ON SPECIAL PIECES IN THE UNIPOTENT VARIETY
MEINOLF GECK AND GUNTER MALLE

ABsTRACT. This article is the result of experiments performed using computer programs
written in the GAP language [17]. We describe an algorithm which computes a set of
rational functions attached to a finite Coxeter group W. Conjecturally, these rational
functions should be polynomials, and in the case where W is the Weyl group of a Cheval-
ley group G defined over I, the values of our polynomials at g should give the number
of F,-rational points of Lusztig’s special pieces [14] in the unipotent variety of G. The
algorithm even works for complex reflection groups. We give a number of examples which
show, in particular, that our conjecture is true for all types except possibly B, and D,,.

1. INTRODUCTION

Let G be a connected reductive algebraic group defined over some algebraically closed
field k. Let X be the partially ordered set of unipotent classes of (G, where we write
C < ' if and only if C lies in the Zariski closure of C’. Following Spaltenstein [20] and
Lusztig [14], we can define a partition of X into so-called special pieces. To do this, we
first have to recall some facts about the Springer correspondence and special characters
of Weyl groups.

Let W be the Weyl group of G (with respect to some maximal torus). The Springer
correspondence associates with each irreducible character of W a pair (C, ), where C €
X¢ and 9 is an irreducible character of the group of components of the centralizer of an
element in C. This correspondence is injective but, in general, not surjective. However,
it is known that all pairs (C, 1) arise in this way. Given C € X we denote by ¢¢ the
irreducible character of W such that ¢¢ corresponds to (C,1).

Now recall from [9], [11, Chap. 4] that the irreducible characters of W are partitioned
into families and that each family contains a unique special character. It is known that
all special characters are of the form ¢¢ for some C € Xg (see [11, (13.1)] in good
characteristic and [7, Theorem 2.1] in bad characteristic). A unipotent class C € Xg is
called special if the character ¢¢ is special.

The required partition of X¢ is now defined as follows. Each piece of this partition is
a union of some unipotent classes of G. Two unipotent classes C,C’' € X belong to the
same piece if and only if ¢¢, dcr belong to the same family of characters of W. Since each
family contains a unique special character and each special character is of the form ¢¢
for some class C, we see that each piece of X contains a unique special unipotent class.
These pieces are called the special pieces of Xg. One of the main results of [14] asserts
that a special piece consists precisely of the unique special unipotent class C in it and all
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unipotent classes in the closure of C' which are not contained in the closure of any strictly
smaller special unipotent class.

Now let us assume that k is an algebraic closure of the finite field F, (where ¢ is a
power of some prime p) and that G has a split F,-rational structure, with corresponding
Frobenius map F. Then all unipotent classes are F-stable. It is known that for each
unipotent class C' there exists a polynomial fo € Q[u| (where u is an indeterminate) such
that |CF’| = fo(g®) for all s > 1. Note, however, that the classification of unipotent
classes is different for different primes p. Nevertheless, Lusztig has shown the following
surprising result in [14]:

Theorem 1.1 (Lusztig [14]). Let W be a finite Weyl group. Then there exists a collection
of polynomials {fs} C Z[u], one for each special character ¢ of W, such that the following
hold: whenever G is a connected reductive algebraic group with Weyl group W and F: G —
G is a Frobenius map corresponding to some split F,-rational structure on G (for some
prime power q), then |C¥| = fs(q) where C is the special piece corresponding to ¢.

Lusztig’s proof is case by case, using some very elaborate counting arguments. This
paper arose from an attempt to find a more conceptual proof. We propose a general
algorithm for computing the polynomials fs. This algorithm even works for complex
reflection groups. Several examples of computations will be given. The algorithm was
found by experimentation, using programs written in CHEVIE [6] or GAP[17].

2. THE ALGORITHM

We will describe an algorithm, which takes as input a finite Coxeter system (W, S) and
returns a list of polynomials, one for each special character of W. This algorithm is a
variant of that for computing Green functions, as explained in Shoji [19].

First, we need to recall the basic definitions of the a-invariants and the b-invariants of
the irreducible characters of W (cf. [9]).

Let V' be a real vector space and W C GL(V) the standard geometric realization of W,
where the elements in S are reflections (see [3, Chap. V, §4]). Let u be an indeterminate;

we define "
ud — 1
Py =
w15
Let CF(WW) be the space of R-valued class functions on W, and let R: CF(W) — R(u)

be the map defined by

where di, ds, ... are the degrees of W.

— 1 e(w)f (w)
R(f) := Py (u—1)1 7 ,,,;V dotu iy — ) for f € CF(W),

where e denotes the sign character. It is known that we have in fact R(f) € Rlu]. If
¢ € Irr(W), then R(¢) is called the fake degree of ¢. The b-invariant of ¢ is defined as
the largest r > 0 such that u" divides R(¢) or, equivalently, as the smallest » > 0 such
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that ¢ occurs with non-zero multiplicity in the character of the r-th symmetric power of
the W-module V.
We define a matrix Q = (wg,¢ )¢ ctee(w) bY

wppy =uVR(¢® ¢’ ®¢)
where N is the number of reflections in W. We shall need the following result:
Lemma 2.1 (Lusztig). For any ¢,¢' € Irr(W), we have
Wop = 6¢,¢:u2N + linear combination of strictly smaller powers of u.

(Here, 844 is the Kronecker symbol.) Consequently, the determinant of any principal
minor of () is non-zero.

Proof. Let us write ¢ ® ¢’ ® € = ¥_y4n cgv¢” where the sum is over all ¢" € Irr(W) and cg»
are non-negative integers. It is clear that ¢, = d4 4. Hence
We ¢t = ’U,N6¢,¢IR(€) + E C¢H’U,NR(¢").
$ite
Now we have R(e) = u”, and R(¢") is a polynomial in u of degree < N if ¢" # €. This
proves the first statement. Now consider a principal minor of 2 of size k. The diagonal
entries of that minor are all monic polynomials of degree 2V, and the off-diagonal entries
are polynomials in u of degree strictly smaller than 2/N. This implies that the determinant
of that minor is a monic polynomial in u of degree 2Nk; in particular, it is non-zero. [

To define the a-invariants, we need the notion of the generic degree of an irreducible
character of W. These are defined in terms of the 1-parameter generic Iwahori-Hecke
algebra H associated with (W,S). This is an associative algebra over the field R(u'/?)
(where u/? is an indeterminate), with a basis {T%, | w € W} such that the following
relations hold:

TwTw = Tww if {ww') = l(w) + I(w'),

T:= v+ (u—1)T, forseSs.
It is known that the algebra H is split semisimple (see [10, 8, 1]) and that the values of the
irreducible characters of H at basis elements T, lie in R[u!/2]. By a deformation argument,
we have in fact a bijection between the irreducible characters of H and those of W. If ¢
is an irreducible character of W, we denote by ¢, the corresponding character of H; this
correspondence is uniquely determined by the condition that 8(¢,(T,)) = ¢(w) for allw €
W, where 0: R[u'/2] = R, u*/2 — 1. The algebra H carries a symmetrizing trace 7: H —
R(u) given by 7(T1) = 1 and 7(Ty,) = 0 for 1 # w € W. A specialization argument shows
that every irreducible character of H appears in 7 with non-zero multiplicity. The generic
degrees D, associated with the irreducible characters ¢ of W can now be defined by the
equation:

GEIrr(W)
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By [2, 8, 9, 1], it is known that Dy € R[u] for all ¢ € Irr(W). The a-invariant of ¢ is
defined to be the largest s > 0 such that u® divides the polynomial Dy. We always have
ay < by, and ¢ is called special if we have equality.

We define a preorder on Irr(W) by the condition that ¢ < ¢' if and only if ay > ay.
The equivalence relation associated with this preorder will be denoted by ¢ ~ ¢'. Thus,
we have ¢ ~ ¢' if and only if ay = ay. The following result and its proof yield the
promised algorithm.

Proposition 2.2. There erist unique elements pyy € R(u) and Apy € R(u), where
¢, @' € Irr(W), such that the following holds:

App =0 unless ¢ ~ ¢’
Py =0 unless ¢ > ¢ or p = ¢’
Dop = u’? for all &

Do Pondegbos, =Wy  forallg,d
¢1,¢, lrr(W)

The uniqueness is clear. We prove the existence by describing an algorithm for solving
the above system of equations. Choose a total ordering on Irr(W) compatible with the
preorder > and define matrices of unknowns P = (py ) and A = (Ayy). Then the
above system of equations says that PAP™ = ). Moreover, A is a block diagonal matrix,
with blocks corresponding to the equivalences classes under ~, and P is a block lower
triangular matrix with diagonal blocks consisting of identity matrices multiplied by u%¢.

Assume we have r blocks, of sizes n,, ... ,n, and with corresponding a-values ay,... ,a,;
partitioning P, A, Q into blocks, the above matrix equation has the form
L 0 -~ 0][A O - 0][LPfy--- PH Q1 Qe o D,
Py I : 0 A, : 0 L : {2 :
: SN N SR I IR -2 B Q1
Py Pt L]0 0 A[0-- 0 Dz - oy oy

where I; = u*id,,. We can solve this system recursively as follows.

We begin with the first block column. We have I[1A;I; = Q, 1, which determines A;.
For ¢ > 1 we have P;;A;I; = Q;;. By Lemma 2.1, we know that det(};; # 0. Hence
A; is invertible, and we can determine P;;. Now consider the j-th block column, where
j > 1. Assume that the first 5 — 1 block columns of P and the first § — 1 diagonal blocks
of A have already been determined. We have an equation

LAL + P 1 Aj 1 P g+ + P M Py = Q5

which can be solved uniquely for A;. In particular, we have now determined all coefficients
in P and A which belong to the first § blocks. We consider the subsystem of equations
made up of these blocks; this subsystem looks like the original system written in matrix
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form above, with r replaced by j. By Lemma 2.1, the right hand side has a non-zero
determinant. Hence so have the blocks Ay, ... ,A;. Now we can determine the coefficients
of P in the j-column: for ¢ > j, we have an equation

H,jAjIj + -Pi,j—lAj—IP;,rj.-l +---+ -Pi,lAl-P;:i = Qi,j-

Since A; is invertible, P;; is determined. Continuing in this way, the above system of
equations is solved.

Remark 2.3. Lusztig has described in [12, §24] a similar algorithm for the computation
of (generalized) Green functions of finite reductive groups. But in that case, it is known
in advance that solutions exist (since the equations came from orthogonality relations for
Green functions). In our case, we had done some experiments in GAP (see Prop. 2.8 and
the examples below), and there it always turned out that solutions exist. Lusztig pointed
out that in order to prove this in general, it is necessary to use Lemma 2.1, which he
kindly communicated to us.

Remark 2.4. Instead of the preorder < defined above, we could have also used any
refinement of it such that the equivalence classes are precisely the families of Irr(W) (in
the sense of [9]). Since the a-function is constant on families, this would just yield a finer
partition of Irr(WW), but otherwise the algorithm would be the same. But is not clear
that the result would also be the same; for this it would be required that the following
condition is satisfied:

We have Ay g = 0 unless ¢, ¢’ belong to the same family. (%)

In all examples that we computed, this condition turns out to be satisfied.

Similarly to [12, Theorem 24.8], we expect that the above algorithm actually yields
polynomials:

Conjecture 2.5. We have ps 4y € Rlu] and Ay y € Rlu] for all ¢, ¢’ € Irr(W).

To each irreducible character ¢ of W, we can associate a rational function f3 € R(u)
by fo = As,- We expect that the rational functions associated with the special characters
will be of particular importance:

Conjecture 2.6. We have 3, fs = 42N, where the sum is over all special characters ¢
of W.

Conjecture 2.7. Assume that W is a Weyl group, and let G be a connected reductive
algebraic group such that W is the Weyl group of G with respect to some maximal torus.
Assume, moreover, that F': G — G is a Frobenius map corresponding to some split -
rational structure on G (where g is some prime power). Let ¢ be a special character of
W and let C be the corresponding special piece of the unipotent variety of G. Then we
have [CF| = £,(q).
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Proposition 2.8. The above three conjectures are true if (W, S) is irreducible of type A,
(any n > 1), G2, Fy, Eg, E;, or Eg. Moreover, condition () in Remark 2.4 holds in
these cases.

Proof. If (W, S) is of exceptional type, we have used an implementation of our algorithm
in GAP [17] and CHEVIE [6] to compute explicitly all elements ps 4 and Ay py. By
inspection, Conjectures 2.5 and 2.6, and condition (x) are verified. Moreover, we are
indebted to Frank Liibeck for comparing the results of our algorithm with his data files
containing the existing tables (due to Shoji, Mizuno) for unipotent classes in exceptional
Chevalley groups, and thus also verifying Conjecture 2.7.

Finally, let (W, S) be of type A,_1 so that the corresponding Chevalley group is G =
GL,,. In this case, all irreducible characters of W are special, and the special pieces are
just the unipotent classes of G. Hence it would be sufficient to show that our algorithm
produces the same result. as that for computing the Green functions of G; see [19]. In the
latter algorithm, we have to consider a system of matrix equations QA'Q* = Q where the
matrices @, A’ satisfy similar requirements as in Prop. 2.2 but they are partitioned into
blocks of size 1 (since all characters are special). Thus, by the uniqueness of solutions, it
is enough to show that @, A’ are automatically partitioned into blocks as required by our
algorithm. This is clear for A’ (since this is a diagonal matrix). As far as @ is concerned,
we must show that if a, = ay (for ¢ # ¢') then g4 4 = 0. Assume, if possible, that this
is not the case. Let C,C' be unipotent classes in G such that ¢ = ¢¢, ¢' = ¢cr. The
condition ¢ # ¢' implies C # C’. Now it is known that g3 4 = 0 unless C is contained
in the closure of C’ (see [19, Sect. 5]). But if a, = ay, then dimC = dim C’ and hence
C = (', a contradiction. O

We have also checked that the conjectures are true for all Weyl groups of classical types
of low rank. In the case of non-crystallographic finite Coxeter groups, the algorithm yields
the following results:

Lemma 2.9. Let W = (s,t) be a dihedral group such that st has order m > 3. Then there
are precisely three special characters, namely the trivial character 1w, the sign character e,
and the character p of the standard reflection representation. The associated polynomials
are given as follows.

¢ by I
E m 1
p 1 (@ ?+1)u™—1)
lw 0 u™2(u?—1)(u™-1)

The sum of these three polynomials is u>™, as it should be.

Proof. We solve the system of equations defining P and A along the lines of the proof
of Proposition 2.2. We label the irreducible characters of W such that the first is the
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sign character, the second the reflection character and the last the trivial character. This
ordering is compatible with the preorder introduced above. Then P, A have the shapes

u™ 0 0 )\11 0 0
P= P ’U,Ik_z 0 ) A= 0 Ao 0 ’
m ¢ 1 0 0 M

with p = (P21, - -+ ,Pe-1,1)%, ¢ = (Pr2, - - , P e—1)%, While
,u2m umRt um

Q=|{v"R @ ™R]|,

u™ u™ Rt u2m

with R = (R(¢2), ... , R(¢x_1))t, R = (R(¢2 ®¢), ..., R(¢x—1 ®¢))t. The upper left 2 by
2 block of PAP' equals

u?™Apq u™A11P21
u™A11Pa1 PhAu + ufdo

while the upper leftmost part of {2 equals

( uzm um(um—l + ,u) )

um(um—l +u) um(l + um + um—2 + uz)

by the definition of w;;. The assertion on the first and second line of the table follows.

More generally, this leads to the equations p = R, pr; = 1 and then
RR' + 42N =, R+ulNg=u"R, 1+ ¢Nq+ Iy =1u""

Clearly this determines A’ = u=2(Q' — RR?). Inserting this into the next equation gives
R+ u Y — RRY)q = u™R. We claim that ¢ = (1,0,...,0) is a solution to this. Then
the last equation simplifies to 1 4+ Az + Mgz = u>™ and the lemma is proved. Thus it
remains to check that

R(¢) +u™'R(p® ¢ ® €) —u ' R(p)R(¢) = v"R(¢ ®¢)

for all irreducible characters ¢ of W lying in the same family as p, i.e., different from 1
and ¢. This is an easy exercise. O

Example 2.10. Let (W, S) be a Coxeter system of non-crystallographic type H; or Hy.
Using an implementation of the above algorithm in GAP [17] and CHEVIE [6], we find the
following polynomials f, corresponding to special characters ¢. We label an irreducible
characters of W by a pair (m, e), where m denotes the degree and e is the b-invariant. To
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abbreviate notation, we write [i] = u* — 1.

Hy fo
¢1,60 1
Pas1 (u?® + u'® + 40 + 1)[30]
H; fs $9,22 ul®(u® + u® + 1)[20][30]
$1,15 1 $16,18 4?8 (u® 4 1)[20][30]
#36 (u®+ut+1)[10] Pas.16 u?8[12][20][30]
P55 u*[6][10] b36,15 u%® (u'® 4 1)[12][30]
ba3 48[6][10] $ae  udt(ul? +ut + 1)[12][20]{30]
Ps5,2 419/6][10] ®36,5 u*®[12][20][30]
$3.1 u!0[2][6][10] $25,4 u*®[2][12][20](30]
10 u!2[2][6][10] 16,3 u®[2]{12][20]{30]
o2 u®2[2][12][20][30]
ba1 u®[2]{12](20]30]
¢1,0 u [2] [12] [20] [30]

The sum of these polynomials is 4*® and u'?°, respectively. Moreover, we have checked
that condition (*) in Remark 2.4 is satisfied.

We think that the above polynomials for non-crystallographic finite Coxeter groups are
those on whose existence was speculated in [14, (6.10)]. For this note that the first, second
and last polynomial in each case coincides with the value predicted in loc. cit.

Remark 2.11. In [14, (6.10)] Lusztig gives a formula for the size of the special piece
corresponding to the special character p ® €. Namely, let dy, ... ,d; be the degrees of W,
my, ... ,m the coexponents (see for example [16]). Then we should have

1
fp®5 — (uh _ 1) zuma—l
i=1

where h = max{d, ... ,d;} is the Coxeter number of W. A short calculation shows that
this is the result given by our algorithm if and only if

R(p® p) = R(p) (R(p) +u™" —u™).

This can be checked for the irreducible finite Coxeter groups. Unfortunately we do not
see an a priori proof of this formula. (The fake degree of the antisymmetric square A%(p)
was computed in {16, Cor. 3.2].)

3. AN EXTENSION

Recall that our algorithm is a variant of that for computing Green functions. Now the
latter admits a generalization to the computation of generalized Green functions; see [12,
§24]. Lusztig suggested that our algorithm should admit a similar generalization.
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What we have to do is to consider another Coxeter system (Wi, S1) such that S is a
subset of S; and the relations for W are determined from those in W; by the scheme
explained in [13, (1.3)]. The choice of W, is subject to the requirement that the parabolic
subgroup of W; generated by S; \ S should admit a “cuspidal unipotent character” (see
[13, (2.4)]) and hence a cuspidal family of characters in the sense of [11, (8.1)]. We then
consider essentially a similar system of equations as before, but with some modifications
taking into account the presence of Wj.

We define a new matrix {} = (LD¢,¢:)¢,¢IEIH(W) by

Nu=N 8|15y _ 1yI5il-151

Wy ot = U W
¢v¢ PW ¢)¢’

where N; is the number of reflections in W; and Py, is defined in terms of the degrees
of W;. (This is analogous to the definition in [12, (24.3.4)].)

We also have to modify the a-invariants attached to the irreducible characters of W. The
pair (W, W;) determines a function f: S — {1,2,...} such that f(s) = f(t) whenever
s,t € S are conjugate in W (see [13, 2.4(b)]). We consider the generic Iwahori-Hecke
algebra H7 defined in a similar way as before, but now the quadratic relations read:

T? = ufOT + (uf(") - 1T, forse S.

Again, we have corresponding generic degrees D£ (which are not necessarily polynomials!).
The new a-invariants are now defined by

a£ = ag + (order of the pole at u =0 of D£),

where ag is the (usual) a-invariant of the characters belonging to the cuspidal family of
characters of the parabolic subgroup of W; generated by 5; \ S.

Taking these data, we can formulate an analogous version of Prop. 2.2, and one might
expect that Conjecture 2.5 still holds. We have checked that this is in fact true for all
(W, W1) where W is a finite Coxeter group of exceptional type. Note that no new cases
arise for Wy of type A,_;.

Example 3.1. Let (W,51) be of type Hy. According to [13, §3.3], we have three pos-
sibilities such that the requirements for the above setting are satisfied: (W, S) of type 0,
A; or I;(10). The first case is trivial; let us consider the other two possibilities.

If (W, S) is of type Aj, the function f takes value 15, and we have ap = 3. The modified
a-invariants of the sign and the trivial character are 15 and 0, respectively. The matrix
A consists of two 1 x 1-blocks with entries u2°[12][20}{30] and «*°[12][20][30]. We have
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If (W,S) is of type I5(10), the function f takes values 1,5, and we have ag = 1. The
modified a-invariants are given by

¢ G110 P15 P21 P22 P23z Paa Ps i
a, 31 22 6 6 6 6 2 1

The matrix A has 5 blocks, of sizes 1,1, 4, 1, 1: the entries are u®(u'°+1)[12][30], w'4[12][20][30],

4%6[12][20][30] w*®[12][20][30] w*4[12][20][30] w=*3[12][20][30]
u*[12][20][30] «*¢[12][20][30] w*®[12][20][30] w**[12][20][30]
u*4[12][20][30] w*®[12][20][30] w*6[12][20][30] w=*3[12][20][30] |’
u43[12][20][30] w*412][20][30] w*5[12][20][30] w=*6[12][20][30]

and »52[2][12][30][30], »®*[2][12][20][30]. We have

- . -
u2® w22
w0 L g2 18 46
o u® Ly gyl b
T w2 g2t o2 u®
W2 4B 2 u®
u?® N A 12
42! W17y =

In particular, we see that all entries in these matrices are polynomials.

4. COMPLEX REFLECTION GROUPS

Let now V be a complex vector space and W C GL(V) be a finite group generated by
pseudo-reflections. In order to describe a generalization of the algorithm put forward in
the previous section to W we mimic the approach in the real case.

First note that the following definition of R: CF(W) — Clu],

1
W]
where dety denotes the determinant character of W on V, makes sense for complex
reflection groups and generalizes the definition of R in Section 2. We let N* be the
number of pseudo-reflections in W and define a matrix Q by wy 4 := v R(¢ ® ¢’ ® dety)
as in Section 2.

> dety (w) f(w) for f € CF(W),

— _ 1\dim(V)
R(f) = Pw(u—1) o dety (v - idy —wt)

To define the a-invariant of an irreducible character of W, we now work with H =
H(W, u), the cyclotomic Hecke algebra for W over Clu,u™"] with one single parameter u
(see [4]). Let K be a sufficiently large extension of C(u) and Hy the algebra obtained
by extending scalars from Clu,u™!] to K. A deformation argument shows again that we
have a bijection, ¢ <> ¢,, between the irreducible characters of W and those of Hg. The
definition of generic degrees is more subtle in the present situation: it is conjectured in
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[4] (and has now been proved for all but finitely many irreducible W) that H carries
a canonical symmetrizing form 7: H — Clu,u™!], which in particular vanishes on all
elements of a suitable basis (except the identity element), and which specializes to the
usual trace form on the group ring of W. Hence, in a similar way as before, we see that
every irreducible character of Hx appears in T with non-zero multiplicity, and we may
define generic degrees by the equation:

= ¥

pelr(W)

Dt
Assume that W is irreducible and generated by dim V' = n reflections of order 2. Then
it is expected that Dy is a polynomial in Clu]. We can then define a4 to be the precise
power of u dividing Dy. A character ¢ € Irr(W) is called special if a4 is also the precise
power of 4 dividing R(¢).

Let W be an irreducible complex reflection group satisfying the assumptions made
above. Then either W is real, or W = G(e, e, n) for some e > 3, n > 3, (here, the special
characters have been identified in {15, Lemma 5.16]), or W is one of the primitive complex
reflection groups G;, i € {24,27,29,33, 34} in the notation of Shephard and Todd [18].
For such W the algorithm put forward in Section 2 still makes perfect sense. We believe
that the analogues of Conjectures 2.5 and 2.6 remain valid in this more general situation.

Example 4.1. We have used an implementation of the algorithm in GAP [17] and
CHEVIE [6] to verify the conjectures on all the primitive complex reflection groups G;,
i € {24,27,29,33,34}. The a-values of the irreducible characters of these groups were
determined in [5] as a consequence of the determination of unipotent degrees. Our al-
gorithm yields polynomial entries for P and A. The diagonal entries of A corresponding
to special characters (the lengths of the special pieces) are collected in the subsequent
tables. Their sum equals u*2, 4%, u8, 4%, u?°? respectively. Note also that for each of
the complex reflection groups above, the size of the second special piece is again given by
the formula in Remark 2.11. Here, the special irreducible characters are labeled by pairs

(m, e), where m denotes the degree and e is the a-invariant.

G2q

d1,21 1
#3s (10 +u®+1)[14]
dre  ud(u® +1)[6][14]
¢sa  u'?(u? +1)[6][14]
#7,3 u!?{4][6][14]
$3,1 ul*[4][6][14]
$1,0 u!®[4][6][14]
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Gar
#1,45 1
¢316  (u?* +u'® +1)[30]
br012  u'®(uf 4 1)[12][30]
P9,9 u30[12][30]
d15,8 u30[12][30]
P86 u30[6][12][30]
$15,5 u?°[6][12][30]
$9,4 0
®10,3 u30 (6][12][30]
#3,1 0
d1,0 u? [6][12][30]
G
é1,40 1
¢4721 ('u.16 + U12 + US + 1)[20]
¢10,18 u®(u? + 1)[12][20]
$16,13 2u’®(u* + 1)[12][20]
$15,12 u4[12][20]
#1512 u'9[8][12][20]
$20,9 2u?0[8][12][20]
b24,6 u?(u? + 1)[8][12][20]
®20,5 u?8[8][12][20]
d15,4 u?® [4][8][12][20]
15,4 u?? [8][12][20]
b16,3 0
$10,2 u32[4][8][12][20]
®4,1 0
$1,0 u*%[4][8][12][20]
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Gs3

®1,45 1
¢5,28 (u + u'? + u8 + ub + 1)[18]
$15,23 ub(ul® + ud + ub + u? + u? + 1)[10][18]
da018  ul®(ul® + ul® + 2012 4+ 2010 + 8 4 b + ut — 1)[10][18]
$30,13 ul(ud + 2ub + ut +? + 1)[10][12][18]
$15,12 u26[10][12][18]
$81,11 u??(u® + 2u* + 202 + 1)[10][12][18]
®60,10 u?2(u? + 1)[6][10][12][18]
Pa5,10 u4[4][10][18][12]
?15,9 u28[4][10][18][12]
P64,8 u?8(u? + 1)[6][10]{12][18]
Pe0,7 u?8(u? + 1)[6][10][12][18]
bas,7 u?6(u? + 1)[6][10][12][18]
Ps1,6 u28[4][6][10}[12][18]
$30,4 u®(u? + 1)[4][6][10][12][18]
#30,3 u38(u? + 1)[6][10][12][18]
$15,2 u%6[4][6][10][12][18]
$5,1 -0

®1,0

u*0[4][6][10][12][18]
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G34

&1,126 1
b6 85 (u®6 + 30 + ul? + w2 + w8 4 1)[42]
®21,68 w2 (130 + 204 + 2u'® + 2u1% + ub + 1)[30][42]
Psesr  utt(ut? + 2u3 + 3u30 4 30 + w18 — ub — 1)[30][42]
$105 46 u38(2u?? + 4u!® + 4012 + 3ub + 1)[24][30][42]
$70,45 u%6[24][30][42]
$126,41 w2 (ul? + 208 + 1)[18][24][30]{42]
b315,36 w3 (130 + 3u?! + 408 + 20412 — 1)[24][30][42]
Pa20,31 u®0(3u'? + 3ub + 1)[18][24][30][42]
$210,30 “78[18] [24][30][42]
$384,20 u(u® + 1)[18][24][30](42]
$315,28 u%(u'? + ub + 1)[18][24][30][42]
®560,27 w96 (b 4 1)[12][18][24][30][42]
$729,24 w8 (ul? + 3u® + 2)[18][24][30][42]
$840,23 u"(ub 4 1)[12][18][24](30][42]
$630,23 u7[12][18][24]{30][42]
$s96,21 utt [12][18][24]{30][42]
?630,20 u®4[12][18][24][30][42]
$s40,19 w”®(2u® + 1)[12][18][24](30][42]
$s560,18 u?(u® + 1)[18][24][30][42]
$1280,15 u(u'? + 205 — 1)[12][18]{24][30]{42]
P630,14 u?[12][18][24][30][42]
®840,13 2u?%[12][18]{24}[30][42]
$396,12 u?9[6](12][18][24][30j[42]
$210,12 ul0? [12][18][24][30][42]
$840,11 u1%2[12][18][24][30][42]
®630,11 u?® [6][12][18][24][30][42]
P729,10 0
#315,10 0
?560,9 u!92[6][12][18][24][30][42]
dr0,9 w198[12][18][24][30]{42]
$384,8 0
Pa20,7 u192(6][12][18][24][30](42]
$315,6 u1%8[6][12][18](24](30][42]
$126,5 0
$105,4 u198[6][12](18][24][30][42]
?s6,3 ul14[6][12]{18][24][30][42]
$21,2 0
b6, 0

é1,0

ul20[6][12][18][24][30][42]
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