. For the infinite series of complex reflection groups,
see [ArKo] for G(d, 1,r), [BrMal, (4.12) for G(2d,2,r) and [Ari], Proposition 1.4 for the
general case (it has been also checked for many of the remaining groups of small rank
— see for example [BrMal, Satz 4.7). We conjecture it is true for all complex reflection
groups.

4.23. Lemma. Assume W is Cozeter group or a complez reflection group in the infinite

series.
The Z[u,u"]-module Hy(W) can be generated by |W| elements.

From this lemma, we can now deduce the following

4.24. Theorem. Assume W is Coxeter group or a complex reflection group in the
infinite series.
The monodromy representation T induces an isomorphism of K-algebras

K Rzu,u-1 Hu(W);)’CWOP .
Furthermore, Huy(W) is a free Z[u,u"']-module of rank |W|.

Proof. By Lemma 4.23, there is a surjective morphism of Z[u, u™!}-modules

¢: Z[u,u W - H,(W).
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Let m be the ideal of O of the functions vanishing at the point (¢¢,; = 1). The morphism
Om ®z[u,u-1] Hu — OnW induced by the monodromy is surjective by Nakayama’s
lemma, since it becomes an isomorphism after tensoring by (On)/m. Composing with
lp, ® ¢, we obtain an epimorphism (’)LYV (N OnW : this must be an isomorphism.
Hence, ker ¢ = 0, i.e., ¢ is an isomorphism and H,, is free of rank |W| over Z[u,u™1].
Since the morphism K ®zjy u-1] Hu — KW is a surjective morphism between two
K-modules with same dimensions, it is an isomorphism and Theorem 4.24 follows. [l

5. DIAGRAMS AND TABLES

Information provided by the tables: invariants of braid diagrams.

Let us recall that a diagram where the orders of the nodes are “forgotten” and where
only the braid relations are kept is called a braid diagram for the corresponding group.

The groups have been ordered by their diagrams, by collecting groups with the same
braid diagram. Thus, for example,
G15 has the same braid diagram as the groups G(4d,4,2) for all d > 2,

e G4, Gg, Gig, Go5, G32 all have the same braid diagrams as groups 63, G4 and Ss,
" o G5, G10, G1s have the same braid diagram as the groups G(d, 1,2) for all d > 2,

e G7, G11, G19 have the same braid diagram as the groups G(2d, 2, 2) for all d > 2,
Gg6 has the same braid diagram as G(d, 1,3) for d > 2.

The element S (generator of Z(W)) is given in the last column of our tables. Notice
that the knowledge of degrees and codegrees allows then to find the order of Z(W),
which is not explicitely provided in the tables.

The tables provide diagrams and data for all irreducible reflection groups.

e Tables 1 and 2 collect groups corresponding to infinite families of braid diagrams,

e Table 3 collects groups corresponding to exceptional braid diagrams (notice that
the fact that the diagram for G3; provides a braid diagram is only conjectural),
but G4, Ga7, Gag, Ga3, Gaa,

e The last table (table 4) provides diagrams for the remaining cases (G24, Gar,
Gag9, G33, G34). It is not known nor conjectural whether these diagrams provide
braid diagrams for the corresponding braid groups.

Degrees and codegrees of a braid diagram.

The following property may be noticed on the tables. It generalizes a property already
noticed by Orlik and Solomon for the case of Coxeter—Shephard groups (see [OrSo3],

(3.7).
5.1. Theorem. Let D be a braid diagram of rank r. There exist two families

(dl,dz,...,dr) and (d;, ;,,d:)

of v integers, depending only on D, and called respectively the degrees and the codegrees
of D, with the following property: whenever W is a complex reflection group with D as
a braid diagram, its degrees and codegrees are given by the formulae

dj =|Z(W)|d; and d&=|ZW)Id} (=12,...,1).
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The zeta function of a braid diagram.
~ In [DeLo], Denef and Loeser compute the zeta function of local monodromy of the
discriminant of a complex reflection group W, which is the element of Q[g] defined by
the formula _ "
Z(q, W) = [ [ det(1 — qu, H (Fo,C)) V""",
J

where F denotes the Milnor fiber of the discriminant at 0 and 1 denotes the monodromy

automorphism (see [DeLo]).
Putting together the tables of [DeLo] and our braid diagrams, one may notice the
following fact.

5.2. Theorem. The zeta function of local monodromy of the discriminant of a complex
reflection group W depends only on the braid diagram of W.

Remark. Two different braid diagrams may be associated to isomorphic braid groups.
For example, this is the case for the following rank 2 diagrams (where the sign “~”
means that the corresponding groups are isomorphic) :

i (Ot
For e even, s ~ sO ,
e+1 u u
t
for e odd, s ~ (O=0,
e+1 u 8 t

(Nt
and su ~ C==0.

It should be noticed, however, that the above pairs of diagrams do not have the same
degrees and codegrees, nor do they have the same zeta function. Thus, degrees, codegrees
and zeta functions are indeed attached to the braid diagrams, not to the braid groups.
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APPENDIX 1 : GENERATORS OF THE
MONODROMY AROUND AN IRREDUCIBLE DIVISOR

We define here what we mean by a “generator of the monodromy around an irreducible
divisor” and recall some well known properties.

Let Y be a smooth connected complex algebraic variety, I a finite family of irreducible
codimension 1 closed subvarieties (irreducible divisors) and Z := UperD. Let X =
Y—-Zand 2o € X.

For D € I, let D, be the smooth part of D and D := D, — (DS N UD,GI’D,¢D D’)

“A path from zg to D in X” is by definition a path 4 in Y such that v(0) = z,
(1) € D and v(t) € X for t # 1.

Let v’ be another path from z¢ to D in X. We say that v and 4’ are D-homotopic
if there is a continuous map 7 : [0, 1] x [0,1] — Y such that T'(¢,0) = v(¢) and T'(¢,1) =
v(t) for t € [0,1], T(0,u) = zp and T(1,u) € D for all u € [0,1] and T'(t,u) € X for
t € [0,1] and u € [0,1]. We denote by [y] the D-homotopy class of 7.

Given a path « from zo to D in X, let B be a connected open neighbourhood of (1)
in X U D such that BN X has a fundamental group free abelian of rank 1. Let u € [0,1]
such that (t) € B for t > u. Put 3 := y(u). The orientation of B N X coming from
the orientation of X gives an isomorphism f: (B N X,z1)——Z. Let X be a loop in
BN X from z; such that f{[A\]) = 1.

Let v, be the “restriction” of 7 to [0,u], defined by v, (t) := vy(ut) for all ¢ € [0,1].
Define p, ) = Yu "1+ A7 . Then, the homotopy class of Py in m1 (M, o) depends only
on the D-homotopy class of v and is denoted by p[,). We call it the generator of the
monodromy around D associated to [v].

@ \/\'mo

Given two paths v and 4’ from z to D, the generators of monodromy pp,) and p,
are conjugate.

Al. . Proposition. Let i be the injection of an irreducible divisor D in a smooth
connected complexr variety Y and xo € Y — D. Then, the kernel of the morphism
m1(1): m (Y — D,xo) — m1(Y, zo) is generated by all the generators of the monodromy
around D.

Sketch of proof of A1. Note that the singular points of D form a closed subvariety Dying
of D, distinct from D, hence of (complex) codimension at least 2 in Y. Therefore (see for
example [Gol, chap. x, 2.3) the natural morphism 71 (Y — D — Dygjng, o) — m1(Y — D, zo)
is an isomorphism, and in order to prove Al we may assume D is smooth, which we do
now.

The lemma then follows from the fact that given a locally constant sheaf F over
Y — D, its extension i,F to Y is locally constant if and only if every generator of the
monodromy around D acts trivially on . [

A2. Proposition. Suppose that Y is simply connected. Then the fundamental group
m1(X, zo) s generated by all the generators of the monodromy around the divisors D € I.

Proof of A2.
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This follows immediately from Proposition Al by induction on |I|. O

Lifting generators of the monodromy.

Let p: Y — Y be a finite covering between two smooth connected complex varieties.
Let D be the branch locus of p and D = p(D). We assume D is an irreducible divisor.
Weset X:=Y —-Dand X:=Y —D.

We shall see that a generator of the monodromy around D (associated to a path ¥
from Ty to D in Y) may be naturally lifted to an element of P(X) (which depends only
on the D-homotopy class of 7¥).

Indeed, let v be the path from zg to an irreducible component, say D.,, of D, which
lifts 7. Let B be an open neighbourhood of Zp in Y such that the fundamental group of
BnNX is free abelian of rank 1 and BN (X U D,) — B is unramified outside D,. Let
u € [0, 1] such that 7(t) € B for t > u. Let A be a loop in BN X with origin 7(u) which
is a positive generator of 71 (B N X, ¥(u)).

Let A be the path from () which lifts X. Let -y, be the restriction of v to [0,u]. Let
7Y be the path from A(1) which lifts (7, ) !, where %, is the “restriction” of ¥ to [0, u].

The proof of the following proposition is left to the reader.

A3. Proposition. We define py :=7) - XA Yy .

(1) The homotopy class of py in P(X) depends only on the D-homotopy class of 7.
(2) Let ep denote the ramification index of p on D. Then pSP is the generator of
the monodromy around D., associated to y.
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APPENDIX 2 : TABLES 1 TO 5

Here are some definitions, notation, conventions, which will allow the reader to un-
derstand the diagrams.
The groups have presentations given by diagrams D such that

e the nodes correspond to pseudo-reflections in W, the order of which is given
. inside the circle representing the node,

e two distinct nodes which do not commute are related by “homogeneous” relations
with the same “support” (of cardinality 2 or 3), which are represented by links
beween two or three nodes, or circles between three nodes, weighted with a
number representing the degree of the relation (as in Coxeter diagrams, 3 is
omitted, 4 is represented by a double line, 6 is represented by a triple line).
These homogeneous relations are called the braid relations of D.

More details are provided below.

Meaning of the diagrams.

This paragraph provides a list of examples which illustrate the way in which diagrams
provide presentations for the attached groups.

e The diagram corresponds to the presentation
8 t

s =t?=1and ststs--- = tstst---
S— N —
e factors e factors

e The diagram (G==(3) corresponds to the presentation
C] t

s® =13 =1 and stst = tsts.

¢
e The diagram s@ corresponds to the presentation
(S

=t =u=1and stustu --. = tustus--- = ustust--. .

e factors e factors e factors
o )
3 s u -
e The diagram () (2) (2) corresponds to the presentation
v t w

32=t2=u2=1)2=w2=1,

uUY = U, SW = WS, vWw = wv,
sut = uts = tsu,

svs = vsv, tvt = vitv , twt = witw , wuw = vwu.
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O
e The diagram s corresponds to the presentation
e+ 9 t2t3

=t =2 =t2=1, sty =t3s,
St;tz = tlztzs,

totath = tgthts, talsly = tatats, tathiatatyls = totatatytats,
fzStlz-tzt'ztztlz = it'ztﬂ’ztzt’ztz e

e+1 factors e+1 factors

t
e The diagram e corresponds to the presentation

to t3

=12 =ti=1,

thiath = tathts , tatata = tatata, tathtatatyta = totatstotats,
totototytots - - - = totathtotnty -« - .

W
e factors e factors

t
e The diagram 3@@ corresponds to the presentation
5

u

2=t =ud =1, stu = tus, ustut = stutu.

&

e The diagram (2==2) corresponds to the presentation
8 i
s=t2=u?=1 , stst = tsts, tutu = utut , utusut = sutusu, sus = usu.
e The diagram (== corresponds to the presentation
s t

82:

t?2=uyt=1 , §tst = tsts, tutut = utuiu , utusut = sutusu, sus = usu.

'v
The diagram () 9‘——"9 corresponds to the presentation

8 t uw

P=t?=u?=02=1, su=uvs, su=us,

sts = tst, vtv = tvt, uvu = vuv , tuty = utut, viuvtu = tuvtuv .
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c ¢
e The diagram s egg corresponds to the presentation
Y u

2 =12 =u? =1, ustus = stust, tust = ustu.

9 8 v
e The diagram (2 x (2) corresponds to the presentation
T

u

s?2 =12 =u? =9° =1, su=us, tv =vt,
sts =tst, tut = utu, vvu = vuv, vsv = svs, stuvstuvs = tuvstuvst.

In the following tables, we denote by H x K a group which is a non-trivial split
extension of K by H. We denote by H - K a group which is a non-split extension of K
by H. We denote by p™ an elementary abelian group of order p™.
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name diagram degrees codegrees Jé] field c/z(@)

t3
G(d @ d2ed,., (0ed,.., I, e
egfé,f;ﬁ)s D@ Qs ey 2T Eatater ) T Q)
T et t2t3 ta br

t
Gis s@)@ 12,24 0,24 ustut=s(tu)> Q(¢2s) G4
5 u

S 000 Oy Uk wwm o

Gs (3)—@ 4,6 0,2 (st)3 Q¢s) s
Gs Q?—@ 8,12 0,4 (st)? Q(4) G4
Gie Q:)-—Q:,) 20,30 0,10 (st)? Q¢) s
Gas (3)—(:;})—@ 6,9,12 0,3,6 (stu)* Q(Cs) 3%%SLa(3)
Gs 12,18,24,30 0,6,12,18 (stuv)® Q(¢s) PSpa(3)
YD e=e—e-® Wiy OYh e o

Gs (H 6,12 0,6 (st)? Q(¢s) g
Gio OO 12,24 0,12 (st)2 Q) s
Gis @=@ 30, 60 0, 30 (st)? Q(¢1s) s
Gag (?=(::D—® 6,12,18 0,6,12 (stu)3 Q(¢a) 32%SLo(3)

u

TABLE 1
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name diagram degrees codegrees B field G/z(G)
26—1)
o "’.’ @y W5 T Gt B 0l
G7 s@@ 12, 12 O, 12 stu Q(¢12) 2[4
(3
Gi1 s(2) b 24,24 0,24 stu Q(¢za) G4
Glg s 60, 60 O, 60 stu Q(¢s0) 915
tlz e(r—1)
o) o0 En Ol ween® o
t2 ta ta tr
G(§£3’2) O——0) t 2,e  0,e—2 (st)/ (A2 Qre+¢Y)
- 8
Ge (:E@t 4,12 0,8 (st)® Q¢z) Ay
8
Go ﬁ.—— 8,24 0,16 (st)3 Q(¢s) G
8
G =0 20,60 0,40 (st)® Qo)  UAs
8
G @—8—@ 6,24 0,18 (st)* Q=2 Gy
S
G0 —0 12,30 0,18 (st)° AevE) U
8
Ga1 =@ 12,60 0,48 (st)° QG2 VB s
s

TABLE 2
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name diagram degrees codegrees Jé] field G/Z(G)
(2)t
Gi2 s 6,8 0,10 (stw)*  QW~D G4
u
' ¢
Gis 9@2 8,12 0,16 (stw)?  Qa) &4
\9 u
(2)t
Gao 9° 12,20 0,28 (stu)® QG5 A
(@u
Gas O—-(—0) 2,6,10 0,4,8 (stw)®  Q(VB) s
8 t u
e 26 0 e @ 2hepey t
s t Uu v ’ ’
G3o =-0—@—0 o gy () QWE)  @sdpe i

@) s2
2 6 _
Gas Q—Q—I—Q—Q —@0——0@ one MY s @ sogey
81
32
0,4,6,
Gzs 9 9 9 9 9 9 1012 flfé (s1-87)°  Q 507(2)
(2) s2
2,8,12, 0,6,10,
Gsr 9 —2—02—2—Q@ 9 142’1?3;30’ 122,%?2%8, (s158)1° Q@ s0f(2)

83 S84 85 86 87

8,12, 0,12, .
G 20,24 16,28 (stuvw)® Qi)  2*x6g *
TABLE 3

It is still conjectural whether the corresponding braid diagram for Gs; provides a pre-
sentation for the associated braid group.

1 The action of &3 x &3 on 2% is irreducible.

1 The automorphism of order 2 of s x As permutes the two factors.

*x The group G31/Z(G3;) is not isomorphic to the quotient of the Weyl group Dg by its
center.
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name diagram degrees codegrees J5) field G/Z(@)

(AN
Gaa =2 4,6,14 0,8,10 (stw)”  Q(W/=T7)  GL3(2)
Gar —(2) 6,12,30 0,18,24 (stw)®  Q(¢3,V5) g
Gag O 4,8,12,20  0,8,12,16 (stuv)® Q(4) 2¢%65 t

Gszs @ 9% ErTy W (wstow)® Q) SOs(3)

Q 6,12,18,24, 0,12,18,24, _
Gas @—@—@—0@0—O® ™34 30,36~ (stuvwa)” Q) PSOZ (3)'-2
S x

TABLE 4

These diagrams provide presentations for the corresponding finite groups. It is not known
nor conjectural whether they provide presentations for the corresponding braid groups.

T The group Ga29/Z(G2g) is not isomorphic to the Weyl group Ds.

55
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name diagram degrees codegrees 8
T2
B(de,e,r ee,..., O,e,... T )
ezg,r22,’d>)la : -0 (71_1)e, (}_’1)6’ oA (TaTyTy - - Tp) AT
e+ TéT3 4 Tr
B(1,1,7) O—0O---O 2,3,...,r+1 0,1,...,7r—1 (7'1---7',.)’""‘1
T T2 Tr
B(g,)];r) <>=O_OO L2,...,r 0’7"'7(T_1) (GT2T3"'TT)T
22 T2 T3 Tr
Ble,e,r) @ e,2e,..., 0O,e,...,0r—2e, , e
side 42000 (They glpe—r  (wmimoem)T
To T

TABLE 5 : BRAID DIAGRAMS

This table provides a complete list of the infinite families of braid diagrams and corre-
sponding data. Note that the braid diagram B(de, e, r) for e = 2,d > 1 can also be described
by a diagram as the one used for G(2d, 2, r) in Table 2. Similarly, the diagram for B(e, e, ),
e = 2, can also be described by the Coxeter diagram of type D.. The list of exceptional
diagrams (but those associated with Ga4, Ga7, Gag, Gss, G34) is identical with table 3.




[AlLu]
[Ari]
[ArKo]

[Ar]
[Ba]

[Bi]

[Bou]
[BreMa)

[Bri]
[Br2]
[BrSa]

[BrMa] “
[BMM]

[BMR]

[BrMi]

[Chi]
[Ch2]
[Ch3]
[Ch]

[Cho]
[Co]

[Cx]
[Del]
[De2]
[DeMo)
[DeLo]

[Du]
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