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We investigate the question when the alternating or symmetric square of an abso-
lutely irreducible projective representation of a non-abelian simple group G is again
irreducible. The knowledge of such representations is of importance in the description
of the maximal subgroups of simple classical groups of Lie type. We obtain complete
results for G an alternating group and for G a projective special linear group when
the given representation is in non-defining characteristic. For the proof we by exhibit
a linear composition factor in the socle of the restriction to a large subgroup of the
alternating or symmetric square of a given projective representation V. Assuming irre-
ducibility this shows that the dimension of V' has to be very small. A good knowledge
of projective representations of small dimension allows to rule out these cases as well.

1. INTRODUCTION

Let R = R(£f) be a finite classical group of Lie type. Let G < R be a quasi-simple
subgroup acting absolutely irreducibly on the natural module of R, not of Lie type in
characteristic £. We study those cases where G has the same number of composition
factors on the adjoint module for R as R itself. These embeddings are of importance
in the determination of maximal subgroups of the finite classical groups of Lie type.

Let V be the natural module for a classical group R. We will write A2(V), £2(V)
respectively A(V) for the largest irreducible R-sub-quotient of A%(V), Sym?(V), V ®
V*. In Table 1.1 we recall the dimension of X(V) for certain choices (R, X) with
X € {A, X2, A} (see [3], resp. [1, (8.9), (9.6) and (11.6)]).

In this paper we study quasi-simple subgroups G of classical groups R which act
irreducibly on V as well as on X (V) with X as in Table 1.1. We say that V is of plus-
type (for G) if it carries a G-invariant quadratic form, and that V' is of minus-type if
it carries a bilinear alternating form but no quadratic form. Thus if V' is of plus-type
for G, we have to consider both A2(V) and £2(V), if V is of minus-type, we consider
$2(V), and A2(V) if £ = 2, and if V carries no G-invariant non-degenerate form, we
have to consider A(V). Previous results in this direction were obtained by the first
author for special linear groups [8], and by the second author for arbitrary quasi-
simple groups in the case £ = 0 and X = A [9]. We hope to pursue this investigation
for other types of quasi-simple groups G in the future.

This paper was written while the authors were participating in the special semester on represen-
tations of algebraic groups and related finite groups at the Isaac Newton Institute (Cambridge). It
is a pleasure to thank the institute for its hospitality.
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1.1. Choices for R and X.

R X dim(X(V)) condition
SL, | A m?2-1 Lfm
A m?2-2 £m
SPm | 22 im(m+1) £ odd
22 Imm-1)—-1 ¢£=2, m=2 (mod 4)
22 Imm-1)~2 £=2, m=0 (mod 4)
SOm | A% iIm(m-1) £ odd
A2 Ilmm-1)—1 £=2, m=2 (mod4)
A2 Im(m-1)-2 £=2, m=0 (mod 4)
22 Imm+1)-1  ¢fm
52 Imm+1)—2 fm

2. THE ALTERNATING GROUPS

For a field F and a partition A - n of n let S* denote the Specht module for the
symmetric group &,, over F. It is irreducible if the characteristic of F' is prime to n!.

We first collect some results on the constituents of alternating and symmetric squares
of small Specht modules.

Lemma 2.1. For alln > 9 we have
A2(S'n,—1,1) — Sn—2,12, ZZ(Sn—l,l) = 8" + gn—1.1 + Sn—2,2,
Az(sn-z',z) _ Sn—2,12 + gn—321 4 Sn—3,13 + Sn—4,3,11
22(5’"‘2’2) =S"+ gn—11 + 2822 gn—3,3 + gn—32,1 + gn—4:4 + Sn—4,22
AZ(Sn—Z,lz) — Sn—2,12 + gn—32,1 + Sn—3,13 + Sn—4,2,12
22(8"‘2’12) = g™ + gLl 4 9gn—22 4 gn-33 4 gn—3,2,1 4 Sn—4,22 + Sn—4,14.

Proof. Tt is well-known that the character x» of any Specht module S* can be written
as a linear combination of permutation characters 16" on Young subgroups &, for

partitions x4 > X. The decomposition of 16" ® 1 N where the largest part u; of u
is at least » — 2 can easily be done using the Mackey formula for tensor products.
The formulas for the decomposition of alternating and symmetric squares are then
proved by induction. We give the details for the simple case of S"~1:1. By the Mackey
formula we have

12: 1 ® lg:—l = len + 1611 2!

hence since lg:_l = 8™ + 8"~ we obtain
(22) Sn— 11®Sn 1,1 Sn+Sn 11+Sn—22+sn -2,12
The branching rule yields

.,&2(511—1,1”6"_1 — AZ(Sn—2,1 + Sn—l) _ A2(Sn—2,1) + =21 — Sn—3,12 _|_S'n.—2,1,



Alternating and symmetric squares 3

the last equality by the induction hypothesis, starting from 7 = 4 where the assertion
is easy to check. Now conversely the branching rule shows that A2(S™~1!) can only
have been S"~2!°. Equation (2.2) then also determines the decomposition of the
symmetric square. The other cases can be handled similarly. [

For any field F of characteristic £ and any f-regular partition A - n we denote by
D?* the ¢-modular irreducible F'&,-module indexed by A. The decomposition of the
Specht modules S into irreducible constituents D# is known for small partitions. We
will need the following assertions:

gr—bl = pr=tl 4 6, D",
Sn_2’2 — Dn—2,2 + 52Dn_1’1 4 53Dn,
§r—21" — pn—21* 1 5 pn—Ll  if 7 is odd,

where
PR 1 if £n, 6'—{1 if £|n — 2,
"1 0 else, 271 0 else,
{1 if2#4n—-1, or £=2,n=1,2 (mod 4),
53 =
0 else

(see [5, Th. 24.1 and 24.15]). Finally, we need some information on irreducible mod-
ules of small dimension. For k > 1 we define the set R,(k) to consist of those
irreducible &,,-modules D for which there exists an ¢-regular partition A - n with
A1 > n — k such that either D 2 D> or D 2 §'" @ D*. The following is a slight
strengthening of a result of James [6, Th. 7| (where the bound (n — 1)(n — 2)/2 was
given):

Proposition 2.3. Let F be a field of characteristic £ > 0. Let n > 12 if £ # 2,
respectively n > 17 if £ = 2. Then any irreducible F&,-module D satisfies one of

D € R,(2) or dim(D) > (n — 2)(n — 3).

Proof. Let first £ # 2. Define f(n) := (n—2)(n—3) for n > 13 and f(12) := 88. Then
2f(n) > f(n+2) for all n > 12. Also, from the known decomposition matrices {5] it
follows that for n € {12,13} and F' of characteristic different from 2 the irreducible
FS,-modules D either lie in R,(2) or satisfy dim(D) > f(n). (&12 has an 89-
dimensional 5-modular irreducible module not in R,(2).) Moreover, by [6, Table 1]
we have dim(D) > f(n) for all D € R,(4) \ R,(2) and n > 12. But then by Lemma 4
in [6] the first part follows.

If F has characteristic 2 we define f(15) = f(16) = 126, f(n) = (n — 2)(n — 3) for
n > 17. Then the same argument can be used since for n € {15,16} the irreducible
FG,,-modules D either lie in R,(2) or satisfy dim(D) > 126. O

A corresponding result for the projective representations of the alternating group
was proved by Wagner [11]:
Proposition 2.4 (Wagner). Let F be a field of characteristic{ #2,n > 8, andV an
n—s—1

absolutely irreducible faithful F[2.2,]-module. Then dim(V) is divisible by 21"
where s is the number of 1’s in the 2-adic expansion of n.
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Lemma 2.5. Let G be a covering group of the alternating group A,, n > 8, V a
faithful FG-module with F of characteristic £ > 0. Then X(V), fa'r' X e {A2, 52 LA},
contains one of the constituents of the permutation character 12["_4

Proof. Let first V be an absolutely irreducible faithful 2,-module and ¢ # 2. We
consider the restriction of V' to a natural subgroup H = A4 and write V3,V;3, V3
for the non-trivial isotypic components of V' under the elementary abelian Sylow 2-
subgroup of H. Since ¢ # 2 these are direct summands of V' which are cyclically
permuted by the elements of order 3 in H. Thus Vi, V5, V3 are equivalent modules
for the centralizer A, 4 of H. Hence X (V) contains at least three trivial A, _4-
composition factors in the socle. By our above considerations this implies that X (V)
contains a constituent of the permutation module 13:_4 as claimed.

In the case £ = 2 we let 01,02 € G = 2, be 3-cycles which generate an 4. Let
Vi, V,2 denote the non-trivial eigenspaces of o7 on V. These are modules for the
centralizer 2, _3 of oy. Let W1,..., Wi denote the composition factors in the socle
of the restriction of V,, to the centralizer ,,_4 of H := (01,02). Assume first that V'
is not self-dual, so X = A. If £ > 2, or if Kk = 1 and W; is equivalent to the socle
of V2, X(V) contains at least four trivial 2, _4-composition factors in the socle.
If the socle of V,, @ V2 consists of two non-equivalent 2l,_4-modules then W; has
to be os-invariant, so V,, is G-invariant, which is a contradiction. So now assume
that V is self-dual. If one of the W; is self-dual, or if two of them are equivalent,
or if k > 3 then X (V) has sufficiently many trivial 2, _4-composition factors in the
socle and X (V) contains a constituent of 1%:_4. If £ = 1 and W, is not self-dual
then V,, is {01,092, %A,—_3) = G-invariant, so V = V,,, which is a contradiction. Thus
finally assume that £ = 2 and W7, W, are non-equivalent and not self-dual. Then
the conjugate of W3 by o3 is another composition factor of the socle of V as 2, _4-
module. Since V,, cannot be G-invariant, W is dual to W; so that again X (V') has
three trivial %, _4-composition factors in the socle.

Finally, assume that G = 2, = 2.2, and £ # 2. Here we restrict to a cyclic
subgroup generated by an element o of order 4 in a natural subgroup H = 2, and
denote by V;, V_; the eigenspaces of o for the primitive fourth roots of unity. These are
direct summands of V' which are interchanged by elements in the Sylow 2-subgroup
of H, hence they are equivalent modules for the centralizer 2,,_, of H. Thus X (V)
contains at least one trivial composition factor in the socle. If V' is of plus-type, then
so are the V; as 2,_4-modules, and £?(V) contains at least three trivial composition

factors in the socle. Thus we obtain that X (V) contains a constituent of 13" , 3

claimed. O

Proposition 2.6. Let G be a covering group of the alternating group ™An,, n > 7,
V an absolutely irreducible faithful FG-module with F' of characteristic £ > 0. Then
X (V) is reducible for X € {A%,X2%, A} unless (G,£,dim(V), X) are as in Table 2.7.

Proof. The Brauer character tables for 2.2,, n < 13, are known (see [5]) and the
assertion can be checked, so we may assume n > 14.

We first consider irreducible representations V of 2,,. Then X (V) is a constituent
of W .= 1%:_‘1 by Lemma 2.5. The ordinary constituents of W are Specht modules

S* for partitions A - n with A\; > n — 4. The largest degree of such a constituent is
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2.7. Examples in alternating groups 2A,, n > 7.

G ¢ dim(V) | A2 £2 A
An b n-1 X

A, ln n-—2 X X
3.917 5 3 X
2[7 2 4 X
2.2 7 4 X
2.%7 75 2, 7 4 X
6.2 | #2,3 6 %
5213 2 4 X
2.s +£ 2 8 X

Ag 2 8 X

2.919 3 8 X
22 | #2,3 8 X X
2.2[10 5 8 X X

dim(S"~%21") = n(n — 2)(n — 3)(n — 5)/8. On the other hand by Prop. 2.3 either
dim(V) > (n —2)(n—3) or V € R,(2), or n < 16 and £ = 2. Since

tn(n—2)(n — )(n—5) < %(n — ) (n—3)((n—2)(n—3)—2) 2

it follows that either V is a constituent of the restriction to 2, of some D* with
A >n—2,orn <16, £ = 2. For these modules the assertion easily follows from
Lemma 2.1 and the decompositions into irreducibles of S* collected above. If £ = 2,
n € {14,15,16}, the degrees of the constituents of lg:_4 can be computed explicitly
using [4]; they are collected in Table 2.8. The degrees in line 3 correspond to the
examples in Table 2.7. The only other entries of the form m? — ¢, m(m —1)/2 — € for
integral m and € € {1,2} are

208 =21-20/2—2, 560=34-33/2—1, 624=252—1.

But 24 does not have 2-modular irreducible representations of degree 21 or 34, nor
does 2;s have such of degree 25, as restriction to 2A;3 shows.

2.8. Dimensions of some &,-modules D*, ¢ = 2.

A n=14 n=15 n =16
n 1 1 1
n—1,1 12 14 14
n—22 64 90 90
n—3,3 208 336 336
n—3,2,1 560 624 896
n—4,4 364 910 910
n—4,3,1 1300 1300 2548
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In the case of faithful 2.2(,-modules Lemma 2.5 and the result of Wagner (Prop. 2.4)
give a contradiction unless n € {14,15}, dim(V') € {32,64}. We first consider n = 15.
If £ +~ 13 the smallest dimension of a faithful 2.&;3-module is 64, while for £ = 13 the
smallest degree of a faithful 2.%;5-module is 32. Thus restriction to these subgroups
shows that in fact dim(V) > 64 if n = 15. Now from [5, Th. 24.1 and 24.15] and
Table 1 in [6] it follows that no irreducible constituent of W has the same degree as
X(V). So finally assume that n = 14. In any characteristic, any faithful irreducible
2.2, 1-module of dimension less than 100 has dimension 16, and there are at most two
inequivalent ones. Thus if dim(V) = 64 we obtain enough trivial 2.2l;;-composition
factors in the socle of X (V) to conclude that X (V) is a constituent of lgi‘: This
contradicts dim(V) = 64. Thus dim(V) = 32. Again from [6, Table 1] and [5,
Th. 24.1 and 24.15] we deduce £ = 3. From the known tables it can be checked that
the smallest faithful 2.2;3-modules (of dimension 32) are of minus-type, while the
32-dimensional faithful 2.6;2-module is of plus-type. So V does not carry a non-
degenerate form. The tensor product of a 32-dimensional faithful 2.2;3-module with
itself contains a constituent of degree 66, so dim(A(V)) < 924, which gives the final
contradiction. [

3. THE LINEAR GROUPS

Partial results in the case of linear groups had already been obtained in [8]. It
turns out that the methods used there extend to our more general situation.

Proposition 3.1. Let G be a covering group of La(q) or Ls(q), £ a prime with
ged(g,£) = 1 or £ = 0 and V an absolutely irreducible faithful FG-module. Then
X (V) is reducible for X € {A2%,32, A} unless (G,£,dim(V), X) are as in Table 3.3.

Proof. Let first S = La(g). The cases ¢ < 13 can be treated using the tables in
the modular Atlas [7]. Hence assume that ¢ > 16. Then, by [10] the minimal
degree of a faithful irreducible projective representation of La(g) in characteristic £ Jq
is (¢—1)/gcd(2,g—1). On the other hand, the largest degree of a complex projective
irreducible character for S is ¢+1. For the case of the alternating square, irreducibility
of X(V) gives the inequality 3(¢ — 1)(¢ — 3) — 2 < ¢ + 1 which is not satisfied for
g > 16. For £2(V) and A(V) the bounds restrict g even more.

The groups Lz(g) for ¢ < 4 can be handled using [7]. So assume now that
S = Ls(g), ¢ > 5. Then the minimal degree of a faithful irreducible projective
representation of S is at least g2 — 1 [10], while the largest degree of a complex pro-
jective irreducible character for S is (¢% + ¢ + 1)(g + 1). The irreducibility of the
alternating square thus forces the inequality

1
3@ -1 -2)-2< (¢ +g+1)(g+1)
which does not hold for ¢ > 5. [

Proposition 3.3. Let G be a covering group of L,(q), n > 4, ¢ # 2, £ a prime with
g~cd(q, £)=1ort= 0 and V' an clbsol'u.tely wrreducible faithful FG-module. Then
X (V) is reducible for X € {A%,32, A} unless (G,£,dim(V), X) are as in Table 3.2.

Proof. Using the modular Atlas to treat L,(3) we may assume that V is a module
for G = SL,(q), and ¢ > 4 for n = 4. We now essentially follow the argument in [8].
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3.2. Examples in linear groups.

G ¢ dim(V) | A2 52 A
2.L,(4) | #2,5 2 X

L, (4) # 2,5 3 X X
Ly(7) £2.7 3 x
3.L,(9) +3 3 x
L2(9) 2 4 X

2L,(9) | #2,3 4 X

L2 (9) #2.3 5 | x

L2(13) 2 6 X

42.L3(4) 3 4 X
2.L3(4) 3 6 | x x
6.Ls(4) | #2,3 6 x
41L3(4) 5& 2 8 X
2.Ls(4) 7 10 | x

L4(2) 75 2 7 X

Let P; denote the stabilizer in G of a 1-dimensional subspace of the natural module.
Thus P; is a maximal parabolic subgroup of G, with Levi decomposition P; = U;: G
where the Levi factor G; = GL,_1(g) acts on the elementary abelian group U; of
order ¢"~! as it does on its natural module. Upon restriction to U; the module V

splits as
V|U1 = @ Vi.
A€Hom(Uy,F )

Moreover G; permutes transitively the spaces V) for A # 1.

We fix 1 # A € Hom(Uy, F*) and denote by P, its stabilizer in P;. Thus P, =
U1: Us: Go where Us: Gy is the stabilizer of A in G; = GL,_1(g), |U2| = ¢"~2 and
G2 = GL,,—2(g). Let ()\) denote the set of ¢ — 1 non-trivial elements of Hom(Us, F*)
stabilized by P,. We consider two cases.

Case 1: First assume that U; acts nontrivially on V). We write

Vil,= @ V-
pEHom(Us ,F %)

By our assumption V} ,, # 0 for some (and hence all) u # 1. The stabilizer P; in P, of
such a V), , is of the shape U;: Us: Us: GL,—3(g), with Us elementary abelian of order
g™ 3. Let (i) denote the set of non-trivial elements in the centralizer in Hom(Uy, F¥)
of GL,,—3(q), of order ¢ — 1, and

Vagwy = €D Vaw -
wE(u)

Thus the stabilizer Hs of V) () is of the form Uy: Us: Us: (GLn—3(q) x (¢ — 1)). Now
W := X (V) is a non-trivial Hz-invariant subspace of X (V'). Assuming that X(V)
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is irreducible this gives the upper bound
dim(X(V)) < [G : H3]dim(W) < (¢" = 1)(¢" ! ~ 1)(¢" % — 1) dim(X (Va,)) -

Since |[Hom(U;, F*)| = |U;| = ¢** we have the lower bound dim(V) > (¢"~* — 1) x
("2 — 1)d,,, where dy , := dim(Vj ), so

(349) dm(X(V)) 2 2@~ 1)@ - Va0~ D@ = dr —1) - 2.

These two inequalities yield a contradiction for all (n, g).
Case 2: Thus we may assume that U; acts trivially on V.

Case 2a: First we treat the subcase that dy := dim(V)) > 2. The subspace W :=
X(Vy) of X(V) is Ps-invariant by definition and has trivial Us-action by assump-
tion. Since the kernel U; < Uy of A (of order g"~2) acts trivially on W, this is a
P, := U;:Us: Gy-submodule of X(V). Our assumptions force W # 0, so if X(V)
is irreducible it must be a constituent of Wg . Now P, lies in a maximal parabolic
subgroup P of G of the form U;: Us: (SL2(g) © SLp_2(q)) : (¢ — 1). Since any irre-
ducible complex character of GLy(g) has degree at most g + 1 we see that X (V) is

the constituent of the induced of a P-module of dimension at most (g + 1) dim(W).
This gives the bound

e (" —1)(g"'-1)
dim(X(V)) < T dim(X(V3))

On the other hand clearly dim(V) > (¢"~! — 1)d,, so for example

(3.5) dim(A(V)) 2 2" - Dar (@ - s 1) = 2

in the case X = A%, Comparing these bounds we obtain a contradiction unless g = 3,
dy € 3, X = ¥2. In the latter case we may assume n > 5. Then the derived group
of G2 has to act trivially on V), hence V) has only linear G2-constituents. Replacing
V> by one of these, the previous argument goes through. So X (V') can not have been
irreducible.

Case 2b: Now assume that d) = 1. Then the same argument as before can be applied
to the submodules W := V,, ® Vi, where \' € Hom(U;, F*) different from A and
from 1 is stabilized by P, yielding the bound

(" -1)(¢" ' -1)
(¢ —1)2 '

By [10] we have dim(V) > (¢" — 1)/(g— 1) —n > ¢"~1 4+ ¢"~2 for (n,q) # {(4,3)}.
The ensuing inequality is not satisfied for n > 4. This completes the proof. [

dim(X (V)) <

To treat the linear groups over Fy we introduce some more notation. For a partition
A F n let x) denote the (complex irreducible) unipotent character of SL,(g) indexed
by A. For a Levi subgroup L of G = SL,(q) we write RS (respectively *RY) for the
operation of Harish-Chandra induction (restriction).
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Lemma 3.6. Let n > 4. The unipotent character xn—2,12 of SL,(2) is a constituent
of both A%(xn-1,1) and £2?(xn—-1,1)-

Proof. We proceed by induction on n. The assertion is true for SL4(2) & Ag. Let
P = U: L be the maximal parabolic subgroup of G = SL,(2) with L = GL,_;(2) and
denote by V' a CG-module affording the character x,_; ;. Harish-Chandra induction
and restriction of unipotent characters x of SL,(q) behave precisely as ordinary
induction and restriction of Specht modules S* for the symmetric group &,. Thus
V|p contains an L-module with character x,_21 on the centralizer V; of U. Now
X(W)|p = X(V|p) for X € {A2,£2%}, hence by the inductive assumption we have
that X (V)|p contains a submodule with character x,,_3 1z on the centralizer X (V');
of U. In other words (*R¥(X (Xn—1,1)), Xn—3,12) # 0. By the adjointness of Harish-
Chandra induction and restriction this implies that X (xn—1,1) contains a constituent
of Rf(xn_&lz). By the Littlewood-Richardson rule we have

Rg(Xn—3,12) = Xn-2,12 + Xn-3,2,1 + Xn-3,13-
But the degrees

Xn—s2(1) = (2" — 1)(2" — 16)(27"2 = 1)/7,
Xn-—3,13 (1) = (2n - 2)(271 - 4)(271. - 8)/213

of the second and third possible constituent of X (V') are larger than dim(X (V')). This
shows the assertion. [J

Proposition 3.7. Let G be a covering group of Ly(2), n > 5, £# 2 and V' an abso-
lutely irreducible faithful FG-module. Then X (V) is reducible for X € {A%, X2, A}.

Proof. As above we may assume that V' is a module for G = SL,(g). We follow
the proof of the preceding proposition. The argument in Case 1 goes through unless
dxr, = dim(Vy,) = 1 and X = A% when W = 0. In this case let 0 # u' €
Hom(U;, F*) be different from pu. Then W :=V, , ® V) , is a 1-dimensional Py :=
Uy:Us: Us: Uy: GL,,—4(2)-module. The maximal dimension of an irreducible GL4(2) £
As-module is 70, so all constituents of the induction of W from P, to a maximal
parabolic subgroup of type [2*"~16]: (GL4(2) 0 GL,_4(2)) have dimension at most 70.
This forces

2" -1~ t-1)(22-1)(2"32-1)
(22-1)(22-1)(24-1)

dim(A%(V)) < 70

which is a contradiction to the lower bound (3.4).

In Case 2, when U, acts trivially on Vj, let P3 = Uy: Us: Us: GL,,(2) denote the sta-
bilizer of a pair A, A’ of non-trivial elements of Hom(U;, F*). We write V) = @,V) ,
for the decomposition of V) into isotypic components for Us. Now the submodule
@u(Vau ® Vo ) of X (V) has trivial Uy: Us: Us: GLy, (2)-action. Thus X (V) is a con-
stituent of the permutation module for this subgroup. Since the largest dimension of
an irreducible GL3(2)-character is 8, we obtain the estimate

@ -eEt-1@2*2%-1)

dim(X (V)) < 51
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On the other hand, if GL,_2(2) acts non-trivially on Vj, by [10] we get the lower
bound
dim(V) > (2" ' -1)(2" 2 - n+1)

if n > 7, respectively dim(V) > 217 if n = 6, dim(V) > 30 if n = 5. This yields a
contradiction. Hence V), cannot be a faithful GL,,_3(2)-module, and replacing V) by
a 1-dimensional submodule in its socle yields a contradiction to the upper bound (3.5)
unless dy = 1 and X = A. Since G is generated by two conjugates of U; we must
have dim(V;) < dim(V)/2, so dim(V) < 2(2"~! -1) =2" — 2.

By [2, Th. 1.1] this implies that V is contained in the /~-modular reduction of a char-
acteristic 0 module with character xp—1,1 and xp—1,1(1) — 1 < dim(V) < xn—-1,1(1).
But now the dimension of the submodule of X (x,—1,1) exhibited in Lemma 3.6 is too
small for X(V) to be irreducible. This final contradiction completes the proof. [
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