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Abstract

Renormalizability of the Coulomb gauge is studied in the phase space
formalism, where one integrates over both the vector potential A, and its
canonical momentum II. The obvious divergences are regularized,
although a proof that all diagrams are regularized is not attempted. The
algebraic constraints on the renormalization constants are derived from the
symmetries of the theory. In particular, a Ward identity is derived that
holds at a fixed time t, and is an analog of Gauss's law in the BRST
formalism. The familiar Zinn-Justin equation results when this identity is
integrated over allt. As a consequence of this identity, g2DAo,A0 js a
renormalization-group invariant, where DAOA0 js the time-time
component of the gluon propagator. The contribution to the Wilson loop
of the instantaneous part V(R) of g2ZDAo,Ao exponentiates. It is proposed
that the string tension defined by Koyl = imr —»CV(R)/R may serve as an

order parameter for color confinement, where C = (2N)-1(N2-1) for
SU(N) gauge theory. A further consequence of the above-mentioned Ward
identity, is that the fourier transform V(K) of V(R) has the product form
V() = [k2DC.C*(k)]2 L(k), where DC.C*(Kk) is the ghost propagator, and
L(Kk) is a correlation function of longitudinal gluons. This exact equation
combines with a previous analysis of the Gribov problem according to
which k2DC.C*(k) diverges at k = 0, to provide a scenario for
confinement.
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1. Introduction

Why renormalize in the Coulomb gauge? In a perturbative
expansion of gauge-invariant quantities, the Coulomb gauge should agree
order by order with the familiar Lorentz-covariant gauges, so it might
seem that nothing much new is to be learned. On the contrary, it is found
for non-Abelian gauge theories in the Coulomb gauge, that the time-time
component of the gluon propagator is a renormalization-group invariant,

g2DAO,A0 - gr2DrA0,A0, (1 . 1)

where g is the coupling constant, DA0,A0 js the time-time component of the
gluon propagator, and the subscript r refers to renormalized quantities.
Thus in the Coulomb gauge, g2DA0,A0 is independent of the cut-off and of
the renormalization mass, and depends only on physical masses, whereas
this is not true in covariant gauges.

The hamiltonian for non-Abelian gauge theory in the Coulomb gauge
has been known for some time in its continuum version [1], and the lattice
version has been found recently [2]. The existence of a lattice Coulomb
hamiltonian suggests that the Coulomb gauge ought to be renormalizable.

As originally suggested by Gribov [3], and substantiated recently by
detailed arguments [2], the time-time component of the gluon propagator
provides a long-range confining force, while the 3-dimensionally
transverse propagator of the would-be physical gluons is suppressed at low
momentum, reflecting the absence of gluons from the physical spectrum.
These properties are a consequence of the restriction of the functional
integral to the fundamental modular region, a region in configuration space
that is free of Gribov copies. The renormalization properties found here
support this picture of confinement.

Technically the most interesting aspect of renormalization theory in
the Coulomb gauge is a Ward identity, F¢(I') = 0, where T’ is the quantum
effective action. [See eq. (6.23) or (7.3) below.] This identity holds at
fixed time t. It is an analog of Gauss's law in the BRST formalism which
we call “the Gauss-BRST identity”. The integral of this identity over all t
gives the Zinn-Justin equation, |dt Fy(I") = T'*I" = 0, where I'*T, is the left-
hand side of the Zinn-Justin equation [written explicitly in eq. (A.1)
below]. The Gauss-BRST identity assures renormalizability in the
Coulomb gauge by fixing the form of the possible divergences, just as the
Zinn-Justin equation does in covariant gauges. It also implies the identity



g2DAo,Ao(k, ko) = g2 [k2DC.C*(k)]2 L(k, ko), 1.2)

where DC.C*(k) is the (instantaneous) ghost propagator and L(k, ko) the
longitudinal gluon correlation function.

The organization of the article is as follows. In sect. 2, the problem
of renormalization in the Coulomb gauge is posed and solved heuristically,
by integrating out the non-physical degrees of freedom in the phase-space
formalism so only the "physical" degrees of freedom remain namely, the
3-dimensionally transverse vector potential Atr, and its canonically conju-
gate field ITt*. The Coulomb gauge in the second-order formalism contains
apparently non-renormalizable terms such as the Faddeev-Popov
determinant det(-D;V;) whose perturbative expansion contains instantaneous
closed fermi-ghost loops. Such unrenormalizable terms manifestly cancel
in the phase-space formalism, in which both the A and II fields are
integrated over. The cancellation occurs because the Faddeev-Popov
determinant det(-D;Vi) gets multiplied by the 8-function 8(DiIlj - pqu) that
expresses the Gauss's law constraint, and which results from integrating out
the Ag field. (Here D = D(A) is the gauge covariant derivative, pqu is the
quark color-charge density, and i= 1, 2, 3.) As a result, when one
decomposes IT into its transverse and longitudinal parts, I1; = IT;tr - V;Q,

the integral over Q gives
[ dQ det(-D;Vy) 8( - DiViQ + Dillir - pgy) = 1. (1.3)

This eliminates the Faddeev-Popov determinant, and with it the apparently
unrenormalizable terms. In the local BRST formalism, the instantaneous
closed fermi-ghost loops cancel against instantaneous closed bose-ghost
loops.

At the end of sect. 2, a local first-order BRST-invariant Coulomb-
gauge action S is derived, eq. (2.18), on which the results of the present
article are based.

In sect. 3, BRST-invariance of the local action is exhibited, and it is
shown that this assures Lorentz invariance of the expectation values of
gauge-invariant quantities. In sect. 4, the Feynman rules are derived from
the first order action. Two supplementary rules are introduced which
assign the value zero to ambiguous expressions that formally vanish. It is
assumed that dimensional regularization suffices to regularize remaining
divergences. In sect. 5, the divergent parts of all two-point functions are



calculated to one-loop order. In sect. 6, it is shown that in the Coulomb
gauge, the conserved BRST-charge has the simple form

QBRST = - Jd3x C-(DilT; - pqu) = - Jd3x C-8S/8A,, (1.4)

where C is the ghost field, and (Dill; - pqu) is the left-hand side of Gauss's
law. We call QBRrsT the Gauss-BRST charge. Use of the last expression
for QBRST allows the symmetry transformation generated by this charge to
be written in the form of the Gauss-BRST identity. This assures the non-
renormalization of gAg = grAr,0, where Ag is the time-component of the
vector potential in the external field (effective action) formalism. In
sect. 7, elementary properties of the quantum effective action I" are
derived. The somewhat technical proof of algebraic renormalizability
which logically follows sect. 7 is presented in Appendices A and. In
Appendix A, the general form of divergences consistent with the Ward
identity is derived, and in Appendix B, algebraic renormalizibility is
proven recursively. At the end of Appendix B it is verified that to one-
loop order the charge renormalization is the same in the Coulomb gauge as
in covariant gauges. In sect. 8 the instantanteous part V(R) of g2DA0,Ao0 jg
introduced. We call it the color-Coulomb potential. The renormalization-
group-invariant running coupling constant is defined by gc(k/AQcD) =
k2V(k), where V(Kk) is the fourier transform of V(R), and it is verified
that the first two terms of its B-function are universal. In sect.9, the
Ward identity is used to solve for DA0.Ao, which yields (1.2) above and

V(k) = g2 [k2? DC.C*(Kk)]2 L(k), (1.5)

where L(K) is the instantaneous part of the longitudinal gluon correlation
function given in (9.8) and (9.17). In sect. 10, it is shown that the
contribution of V(k) to the Wilson loop exponentiates, giving
exp[-CTV(R)], where V(R) is the fourier transform of V(k), and C is
defined above. In sect. 11, the merits of the order-parameter Kcoul =
limR—CV(R)/R are argued. In sect. 12, it is recalled that an analysis of
the Gribov problem [2, 3] leads to the conclusion that k2DC.C*(k) is
singular at k = 0, thus providing a long-range component to the
renormalization-group invariant color-Coulomb potential V. Conclusions
are presented in sect. 13.

2. The problem and its solution



In this section we first give a heuristic discussion of the problem and
then derive the local, BRST-invariant phase-space action S.

When applied to the Coulomb gauge, the standard Faddeev-Popov
procedure gives the functional integral in configuration space,

Z =] dA It ( 8[V;Ai(D] det{-ViDi[A®)]} ) exp(-Sc), 2.1)

where sources are temporarily suppressed, Di(A) is the spatial gauge-
covariant derivative, [Di(A)C]2 = ViC2 + gfabdA;bCd, S = 2-1[d4x (E2 +
B2), and

Eja = Foia = dpA;2 - ViAg? + gfabcAgbAC (2.2a)
B2 = Fjk2 = 0jAk? - VkAj2 + gfabcAjbAxc, (2.2b)

fof i, j, and k cyclic. (All vectors here and below are 3-dimensional.) This
expression may be written in local form

Z = | dAdCdC*d\ exp(-SFp), (2.3)

where
Srp= [d4x { 2-1(E2 + B2) + V; C*-Dij(A)C - ViA-Aj }, (2.4)

and A = ib, where b is a real field. Here and below, the center dot means
contraction on color indices.

The problem with the configuration-space functional integral is that
the closed ghost loops are not of renormalizable type. In lowest order, the
ghost loop is given by

(2m)-4 Jdko [d3k [(k - p)2 k2], (2.5)

where p and k are spatial vectors. The integrand is independent of ko,
which is characteristic of an instantaneous closed ghost loop. The
divergent integral Jdko multiplies a non-polynomial function of p. This
divergence occurs in any number of dimensions and the integral is not
regularized by dimensional regularization.



One suspects that this divergence cancels against some other term.
To organize the cancellation systematically, we introduce the Gaussian
identity

1 =N JdP exp[ - (1/2)(P - iE)2 ], (2.6)

into the configuration-space functional integral, which converts it to the
phase-space functional integral. To avoid a profusion of i's, we write Il =
1P, and obtain

Z = | dI1dAod A [T {det[-ViDi(Am)] } exp(-S1), (2.7)
where
S1 = Jd4x (II;E; - 2-1I12 + 2-1B2), (2.8)

B = B(Alr), and Ej = dpAjr - Di(AT)Ag. The superscript tr refers to
3-dimensionally transverse vectors VjA;* = 0. The Ag field appears

linearly in the action, and not at all in the Faddeev-Popov determinant, so
the dAg integration gives simply

Z = [ dTTdA® [T; [ det(-V;iDy) 8(DilT;) 1 exp(-S2), (2.9)
where D = D(AU), and
Sy = [d4x (T1;-0Atry/ot - 2-1T12 + 2-1B2), (2.10)

The appearance of &(Djll;) in the functional integral means that Gauss's
law, DiIl; = 0, is satisfied at every time. We decompose Il; into its
transverse and longitudinal parts

ITj = It - ViQ, (2.11)
so dII = dITr dQ. Gauss's law reads

- Di(AT)V;Q = - gAjiuxILitr = p, (2.12)
where we have introduced the notation (AXB)2 = fabcAbBc, Here p2 is the
part of the color-charge density that comes from the dynamical fields At

and IItr. (If quarks were present then there would be a quark contribution
to p.) We solve this time-independent constraint for €2,



Q = Qph = [M(A)]-1 p. (2.13)

We call Qph the color-Coulomb field. The Green's function M-! is the
inverse of the Faddeev-Popov operator M(A) = -Dj(A)Vj, which is
symmetric when A is transverse, M(AWU) = -Dj(A)V; = -ViDj(Alr) =
MT(Atr),

The integral over dQ eliminates the Faddeev-Popov determinant, as
desired,

[dQ det[-V;Dj(Atr)] o[- Dj(At)V;iQ + p] f(Q) = f(Q2ph). (2.14)
We obtain

Z = | dIItrd At exp( - Sph), (2.15)
where

Sph = Jd4x { Ttrj-0At;/dt - 2-1[ (TT)2 + (VQpr)2 ] + 2-1B2 }.
(2.16)

The functional integral is now expressed in terms of the dynamical fields
Atr and ITtr for which the measure is Cartesian. This is the expression one
would start with in canonical quantization.

The last expression for Z makes manifest the physical content of the
functional integral. @ The dynamical fields AT and IIr propagate
dynamically in time, and interact instantaneously at a distance by M-l
which occurs in Qpn = M-1p. However, because detM does not appear in

the partition function Z, there are no closed instantaneous loops.

Unfortunately, this expression is only heuristic because Sph is a non-
local action (because of the appearance of Qpnh = M-1p), which we don't
know how to renormalize. To obtain a renormalizable theory, we start

over again and introduce the Gaussian identity (2.6) into the functional
integral (2.3) with the local Faddeev-Popov action (2.4). This gives
7 = | dTIdAdCdC*dA exp(-S). (2.17)

Here S is the local phase-space action



S = [d4x [ TI;-E; - 2-1112 + 2-1B2 + V;C*-D;(A)C - V;A-A; 1. (2.18)

The non-renormalizable instantaneous closed fermi-ghost loops now recur
in the perturbative expansion but, according to the preceding discussion,
they are canceled by corresponding instantaneous closed bose loops. We
shall verify this cancellation explicitly.

The equations of motion of Ag and IIj that one derives from this
action read

Dilli=0 (2.19)
IIi =E;. (2.20)

Thus despite the presence of ghost fields in the local Coulomb-gauge action
(2.18), Gauss's law is satisfied at the level of equations of motion. This
suggests that the Coulomb gauge is well-adapted for addressing the
confinement problem, because one expects that Gauss's law is crucial to the
long-range color-force. Indeed we shall find a Ward identity that
expresses Gauss's law in the functional integral formalism, and which is
essential for renormalizability.

3. BRST and Lorentz invariance

The Faddeev-Popov action is invariant under the BRST
transformation

SAu = DuC sC=- 2'1 gCXC

sC*¥ = A sA =0. (31)
Under this transformation the E and B fields transform covariantly, sE =
gEXC and sB = gBxC. Consequently if we assign to Il the BRST
transformation

sIT = glIxC, (3.2)

under which it remains nil-potent s2 = 0, then the action (2.18) is BRST
invariant

sS =0. (3.3)



and may be written

S = Jd4x [ - 2-1(T1 - E)2 + 2-1(E2 + B2) - s(ViC*-A)) 1. 3.4)

We must show that expectation values of gauge-invariant of gauge-
invariant functions W(A) are Lorentz (Euclidean) invariant. As usual, A
transforms as a vector field under Lorentz transformation, and C, C* and
A transform as scalars,

SvAp = v\ Xk A Ay + Vp A A,

8vC = Vg,A Xk a), C

SVC* = Vg, A Xk 81 C*

OvA = Vi A Xk 9 A (3.5a)

Here v ) = - VAx is an arbitrary infinitesimal Lorentz transformation.
Consequently (1/4)Fu 32 = (1/2)(E2 + B2) is a Lorentz (Euclidean) scalar.
We assign a Lorentz transformation law to II; which also makes the first
term in (3.4) a Lorentz scalar. This is achieved by assigning a scalar

transformation law to Ilj' = (Il - Ej) foreachi1 =1, 2, 3,

OvITi' = vich X O3 I15'.
This gives, for I1j = I1;' + Ej =I1;' + Fo i,

OvITi = v\ xx Or (I1i' + Fo,i) + vo,u Fpi + vi,v Fo,v,

OvIl; = v xk 02 ITi + vo i Fji + vik Fok. (3.5b)
With this assignment, Lorentz transformations commute with the BRST

transformation, dys = sdy, and moreover the Lorentz variation of the
action is BRST exact,

8yS = s[ - Jd4x Sy(ViC*-Aj) ] = sy. (3.6)



This is sufficient to assure that expectation values of gauge-invariant
functions W(A) are Lorentz invariant. To prove this, we write

(Wy=N]dd W exp( - S)
where @ represents the set of all fields
@ = (I1j, Aj, Ao, C, C*, A). (3.7

The change of variables ®' = ® + 6y® leaves the measure d® invariant,
which gives

0=/dd 5y [Wexp(-S)]=]dd (5yW - W 8yS) exp( - S) ]
=] d® ByW - W s y) exp( - S) 1= d® [8,W - s(W y) ] exp( - S) 1,

where we have used the fact that the gauge-invariant quantity W(A) is
BRST-exact, sW = 0. With sS =0, this gives

0=Jd®d §yW exp( - S), (3.8)

which shows that (W) is Lorentz-invariant.

4. Feynman rules

The zero-order action S is the part of the action S, eq. (2.18), that is
quadratic in the fields. We write Sg = (®, I'gp @), and I'g is the matrix
represented in momentum space by,

I'o IT; Aj Ap A
I1; - 8i ik i -ikj 0
Aj -iko 8jj 0 j k2 - ki kj 0 ik
Ao ik 0 0 0
7y 0 ik 0 0

10




The zero-order propagators used in Feynman rules are the elements of the

inverse matrix

Do IT; Aj Ao A
I1; - k2 Pyjtr iko Pijir  [-iki/k2 0
(ko? +k2) [(ko? +k2)
Aj -iko Pi;tr Py jtr 0 -ik;/ k2
(ko? +k2) | (ko? +k2)
Ao ikj/k2 0 1/k2 -iko/ k2
A 0 ikj/ k2 iko/ k2 0

where i and j run from 1 to 3, k2 =kjk;, and Pj;r = (k2 8;; - ki kj)/k? is
the projector onto transverse 3-vectors. The fermi ghost C-C* propagator
is given as usual by 1/k2.

The elementary propagators and vertices are shown graphically in
Fig. 1. The A-field does not appear in any vertex and its propagators do
not concern us further. The propagators that are independent of ko are

instantaneous in time and are represented by dotted lines. These are
Dolli,Ao, DgA0,A0, and DoC.C*. The remaining bose propagators satisfy
limko—D(kg, k) = 0, and thus do not contain any instantaneous part (as
they would if there were a ko2 in the numerator). We call propagators that
satisfy limkxo—D(ko, k) = 0 "dynamical”, and represent them by solid

lines. These are DolliIli, Delli,Aj, and DgALAJ. If one writes
ITj = IIjtr - V;Q, the Q propagators are instantaneous and the IItr

propagators are dynamical. So the instantaneous propagators are all time-
like or 3-dimensionally longitudinal, and the dynamical propagators are
3-dimensionally transverse. There are no time-like momenta ko at the

vertices.

The dangerous non-renormalizable diagrams contain closed
instantaneous loops. For these loops have no time-like momenta in any
denominator to provide convergence for the ko integration. Let us see

what such loops consist of. Ghosts are coupled at the vertices gViC*-Aj X
C, and the ITj and A fields are coupled at vertices, gIlj - Aj X AQ, where

11



IT; = ITjtr - ViQ  Thus instantaneous closed loops are either bose,
consisting of Ag-C2 propagators, or fermi, consisting of C-C* propagators.
These two loops precisely cancel each other. We have verified
diagrammatically that in the Coulomb gauge, the role of the Faddeev-
Popov determinant is to cancel unwanted instantaneous bose loops, leaving
only instantaneous Coulomb exchanges. The separate expressions for the
instantaneous loops are not finite before cancellation, and so, to avoid
ambiguity, we complete the usual Feynman rules with

Supplemental rule 1: all diagrams that contain instantaneous bose or fermi
loops (that formally cancel each other) are suppressed.

There are closed bose loops that are formed of a single dynamical
I1;-Aj propagator, with all other propagators in the loop being
instantaneous. Let the IIj-Aj propagator carry momentum ky, and write
the loop integral (in d spatial dimensions) Jdkoddk. The integral over kg is
given by [ dko ko (ko2 + k2)-1. It diverges logarithmically in any number
of spatial dimensions, so it is not regularized by dimensional
regularization, but is formally 0. We deal with this ambiguity by
Supplemental rule 2: all diagrams containing such loops are assigned the
(formally correct) value 0.

We suppose without proof that the remaining graphs are made finite
by dimensional regularization, and that the theory defined by with these
supplementary rules obeys the Ward identities that will be derived below.
5. Calculation of proper two-point functions

In this section we shall calculate all the two-point functions to one-
loop order. We do this by dimensional regularization, using the

exponential representation of all denominators. For example the zeroth
order A-A propagator is written

DoALA] = (k2 8y - ki kj) [k2 (ko2 + k2)]!
= (k2 8i - ki kj) Jo~>dadB exp[ - ok2 - B( ko2 +k2) ].

The loop momenta are then performed by Gaussian integration. As we are
interested in renormalizability we shall write only the divergent parts.

The most intricate of the proper functions is I'A-A. The diagrams
which contribute to it are shown in Fig. 2. Diagrams (c¢) and (d) are

12



instantaneous bose and fermi loops which cancel each other and are
suppressed by supplemental rule 1. The result for the divergent part is

TALAj =pg &1 [ (1/3) ko? ;5 - (k204 - kikj) ], (5.1
Here we have introduced the divergent constant

1/e = (4-D)-1, (5.2)
and the coupling parameter

Ao = (8mw2)-1 Ng2, (5.3)
where D = d+1 is the number of space-time dimensions. The diagrams

which contribute to I"AL,A0 are shown in Fig. 3. Diagram (b) is suppressed
by supplemental rule 2. The result is

TAi,Ao = A9 g-1 (- 1/3) ko ki. 5.4)

The diagrams which contribute to ['A0.A0 are shown in Fig. 4. The result
is

[AoA0 =} e-1 (1/3) k2. (5.5)

These give the divergent part of the effective action quadratic in the vector
potential,

T(A, A) = A e1(1/2)] d4x [ (1/3) (DA - ViAp)2 - (VxA)2 1.
(5.6)

Fig. 5 shows the diagram that contributes to T1IL.Aj. It is suppressed by
supplemental rule 2. Here and below we include the zero-order term
[which vanishes for I'(A, A)], and we have

LA = iko 8y, . 5.7
The diagram that contributes to I'lli,A0 are shown in Fig. 6, with the result

[Mi,Ao=_{1-@/3)Apel} ikj. (5.8)

13



We have
I'ai, A) = J d4x ITi { doAj-[1- (4/3) hoe1] ViAg }. (5.9

The diagram which contributes to I'ILIL is shown in Fig. 7. It gives

ML = - [ 1 + (4/3) Ao e11 &, (5.10)

T(I1, ) = [ d4x [1 + (4/3) Ao €11 (-1/2)IT; IT; . (5.11)

The diagram which contributes to I'C*C is shown in Fig. 8. It gives
rc*C=11-@/73)Ape1]1k2, (5.12)
I(C* C)=[d4x[1 - (4/3) Ao &1 ] ViC* V;C.

(5.13)

This completes the calculation of the quadratic part of the effective
action I'qy to one loop order, keeping only the divergent part,

Fqu=T(A, A) + I'I1, A) + I'(IT, IT) + T'(C*, C). (5.14)

The symmetries of the theory place severe constraints on the divergent
parts which we investigate next.

6. Ward identity generated by the Gauss-BRST charge
We introduce the sources for the partition function
Z=[d®exp[-Z + (P, 1], 6.1)
where @ is the set of all elementary fields, as in (3.7), and
(@, 1) =] d4x (Ap-Jap + I + C-Je + CHIox + A-J)). (6.2)

Here the extended action X includes sources Ky, L, and Mj, for the non-
linear BRST transforms sAy, sC and sIIj namely,

14



=S +J dPx [ Ky-DyuC + Mi(gITixC) + L-(-g/2) CxC 1,  (6.3)

where S is given in (2.18). We write X = [ dDx A, where the extended
Lagrangian density is given by

A = I0;E; - 2-1112 + 2-1B2 + VC*-D(A)C - VA-A
+ Kp-DuC + Mj-(gllixC) + L-(-g/2)CxC. (6.4)

It is BRST invariant, as is X,

sA=0; sX=0. (6.5)

To derive the Ward identity, consider the infinitesimal variation

SCI)(X = &(X) Sq)a, (66)
where g£(x) is space-time dependent, and o is an index that runs over all
components of all elementary fields. It reduces to the BRST
transformation when € is constant. Because A is BRST-invariant, its
variation under (6.6) is given by

SA = (ug) s®a-INIBOuPe) = Oue) i, (6.7)

which defines the conserved BRST-current jy. Here and henceforth, all

derivatives with respect to fermionic fields are understood to be left
derivatives. We have

8% = - | dPx &(x) dyjp. (6.8)

8(®, J) =] dPx e(x) (sAp-Jap + sILi-Jmi + sCJc + AJcx).  (6.9)

The change of variable @' = ® + 0® leaves the measure invariant, and we
have, since &(x) is arbitrary,

0= [dd ( Juip + SAp-Jap + sIIjJrmi + sC-Je + AJc* )

xexp[-Z+ (D,)) ], (6.10)

15



(JAp-6/8Ky, + J11i-8/6M;j + JC-8/0L - JC+-6/81)) Z
= d® dujy exp[-Z + (@,7) 1. (6.11)
Instead of integrating this identity over all space-time, which would

give the Zinn-Justin equation, we integrate over space only, with spatially
periodic boundary conditions, and obtain

[ d3x (JAp-8/8Ky + J1i-8/8M; + Jc-8/3L - Jc*-8/8J3) Z
=0o/dd Q exp[-Z +(D,)) ], (6.12)
where Q is the conserved BRST charge,
Q=] d3x s®;-dAP@D). (6.13)

The only time derivatives in A are contained in ITj-Ej = IIi-(doAj - DjAg)
and in KoDoC, and we have, after an integration by parts,

Q=Jd3x [- CDiIl; + Ko-(g/2) CxC ] . (6.14)

The first term in the integrand is the left-hand side of the Gauss's
law multiplied by C, which is characteristic of the Coulomb gauge. We
call Q the Gauss-BRST charge. Moreover Ag also only appears in A in the
terms IT;-E; = I1;-(dpAj - DjAg) and Kg-DoC, so

0X/8A¢ = DiIl; - gKoxC, (6.15)
and the Gauss-BRST charge has the simple form

Q=/d3x [- C-8%/8A0 + Ko-8Z/5L ] . (6.16)

By (6.12), this gives the Ward identity satisfied by the partition function Z,

J d3x (JAp8/8Ky, + J1i-8/8M; + J-8/8L - Jcx-8/81)) Z

=99 | d3x (Jao-8/8]c - Ko-8/8L ) Z . (6.17)

16



(The sign of Jao-0/8]c is correct because the left derivative of (®, J) with
respect to Jc is taken.) We call this identity the Gauss-BRST identity. It is

the functional analog of the operator statement that the BRST-symmetry
transformation is generated by the Gauss-BRST charge [4]. Remarkably,
only first functional derivatives of Z appear, so the unacceptably singular
expression of Green's functions at coincident points is absent.

This identity may be expressed in various ways. Define the linear
differential operator

Pe)= [d4xet) (J Ap-0/0Ky, + J11i-8/6M;j + JC-8/0L - JC*-8/01).)
+ 0pe(t) (Jao-8/8JC - Ko-6/6L), (6.18)

where €(t) is an ordinary function of t. Then the partition function Z and
the generating functional of connected Green's functions W = InZ satisfy

P(e)Z=P(Ee)W =0 (6.19)

for all &t). This is consistent without further restrictions on Z or W
because P(¢g) satisfies

P(e1) P(e2) + P(ep) P(e1) = 0. (6.20)

This identity maintains the cancellation of instantaneous fermi and bose
closed loops discussed heuristically in sect. 2.

We make a Legendre transformation from W(J) to the effective
action I'(®), which is the generating functional of proper functions,

L(@) =(@,)) - WQ), (6.21)
where

Ay =0W/bJay Jap = 8I/6Ay

I1; = SW/dJ1i J11i = oI'/oI];

C=-86W/dIc Jc =0I'/6C
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C* = - SW/BJc* Jox = 8I'/6C*

A = dW/OI, Jo, = 8T'/OA

OW/0Ky, = - 8I'/0Ky,

OW/OM; = - 6I'/0M;

OW/OL = - 8I'/6L, (6.22)
and all fermionic derivatives are left derivatives. This gives the Gauss-

BRST identity satisfied by the effective action, which is its most convenient
expression,

J d3x (ST/5Ay-8T/8Ky, + ST/8C-8T/SL + ST/STT;-8T/8M; + ST/6C*-A)

=do | d3x ( 8T/8A0-C - Ko-8[/SL ). (6.23)

One may verify that this identity is satisfied by the local action X. It
retains its form when gluons are minimally coupled to quarks, because the
quark Lagrangian density Lqu satisfies jqu,0 = sy-dLqu/ddoy =
- C-anulaAo, where jqu,0 is the quark contribution to the BRST current.

Just as global BRST-invariance is thought to encode the information
contained in local gauge invariance, the Gauss-BRST identity appears to
encode the information contained in Gauss's.

7. Elementary properties of the effective action

The dependence of " on A and C* is determined by their equations
of motion, which is standard, except that only spatial derivatives are
encountered. We have

0=/d® &8\ exp[-Z + (D, ) ],
=Jd® (Jx - ViAi) (exp[ - Z + (@,7) ]

=(Jr-VidlJai) Z,
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or
OI'/OA - ViAj = 0.
This equation has the solution
['=]d% (-AViA; )+ T, (7.1)
where I'1 is independent of A. Similarly we have
0=]d® 8/8C*exp[-Z+ (D, D],
=[d® (Jc* + ViDiC) (exp[ - Z + (@, ) ]
=(Jc* - Vid/oK; ) Z,
or
oI'/6C* + V;0I'/6K; =0,
which gives the dependence of I on C*,

[ =[d4x (- ViAi L) + T*(Ag, Ay, C, IT;, Ko, Kj + ViC*, L, Mj).
(7.2)

In terms of I'*(Ag, Aj, C, ITi, Ko, Kj, L, Mj), the Gauss-BRST
identity reads

F(T*) =0, (7.3a)
where we have introduced the notation
F(I*) = | d3x [ ( 8T*/8A-8T*/8Ky, + 8T*/5C-8I*/3L

+ 8I'*/8I1;-81*/8Mj ) - do ( C-6T'*/6A¢ - Ko-0I'*/6L ) ] .
(7.3b)

The subscript t indicates that the Ward identity holds at every fixed time t.
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Another property of I'* that we will need later is that its dependence
on the ghost field C is of the form

I'* = [ d4x KDy C + Ta(ViC). (7.4)

Thus, apart from the term shown explicitly, I'* depends on C only through
its derivative with respect to xj, fori =1, 2, 3. This is the Coulomb-gauge

analog of the well-known Landau-gauge property of factorization of
external ghost momentum from every diagram. (It implies Z1' =1,

where Z1' is the ghost-ghost-gluon vertex renormalization constant.). In
both gauges it follows from transversality of the gluon propagator [5].

Another general property, which I' inherits from X, is invariance
I'(?Y) = I'(W") under the time-reversal transformation

Yolt, x) =Ng Pal-t, x) (7.5),

where W, represents all fields and sources, and 1, is a sign factor defined
by Na = 1 for Yo = (Aj, C, C*, A, Kj, L), and ¢ = -1 for ¥ = (Ao, I,
Ko, Mj).

It follows in particular that the proper two-point functions
I'KoC(ko, ki) and TTiC(kg, ki) are odd in kg, TKoC(kg, k;) =
-T’KoC(-ko, ki), and T'liC(kg, k;) = - TTIiC(-kg, k;j). On the other hand the
diagrams which contribute to these two-point functions contain a

continuous ghost line which enters and leaves the diagram, which consists
of instantaneous propagators. If the external momentum ky is routed

through these propagators, then the integrand is independent of kg. Thus

all loop corrections to these functions vanish, and we conclude by
inspection of X, that

I'KoC(ko, ki) = iko I'TiC(ko, ki) = 0. (7.6)

The properties of I" derived in this and the preceding section are
applied to prove algebraic renormalizability of the Coulomb gauge in
Appendices A and B, assuming that the dimensionally regularized theory,
with supplementary rules 1 and 2, is well-defined and obeys the identities
that we have derived.
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8. Running coupling constant.

Because relation (B.19) between renormalized and unrenoralized
fields mixes elementary, composite and derivative fields, partial
derivativeswith respect to the elementary fields do not renormalize
multiplicatively, in general, as one sees from (B.32). However the gluon
propagator does, as we now show.

The unrenormalized and renormalized propagators (two-point
functions) are given respectively by

[D-l(q))]x,a;y,ﬁ = 521_‘((13)/8(13;;,(18(1)%[3 (8. 1)
[Dr] (@r)Ix,oy.p = 32T ((Pr)/ 8(I)r,x,ozsq)r,y,ﬁ, (8.2)

where @q = (Ap, IIj, C, C*) represents the set of components of all
elementary fields. The two are related by

Dy yARAV(®)] = [ d4u d4v 8Ax /8 uy SAy p/8®@: v ¢ Driu,viy,e(P).
(8.3)

By (B.18), this gives
Dx,yA“"AV((D) = ZAp,LZAv Dr;x,yAu’Av(q)), (8.4)
so the gluon propagator does renormalize multiplicatively.
We now set U =V = 0, and obtain, using ZgZ A, = 1, eq. (B.36),
82Dy yAGAX(®) = g/2Dy.x yAOA0(D). (8.5)
Thus g2DxyA0-A0(D) is a renormalization-group invariant.  The
propagator at physical values of the sources is obtained by setting all
external fields to O,

82Dy yARAY = g2Dy yALAV(D)lp =K =L =M = 0. (8.6)

Its time-time component remains a renormalization-group invariant
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g2DxA0,A0 = g, 2., A0,A0, (8.7)

In this respect, the time-time component of the gluon propagator in the
Coulomb gauge in QCD behaves like the 4-dimensionally transverse part of
the photon propagator in a covariant gauge in QED.

Part of g2DxA0,A0 js instantaneous in position space
g2DyA0,A0 = §(x0)V(X) + g2D'xA0,A0, (8.8)
This part is separated out in momentum space by

V(K) = limko—560g2DA0A0(kq, k) = limgo—s00gr2DrA0:A0(ko, k),
(8.9)

where we have written V(K) for the fourier transform of V(x). We
assume that this limit exists. This limit may simply give back the sum of
all instantaneous diagrams that contribute to g2DxA0,A0  but we shall not

attempt to prove this. Because V(K) is a renormalization-group invariant,
it is independent of the renormalization mass L and depends only on k and

AQcCD.

Thus, in the Coulomb gauge, we may define a renormalized running
coupling constant that makes no reference to a regularization scheme, by

gc2(kl/AQcep) = k2 V(k). (8.10)

In renormalized perturbation theory it has the expansion

gc2(kI/AQcD) = gr2(WAQCD) [ 1 + Zn=1* gr¥(WAQcD) fu(lkl/W) 1,
(8.11)

where | is a renormalization mass in some scheme, for example the
minimal subtraction scheme. We set U = [kl, and obtain

gc2(kl/AQcep) = gr2(KV/AQeD) [ 1 + Xn=1* gr22((kl/AQcD) fa(1) 1.
(8.12)

Thus the change from gi([kl/AQcp) to gc(lk/AQcp) is a regular

redefinition of the coupling constant, and so, as is well known [6], the
B-functions of gr and g¢ have the same first two terms,

22



B(gc) = kIogc/olkl = - boge3 - biged + ... . (8.13)

We have seen that the coupling constant renormalization in one-loop order
is the same in the Coulomb gauge and in covariant gauges, so bg has the

same value as in covariant gauges. We expect that this will also be true for
b1. At large k, g2(IkI/AQCD) has the well-known asymptotic form

gc2(Ikl/AQcep) = k2 V(k) ~ [2boln(kl/Aqcp)]-L. (8.14)

9. Color-coulomb propagator from the Ward identity

The unrenormalized and renormalized effective actions both satisfy
the same Gauss-BRST identity, eqs. (7.3) and (B.36). Therefore when we
solve this identity for DA0,Ao the results hold both for renormalized and
unrenormalized quantities, and we shall suppress the subscript r
everywhere.

The Gauss-BRST identity holds term by term in a functional power
series expansion in the fields. For the term which is linear in C and Ay,

eq. (7.3) gives, after Fourier transform,
J dk dko dpo [ TAcAo(k, ko)Ao(k, ko) (ipo) C(-k, po)
+ [AiAo(k, ko) Ao(k, ko)I'KiC(-k, po) C(-k, po) ]
= ] dk dko dpo (iko + ipo ) ["A0A°(k, ko) Ao(k, ko) C(-k, po),
or
TAoAo(k, ko) = ( iko )-1 TAlAo(k, ko) IKiC(-k, po),

where we have used (7.6). This identity requires that TKiC(-k, pg) be
independent of po, a property which may be verified diagrammatically by

following the instantaneous ghost line that enters and leaves each diagram.
We write I'KiC(-k) for I'KiC(-k, po), and obtain

I"AOAO(k, ko) = (iko )-1 r‘AiAo(k, ko) rKiC(_k)_ 9.1)
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Apart from kinematic factors I"A0A© js expressed as the product
['AoAo ~TAiAoTKIiC,  We simplify the last expression as follows. By
rotational invariance we have

TKiC(k) =i k; f(k), (9.2)

where, by (7.4), f(k) = f(-Kk) is regular at k = 0. Moreover, according to
eq. (7.2), TKiC(k) is related to 'C*C(Kk) by

I'C*C(k) = - ik; I'KiC(k) = k2f(k),

T'KiC(k) = i k; FC*C(k)/k2. 9.3)
This gives
['AoAo(k, ko) = [ TC*C(k)/k2 ] (ko)1 ki T"AiAo(k, ko). 9.4)

Thus, apart from kinematic factors T'AoAo(k, kg) is expressed as the
product

I"AoAo(k, ko) ~ I'C*C(k) T'AiAo(k, ko) . 9.5)

We return to the Gauss-BRST identity (7.3), and equate the terms
that are linear in Aj and C. By repeating the above reasoning, we obtain

T"AoAi(k, ko) = [ TC*C(k)/k2 ] (-ko)-1 k; TAjAi(k, ko) . (9.6)
and similarly, by equating terms that are linear in II;j and C,

[Aolli(k, ko) = [ TC*C(k)/k2 ] (- ko)-1 k; TAITi(k, ko). 0.7
Finally, by combining (9.4) and (9.6) we obtain

TAoAo(k, ko) = [[C*C(k)/k2]2 (ko)2 ki kj T'AlAi(k, ko) . (9.8)
Thus each appearance of Agp in a proper function gives a factor of

I'C*C(k)/k2. These relations are satisfied by the one-loop expressions of
sect. 5.
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The inverse, DC*C(k) = [I'CC*(k)]-1, is the ghost or Faddeev-Popov
propagator,

DC.C*(x) = (2m)-3 | d3k exp(ik-x) DC.C*(k). 9.9)

It is the expectation-value the Green's function G(x, y; A) of the
3-dimensional Faddeev-Popov operator,

- Vi Di(A)G(x, y; A) = 8(x - y), (9.10)
namely,
(C(x, x0) C*(y, y0) ) = 8(x0 - yo) DE&-CH(x - y)
= 8(x0 - yo) (G(x, y; A)). 9.11)

The identities (9.6) - (9.8) imply a corresponding formula for
DAoAo(Kk, ko), the time-time component of the gluon propagator. Because
the propagator matrix mixes Ay and ITj, we must consider the inverse of

the matrix I'®.B, where o and B run over the field components of Ap and
II;. This matrix is reduced by taking longitudinal and transverse
components. We write Aj = AjiI - Vjo, I1; = ITjir - V;Q, and we have

I'Q.A0(k, ko) = ikj I'li.A0 (K, ko),

.2k, ko) = ki kj TTILI(K, ko)

I'o.Ao(k, ko) = ikj ['AL.Ao(k, ko),

I'o.0(k, ko) = ki kj TALAj(k, ko). (9.12)

The propagator matrix D%B is the inverse of the matrix I"®.P that has the
elements

ra,p Ao Q c A
Ag ['Ao,Ao [Ao,Q [Ao,c 0
Q QAo re.Q Q.o 0
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c ['c,A0 ro.Q ro.c k2

A 0 0 k2 0

which gives
DAO0,A0 = (_TQ,Q2) [ TAo,A0 (.['Q,Q) 4+ (TTA0,2)2 J-1, (9.13)

(The quantity (-I'2.Q) is positive in leading order.) In terms of these
quantities, (9.7) and (9.8) read

I'A0.L(k, ko) = [ TC*C(k)/k? ] i(ko)-1 T'0£2(k, ko). (9.14)

TAoAo(k, ko) = [IC*C(k)/k2]2 (ko)-2 T0:0(k, ko) - 9.15)
and we obtain

DAo,Ao(k, ko) = [k2 DC.C*(k)]2
X (k0)? (-TX22) [T0.0 (-T'2Q) + (To)2 -1 (9.16)

We substitute this result into expressions (8.9) and (8.10) for the
renormalization-group invariant running coupling constant, and obtain

g2(k/AQcp) =k2V(k) = g2 [k? DC.C*(K)]2 L(k) (9.17a)

L(K) = limko—see {k2(- T¥22) (ko)2[ [10:0¢- T12.92) + (S22 I11}.
(9.17b)

Here we have written the corresponding renormalized equations. Both
DAo,Ao(k, ko) and g2(k/AQcp) are proportional to the square of the

Faddeev-Popov propagator [D;C.C*(k)]2.
10. Exponentiation of the color-Coulomb potential’

We wish to evaluate the expectation-value (I(gAqu)) of the Wilson
loop

' The exponentiation demonstrated in this section for instantaneous propagators was
inspired by the corresponding result for planar diagrams, which was discovered by Martin
Schaden. In both cases a ladder structure leads to exponentiation [7].
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I(gAqu) = tr{ Plexp(/ dxtgAqupata)] Mirl, (10.1)

where g is the unrenormalized coupling constant, Aqu is the unrenormal-

ized connection, P indicates path ordering, the t2 are a representation of the
Lie algebra [ta, td] = fabctc, and the subscript 'qu' distinguishes the
quantum (Euclidean) field Aqy from the external field, designated A, that is
an argument of I'.

To make use of the preceding results, we express the expectation-
value in terms of the effective action,

(I(gAqu)) = Z-1 I(g8/8JA)ZIy = 0 = I(g8W/BJ A + 20/8JA)l1=0

(I(gAqu)) = (gAx p + | d4y gDy yALUD)S/5Dy o)lp=0. (10.2)

In covariant gauges, it has been shown that the expectation-value
(10.2) is finite [8], even though the arguments g and Agqu are

unrenormalized. This happens because {I(gAqu)) is a renormalization-

group invariant, and thus independent of the cut-off A. We shall not
attempt such a demonstration in the Coulomb gauge. Instead we shall show
that the contribution of the color-Coulomb potential exponentiates.

Call E the contribution to (10.2) that is the sum of all diagrams
whose connected components consist entirely of gluon propagators. [Each

exact gluon propagator DAWAV(x, y) is attached to the external quark path
at points x and y.] This is the contribution that is obtained from (10.2)
when the dependence of D(®) on ® is neglected,

E = I[ gAxy + ] d4y gDxyARAVE/BAy v 1IA=0
E =1I[ Axy + ] d4y g2Dx.yAWAVE/SAy v Jia=0. (10.3)

This formula states that E results from expanding I(Ay) in powers of Ay,
replacing products of A's by the sum all possible pairings of the A's, where
each pairing is given the value g2DxyAl-AV,
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We restrict our consideration to a rectangular Wilson loop, of size
TxR, that is aligned along the time axis. Call Ejnst the contribution to E

that results when all gluon propagators are replaced by their instantaneous
parts. For a rectangular Wilson loop aligned along the time axis, the
instantaneous part of Dx.yAK.AV contributes only when x and y lie on the
vertical parts of the path, so also 4 =v = 0. We make the substitution

g2Dx-yAlAY — §(x0-y0) V(X-y)8p,00v,0 - (10.4)
and obtain
Einst = I[ Axp +J d4y 8(x0-y0)V(x-y)8/8Ay, 0 1la=0. (10.5)

Here V(x) is the renormalization-group invariant color-Coulomb potential
defined in (8.9).

The instantaneous parts have the ladder structure shown in Fig. 9.
We expand the exponential (10.1) in powers of A. Only even powers
contribute to (10.5). For a rectangular Wilson loop of dimension RXT,
this gives loop integrals of the form

IOT dxo dyo dug dvo...
x tr P[6(x0-y0)V(R) tx2 ty2 d(up-vo)V(R) tPtyP ... ], (10.6)

where P represents path ordering around the loop, and the t's are ordered
according to their space-time label. Suppose that xg = yp < up = vg etc.
The t¢'s are placed in nested order by the path ordering, so contracted pairs
are successively adjacent ...tb tatatb . = _tb (-C) tb... = ..C2.., etc.,
where C > 0 is a Casimir invariant. [It has the value C = (2N)-1(N2-1) in
the fundamental representation of SU(N).] Consequently the integral
(10.6) has the value 20/2[-CTV(R) 12, where n is even. The factor 21/2
appears because both x and y can be on either side of the loop, and
similarly for u and v, etc. There are n![(n/2)!(2!)2/2]-1 pairings, with
overall coefficient 1/n!, and we obtain

Einst = exp[- CTV(R)]. (10.7)
We conclude that the contribution of the renormalization-group invariant

color-Coulomb potential exponentiates just as it does in Abelian gauge
theory.
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The Coulomb gauge is a "physical gauge", in the sense that
intermediate states in the time direction are purely physical. Therefore, if
the theory has a mass gap, then the diagrams with non-instantaneous
contributions, which we have neglected in calculating Ejps, are all short-

range, and Ejpst is the sum of all the purely long-range diagrams that
contribute to the Wilson loop. This raises the question whether Ejpst is a
good estimate of E.

In the presence of dynamical quarks, the Wilson loop does not obey
an area law because a dynamical quark pair is created from the vacuum to
form a pair of mesons, each consisting of one external quark and one
dynamical quark. Such diagrams are not included among the ladder
diagrams that contribute to Einst. For similar reasons, in pure

gluodynamics, the Wilson loop does not obey an area law if the external
quarks are in the adjoint representation. In both of these cases, one should
not expect Einst to be a good estimate for E. However the breakdown of

the vacuum cannot occur in pure gluodynamics, i. e. in the absence of
dynamical quarks, when the Wilson loop is in the fundamental
representation. We conjecture that in this case, Einst = exp[-CfV(R)T],
with Cr = (2N)-1(N2-1), does give the correct area law or, in other words,
that in pure gluodynamics the string tension is correctly given by

K = limr . Cf V(R)/R. (10.8)

11. Color-Coulomb potential as an order parameter for
confinement

If the color-Coulomb potential rises linearly, a string tension may be
defined by

Kcoul = limr—V(R)/R. (11.1)

We would like to propose that a non-zero value of K¢oyl as the signal for

color confinement. This has the virtue of simplicity because V(R) is a
gluonic two-point function.

There is also considerable self-consistency to this proposal. Note

first that V(R) depends only on the physical mass scale, as required (see
sect. 8). Note also that if the Coulomb gauge were defined with the "time"
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axis aligned along the other side of the Wilson loop we would have
obtained Ejpst = exp[-CRV(T)]. Thus only a linearly rising potential at
large R is consistent with (Euclidean) Lorentz invariance under 90°
rotations. (This is related to Seiler's theorem that the exponent in the
Wilson loop cannot grow faster than the area [9].)

As was noted at the end of the last section, CK.oylR # 0 does not

correspond to the physical interaction energy of an external quark pair in
the adjoint representation nor, probably, in the presence of dynamical
quarks (This happens because a gluon or dynamical quark pair is created
from the vacuum, which screens the color, thus preventing an area law.)
This does not mean that Kcoyl # 0 is a bad order parameter for color
confinement in these cases. On the contrary, color is confined in these
cases. Moreover we may understand that it is energetically favorable for
the dynamical quark pair to be created from the vacuum, thus preventing
an area law, precisely because the color-Coulomb potential rises linearly at
large distance. Thus K¢oyl may serve as an order parameter for color

confinement precisely when the Wilson loop fails to do so.

12, Confinement and the Gribov problem

So far we have not discussed the Gribov ambiguity that affects the
Coulomb gauge. In the regularized form of the theory provided by the
Wilson lattice, this ambiguity may be resolved, in principle at least, by
restricting the functional integral over AU to the fundamental modular
region (FMR). As originally proposed by Gribov [3], it has been found
[2, 10], that the restriction to the FMR leads precisely to a divergence of
k2DC.C*(k) at k = 0. Recall that we found in sect. 9 that g2(k/AQcDp) =

k2V(Kk) contains [k2DC.C*(k)] 2 as a factor.

An intuitive idea of why the restriction to the FMR leads to a
singularity of k2DC.C*(k) at k = 0 is as follows. The argument should
properly be made in the context of the lattice regularization, as is done in
[2], but we give here a continuum version. Gribov showed that at the
nonperturbative level, the transversality condition Vj-Aj = 0 does not
uniquely fix the gauge. A unique way to fix the gauge [11] is to choose as
representative on each gauge orbit that configuration A which makes the
Hilbert norm the absolute minimum with respect to all local gauge
transformations g(x), so

IAII2 = [ d4x A2 < IA8II2 for all g, (12.1)
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where Ag is the gauge transform of A(x) by g(x). The fundamental
modular region A is the set of these absolute minima,

A= {A: IAI2 < lIAgII2 for all g}. (12.2)

Under fairly general conditions the minimum (12.1) exists [12], and is
unique, apart from points on the boundary of A which must be identified
topologically [13].

An absolute minimum is also a local minimum. To see what this
implies, write g(x) = exp[®(x)] and expand in powers of ®. For every A
in the fundamental modular region A, the inequality

AZI2 - [IAII2 = - 2(VjAj, ®) + (®, - Di(A)Vi®) +...20
(12.3)

holds for all ®. This implies that A is transverse, ViA;j = 0, so we get back
the Coulomb gauge condition in the new, well-defined gauge which we call
the "minimal Coulomb gauge". In addition we find that the Faddeev-
Popov operator is positive, M(A) = - Dj(A)Vj 20, for all A in A. Thus all
(non-trivial) eigenvalues of M(A) are positive in the interior of A, so
M-1(A) is well-defined there. However the fundamental modular region A
is bounded in all directions [11], and its boundary contains points where
M-1(A) is singular [13]. When the functional integral defined in lattice
gauge theory is restricted to A, then, in the limit of large lattice volume, it
is found [2] that entropy favors these points sufficiently that k2DC.C*(k)
diverges at k = 0. (Recall that DC.C*(k) is the fourier transform of
(IM-1(A)Ix,0).) Indeed, the condition that k2DC.C*(k) diverge at k =0 is
mathematically equivalent to so-called "the horizon condition" [2]. This
condition assures that the functional integral be cut-off at the boundary of
the fundamental modular region A. That the probability gets concentrated
where M-1(A) is singular is also supported by numerical studies [14].

It has been argued [15] and confirmed in models [16], that Gribov
copies come in pairs that give equal and opposite contributions for gauge-
invariant quantities, so one need not in fact cut off the functional integral at
the boundary of A at all (at the cost however of having a Euclidean weight
that is not positive). This does not alter the conclusion that k2DC.C*(k)
diverges at k =0 in the minimal Coulomb gauge. The results of the
present article hold to all orders of perturbation theory, and it is expected
that they hold also non-perturbatively in the minimal Coulomb gauge.
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With the conclusion that k2DC.C*(k) is singular at k =0, the
elements of a confining theory are in place. We have argued that the
color-Coulomb potential V(R) at large R, or its fourier transform V(k) at
low k, provides an order parameter for confinement, and we have shown
that V(k) contains [k2DC.C*(k)]2 as a factor. Confinement arises because
this factor diverges at low k as a result of the restriction of the functional
integral to the fundamental modular region.

This argument may be turned around. Suppose that QCD is a
confining theory, as expected, and that V(R) provides an order parameter
for confinement. Then its fourier transform V(K) is singular at k = 0. In
the preceding section it was proven that V(K) is of product form, V(k) =
[k2DC.C*(k)]2 L(k). It follows that at least one of its factors is singular,
in agreement with the conclusion that the restriction to the FMR makes
k2DC.C*(k) singular.

13. Conclusion

A complete proof of renormalizability, which would require
showing that all divergences are controlled, has not been attempted here.
However we have controlled the obvious divergences in the first-order or
phase-space formalism by the supplementary Feynman rules 1 and 2, and
we have verified that the algebraic conditions for renormalization are
satisfied. Essential to the renormalization program is the Gauss-BRST
identity (6.23) or (7.3), which holds at a fixed time t, and which is an
analog of Gauss's law in the BRST formalism. This identity has the
consequence that g2DAoAo = ¢ 2D A0A0, js a renormalization-group
invariant, as is the instantaneous part of the latter quantity, which we call
the color-Coulomb potential V(R). The contribution of V(R) to the Wilson
loop exponentiates. @ We have proposed the string tension Kcoul =
limr »..CV(R)/R as an order parameter for color confinement, where C is
a Casimir invariant. @A remarkable consequence of the Gauss-BRST
identity, is that the fourier transform V(k) of V(R) has the product form
V(k) = [k2DC.C*(k)]2 L(k), where DC.C*(Kk) is the ghost propagator, and
L(k) is a correlation function of longitudinal gluons.

A correct treatment of the Gribov ambiguity requires that the
functional integral be restricted to the fundamental modular region. The
study of this restriction has shown that k2DC.C*(k) is singular at k = 0
[2, 10]. When this result is combined with the exact identity V(k) =
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[k2DC.C*(k)]2L(k) derived in the present article, one obtains a long-range,
color-Coulomb potential. Thus the previous results on the resolution of the
Gribov ambiguity, and the present conclusions from the Gauss-BRST
identity in the Coulomb gauge, together provide a rather complete scenario
for understanding confinement in the Coulomb gauge. It is expected that
this identity will allow a recent calculation of the quark-pair potential [17]
to be improved.

It is a pleasure to acknowledge many stimulating discussions with
Martin Schaden on all aspects of this work. I have also benefited from
discussions with Richard Brandt, H. C. Ren, and Alberto Sirlin.

Appendix A: General form of divergences consistent with Ward
identity

In Appendices A and B we shall demonstrate recursive
renormalizability, assuming that the theory defined with the supplementary

rules and dimensionally regularized is finite and obeys the Ward identities
derived in sects. 6 and 7. We call this "algebraic renormalizability".

As a first step,
we shall determine the form of possible divergences. We first determine

the form consistent with the Zinn-Justin equation, obtained by integrating
(7.3) over all time,

| dDx (8T*/6Ay-8T*/8Ky, + ST*/5C-8T*/SL. + 8T*/811;-8T*/5M;) = 0.
(A.1)

This condition is familiar and the method well known in covariant
gauges [18]. We expand I'* in a loop expansion

I'* = Yp=0~ I'*D), (A.2)
where
[*(0) = x* (A.3)
* = [dDx [ (1/2) (B2 + B2) - (1/2)(I1 - E)2
+ Ky-DpC + M- (glIixC) + L-(-g/2)CxC. (A.4)
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by (6.4) and (7.2). The n'th order condition is satisfied separately by the
finite and divergent parts. We assume that (A.1) is satisfied exactly for
the divergent parts by the n-th order expression for I'*, as will be assured
by conditions (B.26) and (B.27) below. We obtain for the (n+1)-th order
divergent part of I'* the linear equation

olgiv(@+1) =0, (A.5)
where the operator ¢, defined by

6 = d4x (8Z*/8Kyu-8/8Ay + SZ*/5Ay-8/6Ky,

+ 8XZ*/8L-8/86C + 8T'*/0C-6/6L
+ 8X*/6M;-8/8I1; + 6I'*/0I1;-6/0M; ) , (A.6)

is nil-potent 62 = 0. It acts on the fundamental fields just like s, namely
oAy =DyC, 6C = (-g/2)CxC, and oll; = glI;ixC, so oE; = gE;ixC.

The cohomological problem (A.5) has the well known solution
Taiv®*tD) = Rinv(A) + 6Q, (A7)

where Rinv(A) is a gauge-invariant function of A. The divergent terms are

assumed to be local in the fields. Making use of locality, conservation of
ghost number, rotational invariance and dimensional analysis, we obtain

TCgiy@+D = [ d4x [ ¢1E2 + c3 B2 + o(c3Kj-Aj + c4Kg-Ag + c5A-C
+ cMi-I1i + c7Mi-Ej + cgMi-ViAg + coMj-doAj ) ], (A.8)
=Y.-19¢a2 Sa. (A.9)

where the c,'s are divergent constants. We have not assumed Lorentz
(Euclidean) invariance in determining the possible independent constants.

We assume that the divergent parts coming from lower order terms

also satisfy the Ward identity (7.3) exactly, as is assured by (B.26) and
(B.27), below, so that Tgiv(™+1) satisfies the linear equation

ft (TCaiv®tD) = 0, (A.10)
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where the operator f;, defined by
fr=Jd3x [( OX*/8Ky-0/0A + OZ*/BA-6/6K ), + 6X*/8L-6/6C
+ 0X*/5C-0/0L + OZ*/3M;-6/0I1; + dX*/JI1;-8/0M; )
-d0 (C-8/8A0 - Ko-6/0L ) ], (A.11)

is a linearized version of Fi, eq (7.3). If one substitutes (A.8) into this
equation, one obtains

C5 =-C4; cg =c9g =0, (A.12)
whereas c1, c2, c3, ¢6, and c7 are arbitrary. Explicit calculation gives
S4 - S5 =J d4x [ Ag-( DiIl; - gKoxC ) + K;DiC
+ Mi-(gIIixC) - (1/2)L-gCxC) ]. (A.13)

Because this expression is not of the form (7.4), which asserts that the loop
corrections to I'* depend on C only through VC, we obtain

c4=c5=0. (A.14)
We conclude that Tgjy(™+1) is of the form

Taiv®+D = [ d4x [ ¢1E2 + ¢ B2 + 6(c3Kj-A; + c6M;-IT; + c7M;-E)) 1,
(A.15)

where the coefficients are arbitrary. The vanishing of c4, the coefficient of
6Ko-Ag, will lead to the important result that gAg is a renormalization-
group invariant.

The quantities with non-zero coefficients are
S3=0]d%x K;-A; =] d4x ( Fjji-DiAj + I13DoA; - KiViC)  (A.16)

S¢ =0 d4x M;II; = | d4x (- 12 + [1;-E; ) (A.17)
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S7=0)d4x M;E; =/ d4x (-II;E; + E2). (A.18)

One may compare the quadratic part of this general expression for
Igiv® with the explicit expressions for Igiv(1) of sec. 5, with Kj <> V;C*,
in accordance with (7.2). This determines all the coefficients (c3 is in fact
overdetermined), with the result

c1 =ca = (-11/6) Ag/e (A.19)
c3 = (4/3) Mole (A.20)
ce = (2/3) Mo/e (A.21)
c7 =2 Aole, (A.22)

where Ap = (872)-1Ng2, and € = 4-D. We have
Taiv(D = Ao/e [ d4x { (-11/6) (E2 + B2)
+0[@4/3) Ki-Aj+ B3 M I+ 2 Mi-E) ]}  (A.23)

This gives the complete one-loop divergence structure. The Ward identity
determines the cubic and quartic terms from the quadratic terms.

As a bonus, we observe that the term which is not G-exact, is
Lorentz-invariant: the coefficients of E2 and B2 are equal c; = c¢2. One

expects that holds in every order, for otherwise the expectation-value of a
Wilson-loop would not be Lorentz invariant, as it must be, as we have seen
in sec. 3.
Appendix B: Recursive proof of renormalizability

We wish to show that the divergent expression (A.15) with

c1=¢2 (B.1)

namely

Taiv® = [ d4x [ c1(B2 + B2) + 6(c3Ki-Aj + ceM;IT; + c7MiEy) 1,
(B.2)
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can be canceled by a renormalization of the quantities that appear in I'(0) =
>* given in eq. (A.4). For this purpose we must express I'qiv(® as a

derivative of X*.
Let H be the Euler differential operator

= - go/og + | d4x Ay-8/8Ay . (B.3)

By simple power counting we have
HZ* = [ d4x [ (B2 + B2) + (I]; - E;)-E;
- Mi-(glIixC) - L-(-g/2)CxC ]

=[d4x [ (E2 + B2) - 0 M;-E; - M;-8Z*/8M; - L-8Z*/8L ],
(B.4)

by (A.18), which gives

[ d4x (B2 + B2) = [H + | d4x (M;-8/6M; + L-8/8L)] =* + | d4x 6 M;-E;.
(B.5)

This allows us to write
Tgiv® =T1+T2+TI3 (B.6)

where

T1=ci[ -g0/0g+ Jd4x Ay-8/8Ay + M;-8/8M; + L-§/8L ) ] =*

(B.7)
and
'y =0 [ d4x (c3Ki-Aj + cMi-TT; ),
Iy = [ d4x [ c3 (Ai-8Z*/3A; - Ki-8X*/8Kj)
+ cg(I1;-6X*/8I1; - M;-6Z*/6M;) 1, (B.8)

are of the desired form, and
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I3 =(c1 +c7) o] d4x MiE; . (B.9)

There remains to cast I'3 into the desired form. This is a novel term
that leads to mixing of the Il and E fields under renormalization. We have

o (Ei-Mj) = g(E;xC)-M; + E;-0X*/6I1; .
To proceed, we use the equation of motion of the IT field,

Ej = 6Z*/8I1; + IT; + gM;xC, (B.10)
and obtain

o (Ei-Mj) = gM;jxC)-(6Z*/8I1; + ITj + gM;xC) + E;j-0Z*/8I1; .

6 (EiM)) = [ (Ej + gM;xC)-8/811; - M;-8/8M; + g(M;xM;)-8/8L | T*.
(B.11)

where we have used Cx(M;xC) = (-1/2)Mjx(CxC). This gives
Taiv® = - ¢c1 goX*/dg + [ d4x { c1A0-8/8A0 + (c1+c3)A;-8/8A;
+ [ceIT; + (c1+c7)(Ej + gM;xC)]-6/011; - c3K;-6/0K;
- (c6 + ¢7) Mj-8/0M; + [c1L + (c1+c7)g(MixM;)]-6/0L }X*
(B.12)

This shows that I'gjv(®) may be canceled by a renormalization of quantities
in the zero-order action X*.

Observe that Ag and g renormalize oppositely. This will lead to the
notable result that

8A0 = grAr,0 (B.13)
is a renormalization-group invariant.

Ghost number conservation is expressed by the identity
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[ C-8/3C - Ky-6/8Ky, - M;j-6/6M; - 2L-8/8L ] £* =0, (B.14)

which may be added to the right-hand side of (B.12) with an arbitrary
coefficient. A convenient choice is cq, giving

Caiv® = - ¢ goX*/ag + | d4x { c1(Ag-8/8A0 + C-8/8C - Ko-8/5Kp)
+ (c1+c3) ( Aj-8/0A; - K;-0/0Kj) + [cell; + (c1+c7)(E; + gM;xC)]-8/611;
- (c1+cetc7) Mi-6/0M; + [- c1L + (c1+c7)g(MjxM;)]-0/0L }X*

(B.15)
SO

gC = gCr, (B.16)
will also be a renormalization-group invariant. There are four independ-

ent renormalization constants, c¢i, ¢3, ¢c¢ and c¢7, whose value is not
determined by symmetries.

Cancellation of the divergences by renormalization requires an
exquisitely Baroque mixing of fields. @ We introduce renormalized
quantities according to the following scheme

g=Zogr (B.17)
Ao =7ZA0 Ar,0

Aj=7A Arji

C=7ZcC;

C* =Zcx* C*;,

Ki =ZKK;,i

Ko =ZKoKr,0

M;j =ZMmM; i (B.13)

Ili = Znll; i
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+ Z11' (ZA 90Ar,i - ZAo ViAr,0 + ZA gr Ar,0XAr,i + ZM gr M ixCp)
L = ZLLr + ZL' ZM2 Zg gr(Mr’iXMr’i). (B.lg)

The IIj and L fields mix under renormalization with composite fields made
of elementary fields and of the source Mj, and with derivatives of the
elementary fields. The mixing equations may be written more simply

ITi = Znll; i + Z11' (Ei + g MjxC)
L=71L; + Z1' gMjxMj). (B.20)

The four independent renormalization constants may be chosen to be Zao,
ZA, Z11, and Z11'. With reference to (B.15), one sees that if they are

defined recursively by
Zao+]) = 7A@ - ¢q
ZA(m+1) = ZA(m) ¢y -3
Zn@+D) = Zp®) - cq
Z'(+l) = Zp'(®m) - ¢y - ¢7, (B.21)
and if the remaining normalization constants satisfy
Zg+l) = Z,(™) + c1 + O(n+2)
Zc+l) = =ZcMm) - ¢c; + O(n+2)
ZKn+1) = Zes@) = Zex(®) + ¢ + ¢c3 + O(n+2)
ZKko™*tD) = Zg ™ + ¢ + O(n+2)
Z1.(0+1) =71 () + c14+ O(n+2)
Z1,'(0+]) =77 '(™) - ¢ - ¢7 + O(n+2)

Zv(+]) = 7y + ¢ + ¢ + ¢7 + O(n+2), (B.22)
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then
2:'*(‘Pr(n'*'l), gr(n+1)) = ¥ (\Pr(n)’ gr(“)) - 1_‘div(n"'l) (lPr(n), gr(n))
+ O(n+2) (B.23)

provides the counter terms which cancel the divergences in order n+l.
Here we have written relations (B.17) - (B.19) in order n as

gn) = Z(n)g, (B.24)
Yol = Vo (Z), ¥y, go), (B.25)
and o is an index that runs over all components of all fields and sources,

Ya = (Ao, Aj, C, ITj, Ko, Kj, L, Mj,).

For the recursive proof we impose the conditions

1 =ZgZao = ZgZc = ZAZc* = ZAZK =ZAo0ZKo = ZcZ1. (B.26)

ZnZm=1-711, 71’ = ZnZmZy. (B.27)
which are obviously consistent with (B.22). We have set

Zc*x =7ZK (B.28)
to be consistent with (7.2). Conditions (B.26) and (B.27) are determined

by requiring that, in each order n, the unrenormalized action regarded as a
function of the renormalized fields,

TP, gp) = ZF(P), g(n)), (B.29)
satisfy the Ward identity (7.3) exactly

Fi(Zs*®) = 0. (B.30)
To prove that (B.30) is satisfied when (B.26) and (B.27) hold, one writes

Fe(Er*) = | d3x [ ( 8Zr*/8Ar - 85r*/8K y + SEr*/8C-8*/0Ly
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+ 8T */ST1;-Zr*/8My i ) - 90 ( C-8Zr*/8Ar0 - Kr,0-6%*/8L; ) 1,
(B.31)

and uses

d/8Ar,0 = Zao [ 0/86A0 + Z11'Di(gA) 8/011; ]

8/5Ari=ZA [ 8/5A; - ZiT'Di(gAo) /811, ]

8/6C; = Zc [ 8/6C + Zr1'g Mixd/8TT; |

8/8Myi = Znm [ 8/8Mj + 2 Z1'g Mix8/8L + Zi1'gCx8/81L; 1, (B.32)

as follows from the change of variables (B.18) and (B.19). The other
partial derivatives renormalize multiplicative.

The recursive renormalization proceeds as follows. It is supposed
that there is a set of Z(1)'s such that (B.30) is satisfied exactly and such that
the renormalized action given by

Te(¥r) = T(¥) = Sm=o 1 TI)(¥@), g(n), (B.33)
is finite to loop-order n, and satisfies the Ward identity to loop-order n,
Fi(I't) = O(n+1). | (B.34)

Then the Ward identity Fy(X*(0+1)) = 0 is satisfied exactly by Z*@+1),
Moreover

Ir(¥r) = T(¥) = Zm=0 01 TP 0+1), gln+D)) (B.35)

1s finite to order n+1, because conditions (B.26) and (B.27) are consistent
with (B.21) and (B.22). Consequently the renormalized Ward identity
(B.30) is satisfied to order n+1. This completes the recursive proof of
renormalizability.

We have also proven that the finite renormalized effective action
I'(W;) satisfies the Ward identity

Fi(Iy) =0. (B.36)
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To one-loop order, we have, by (A.19) to (A.22),
Z(D) =1 - (11/6) Ao/e

ZaoD) =Zc) =1 + (11/6) Ag/e

ZAD =1 + (112)ho/e

Zrn(D =1 - (2/3) Ag/e

Z1'(D) = (-1/6) Aple

Zc+(D) =Zg() =1 - (1/2) hole

Z1 (1) =1 - (11/6) Ag/e

Z1,(1) = - (1/6) Ao/e

ZMD = 1 + (5/6) hole , (B.37)

where Ag = (8m2)-1 Ng2, and € = 4-D. The coupling renormalization
constant Zg is the same as in covariant gauges.
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Figure Captions

Fig. 1. (a) Elementary propagators (b) Elementary vertices
Fig. 2. Diagrams that contribute to I'ALA;]

Fig. 3. Diagrams that contribute to ['Ai,Ao

Fig. 4. Diagrams that contribute to I'A0,A0

Fig. 5. Diagram that contributes to T'TIi,Aj

Fig. 6. Diagram that contributes to I'Ili,Ao

Fig. 7. Diagram that contributes to I'Tli.A]

Fig. 8. Diagram that contributes to I'C*,.C

Fig. 9. Graph consisting of instantaneous gluon propagators
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