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Abstract

This report introduces an objective function for simultaneously op-
timising the density model and transition matrices of a Markov source.
The chosen objective function seeks to minimise the average total num-
ber of bits that is required to encode the joint state of the Markov
source. This may be applied to the problem of optimising the bottom-
up (recognition model) and top-down (generative model) connections
in a multilayer neural network. This approach unifies many previous
results on the optimisation of multilayer unsupervised neural networks.

1 Introduction

There is currently a great deal of interest in modelling probability density
functions (PDF). This research is motivated by the fact that the joint PDF of
a set of variables can be used to deduce any conditional PDF which involves
these variables alone, which thus allows all inference problems in the space
of these variables to be addressed quantitatively. The only limitation of this
approach to solving inference problems is that a model of the PDF is used,
rather than the actual PDF itself, which can lead to inaccurate inferences.

∗ c© 1997 British Crown Copyright/DERA
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The objective function for optimising a PDF model is usually to maximise
the log-likelihood that it could generate the training set: i.e. maximise
〈log (model probability)〉training set.

There is also a great deal of interest in the design of optimal autoenco-
ders, for encoding input vectors with the intention of reconstructing them
with minimum average error. This would allow data to be transmitted along
a limited bandwidth communication link, for instance. The objective func-
tion for optimising an autoencoder is usually to minimise the average squared

reconstruction error over the training set: i.e. minimise
〈

‖vector-reconstruction‖2
〉

training set
.

These two optimisation criteria are different from each other. For ins-
tance, autoencoding requires that information be retained about the input
itself, whereas density modelling requires only that information be retained
about the PDF of the input; these are different requirements. However,
there is a way of expressing the autoencoder objective function which turns
out to be equivalent to a density modelling objective function, although it
turns out that the corresponding density model is not of the type that was
referred to above.

The purpose of this report is to derive the theory that relates density
modelling and autoencoding, and to show how many of the key results ob-
tained by the author (during the past decade) may be derived from this
theory. This unified theory may then be used to ensure that future results
are backwardly compatible with past results.

In section 2 the standard Shannon theory of information is summarised,
and its application to coding various types of source is derived; in particu-
lar, the Markov source is discussed, because it is central to the topic of this
report. In section 3 the application of Markov source coding to unsupervi-
sed neural networks is discussed in detail, and the connection with folded
Markov chains (FMC) [17] is derived. In section 4 density modelling of
Markov sources is compared with standard density modelling using a Helm-
holtz machine [2, 3], which demonstrates a close connection and important
differences between these two problems. The last three sections deal with
particular applications of density modelling of Markov sources: section 5
deals with the Kohonen network [7], section 6 deals with partitioned mix-
ture distributions (PMD) [18, 20], and section 7 deals with the adaptive
cluster expansion (ACE) [14, 19, 21].
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2 Coding Theory

Section 2.1 outlines the basic ideas of information theory, and section 2.2
describes in detail the process of using a model to code a source. In section
2.3 this is extended to the case of a Markov source, and in section 2.4 this is
further extended (in outline only) to the case of a dynamical Markov source.

See [25] for a lucid introduction to information theory, and see [23, 24]
for a discussion of the number of bits required to encode a source using a
model.

2.1 Information Theory

A source of symbols (drawn from an alphabet of M distinct symbols) is
modelled by a vector of probabilities P

P ≡ (P1, P2, · · · , PM ) (1)

which describes the relative frequency with which each symbol is drawn
independently from the source P. A trivial example is an unbiassed die,
which has M = 6 and Pi = 1

6 for i = 1, 2, · · · , 6.
The ordered sequence of symbols drawn independently from a source may

be partitioned into subsequences of N symbols, and each such subsequence
will be called a message. If N is very large, then a message is likely if the
relative frequency of occurrence of its symbols approximates P, or unlikely if
not. As N → ∞ the set of messages that is likely is very sharply defined, so
that there is a set of likely messages all with equal probability of occurring
(because each likely message has the same relative frequency of occurrence
of each symbol), and a set of unlikely messages (i.e. all the messages that
are not likely messages) that have essentially zero probability of occurring.
It is this separation of messages into a likely set (all with equal probability)
and an unlikely set (all with zero probability) that underlies information
theory.

A likely message from P will be called a likely P-message. The number of
times ni that each symbol i occurs in a P-message of length N is ni = NPi,
where

∑M
i=1 Pi = 1 guarantees that the normalisation condition

∑M
i=1 ni =

N is satisfied. The logarithm of the number of different likely P-messages is
given by (using Stirling’s approximation log x! ≈ x log x−x when x is large)

log

(

N !

n1!n2! · · ·nM !

)

≈ N log N − N −
M
∑

i=1

ni log ni +
M
∑

i=1

ni
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= N log N −
M
∑

i=1

ni log ni

= N log N −
M
∑

i=1

N Pi log (N Pi)

= N log N −
M
∑

i=1

N Pi log N −
M
∑

i=1

N Pi log Pi

= −N

M
∑

i=1

Pi log Pi (2)

Now define the entropy H (P) of source P as the logarithm of the number
of different likely P-messages (measured per message symbol):

H (P) ≡ −
M
∑

i=1

Pi log Pi ≥ 0 (3)

Thus H (P) is the number of bits per symbol (on average) that are requi-
red to encode the source (assuming a perfect encoder), because the only
messages that the source has a finite probability of producing are the likely
P-messages that are enumerated in equation 2. The base of the logarithm
determines the base in which the “bits” are measured. Thus base 2 lo-
garithms correspond to “bits” that each have 2 states (i.e. binary digits),
whereas base 10 logarithms correspond to “bits” that each have 10 states (i.e.
decimal digits). A common error is to assume that the base of the logarithm
somehow implies a corresponding discretisation of H (P). The logarithm is
used only as a convention to control the dynamic range of the quantity that
is called information; its effect can be removed by exponentiation using the
same base as was used for the logarithm in the first place.

It is usually very difficult to encode the source P using H (P) bits per
symbol on average. This is because although the boundary between the set
of likely P-messages and the set of unlikely P-messages is sharply defined
in principle, in practice it is very hard to model mathematically. If this
boundary is not precisely defined, then it is impossible to compute the value
of H (P) accurately. In order to ensure that all of the likely P-messages are
accounted for, it is necessary for the mathematical model of the boundary to
lie outside the true boundary, which thus overestimates the value of H (P).
This demonstrates that H (P) is in fact a lower bound on the true number
of bits per symbol that must be used to encode the source P.
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2.2 Source Coding

The mathematical model of the boundary between the set of likely P-
messages and the set of unlikely P-messages may be derived from a vector
of probabilities Q, whose M elements model the probability of each symbol
drawn from an alphabet of M distinct symbols. If Q = P then the boun-
dary is modelled perfectly, and hence in principle the lower bound H (P)
on the number of bits per symbol may be attained, although even this is
difficult to realise constructively in practice. In practical situations Q 6= P

is invariably the case, so the problem of coding a source with an inaccurate
model cannot be avoided.

Constructive coding of a source using a model Q requires that Q be
used to generate messages (Q-messages) which can then be compared with
P-messages. Since the only P-messages that occur are the likely P-messages
(these all occur with equal probability because each likely message has the
same relative frequency of occurrence of each symbol) all we need to do in
order to calculate the number of bits per symbol that is required when using
Q to encode P is to calculate the probability that a Q-message is one of
the likely P-messages (the probability that Q can generate each of the likely
P-messages is the same), which is sufficient information to deduce the total
number of bits per symbol that is required.

The log-probability ΠN (P,Q) that a Q-message is a likely P-message
is

ΠN (P,Q) = log

(

N !

n1!n2! · · · nM !
Qn1

1 Qn2

2 · · ·QnM

M

)

≈ −N

M
∑

i=1

Pi log Pi + N

M
∑

i=1

Pi log Qi

= −N

M
∑

i=1

Pi log
Pi

Qi

≤ 0 (4)

which is negative because the model Q generates likely P-messages with less
than unit probability.

The model Q must be used to generate enough Q-messages to ensure
that all of the likely P-messages are reproduced. This requires the basic
H (P) bits per symbol that would be required if Q = P, plus some extra
bits to compensate for the less than 100% efficiency (because Q 6= P) with
which Q generates likely P-messages. The number of extra bits per symbol
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is the relative entropy G (P,Q)

G (P,Q) ≡
M
∑

i=1

Pi log
Pi

Qi

≥ 0 (5)

which is −ΠN (P,Q)
N

, or minus the log-probability that a Q-message is a likely
P-message. Thus Q is used to generate exactly the number of extra Q-
messages that is required to compensate for the fact that the probability that
each Q-message is a likely P-message is less than unity (i.e. ΠN (P,Q) ≤ 0).

G (P,Q) (i.e. relative entropy) is the amount by which the number of
bits per symbol exceeds the lower bound H (P) (i.e. source entropy). Note
that both G (P,Q) and H (P) are quantities that are realisable only in
principle (i.e. they are lower bounds on the number of bits that is required
in practice), because of the well-known practical difficulties associated with
using a model Q to design an encoder. Define the total number of bits per
symbol H (P) + G (P,Q) as L (P,Q)

L (P,Q) ≡ H (P) + G (P,Q)

= −
M
∑

i=1

Pi log Pi +
M
∑

i=1

Pi log
Pi

Qi

= −
M
∑

i=1

Pi log Qi

≥ 0 (6)

This expression for G (P,Q) provides a means of optimising the model
Q. Ideally the number of extra bits that is required to compensate for the
model’s inefficiency should be as small as possible, which requires that the
optimum model Qopt should minimise the objective function G (P,Q) with
respect to Q, thus

Qopt =
arg min

Q
G (P,Q)

=
arg max

Q

M
∑

i=1

Pi log Qi

=
arg max

Q
log ( Qn1

1 Qn2

2 · · ·QnM

M ) (7)
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where log ( Qn1

1 Qn2

2 · · ·QnM

M ) is the log-probability that a message of length
N generated by Q is a likely P-message. This criterion for optimising a
model will not include the number of bits that is required to specify the
model itself, such as is used in the minimum description length approach
[23, 24].

G (P,Q) is frequently used as an objective function in density model-
ling, where the optimum model Qopt is chosen as the one that maximises
the log-probability of generating the observed data (n1, n2, · · · , nM ). Since
Qopt must, in some sense, be close to P, this affords a practical way of en-
suring that the optimum model probabilities Qopt are similar to the source
probabilities P, which is the goal of density modelling.

2.3 Markov Source Coding

The above scheme for using a model Q to code symbols derived from a
source P may be extended to the case where the source and the model are
L-layer Markov chains. Thus split up each of P and Q into separate pieces
associated with each layer, or pair of adjacent layers.

P =
(

P0, P1|0, · · · ,PL−1|L−2,PL|L−1
)

=
(

P0|1,P1|2, · · · ,PL−1|L,PL
)

Q =
(

Q0,Q1|0, · · · ,QL−1|L−2,QL|L−1
)

=
(

Q0|1,Q1|2, · · · ,QL−1|L,QL
)

(8)

where Pk|l (Qk|l) is the matrix of transition probabilities from layer l to
layer k of the Markov chain of the source (model), P0 (Q0) is the vector
of marginal probabilities in layer L, PL (QL) is the vector of marginal
probabilities in layer 0. These two ways of decomposing P (and Q) are
equivalent, because a forward pass through a Markov chain may be converted
into a backward pass through a different Markov chain, whose transition
probabilities are uniquely determined by applying Bayes’ theorem to the
original Markov chain.

The number of extra bits per symbol that is required to encode the
source P with the model Q is given by

G (P,Q) =
M0
∑

i0=1

· · ·
ML
∑

iL=1

P
0|1
i0,i1

P
1|2
i1,i2

· · · P
L−1|L
iL−1,iL

PL
iL

log





P
0|1
i0,i1

P
1|2
i1,i2

· · · P
L−1|L
iL−1,iL

PL
iL

Q
0|1
i0,i1

Q
1|2
i1,i2

· · · Q
L−1|L
iL−1,iL

QL
iL
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=
M1
∑

i1=1

P 1
i1

M0
∑

i0=1

P
0|1
i0,i1

log
P

0|1
i0,i1

Q
0|1
i0,i1

+
M2
∑

i2=1

P 2
i2

M1
∑

i1=1

P
1|2
i1,i2

log
P

1|2
i1,i2

Q
1|2
i1,i2

+ · · · +
ML
∑

iL=1

PL
iL

ML−1
∑

iL−1=1

P
L−1|L
iL−1,iL

log
P

L−1|L
iL−1,iL

Q
L−1|L
iL−1,iL

+
ML
∑

iL=1

PL
iL

log
PL

iL

QL
iL

=
M1
∑

i1=1

P 1
i1

Gi1

(

P 0|1, Q0|1
)

+
M2
∑

i2=1

P 2
i2

Gi2

(

P 1|2, Q1|2
)

+ · · · +
ML
∑

iL=1

PL
iL

GiL

(

PL−1|L, QL−1|L
)

+G(PL, QL) (9)

where the suffix il that appears on the Gil

(

P l−1|l, Ql−1|l
)

indicates that

the state of layer l is fixed during the evaluation of Gil

(

P l−1|l, Ql−1|l
)

(i.e.

it is the relative entropy of layer l − 1, given that the state of layer l is
known). This may be interpreted as the number of extra bits per symbol
G(PL, QL) that is required to encode the Lth layer of the Markov chain,
plus the sum over layers l (for 0 ≤ l ≤ L−1) of the number of extra bits per

symbol Gil

(

P l−1|l, Ql−1|l
)

that is required to make the transition backwards

from layer l to layer l − 1 (for 1 ≤ l ≤ L) of the Markov chain (averaged

over all states of layer l using
∑Ml

il=1 P l
il
Gil

(

P l−1|l, Ql−1|l
)

). Using Bayes’

theorem, this expression for G (P,Q) can be manipulated into a form which
starts at layer 0, and then makes forwards transitions from layer to layer,
to eventually arrive at layer L. However, in this report, only the backwards
pass through the Markov chain will be used.

The total number of bits per symbol that is required to code the source
P with the model Q is L (P,Q) (i.e. H (P) + G (P,Q)), which is given by

L (P,Q) = −
M1
∑

i1=1

P 1
i1

M0
∑

i0=1

P
0|1
i0,i1

log Q
0|1
i0,i1

−
M2
∑

i2=1

P 2
i2

M1
∑

i1=1

P
1|2
i1,i2

log Q
1|2
i1,i2

− · · · −
ML
∑

iL=1

PL
iL

ML−1
∑

iL−1=1

P
L−1|L
iL−1,iL

log Q
L−1|L
iL−1,iL
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−
ML
∑

iL=1

PL
iL

log QL
iL

= −
L−1
∑

l=0

Ml+1
∑

il+1=1

P l+1
il+1

Ml
∑

il=1

P
l|l+1
il,il+1

log Q
l|l+1
il,il+1

−
ML
∑

iL=1

PL
iL

log QL
iL

=
L−1
∑

l=0

Ml+1
∑

il+1=1

P l+1
il+1

Lil+1

(

Pl|l+1,Ql|l+1
)

+ L
(

PL,QL
)

(10)

where the suffix il+1 appears on the Lil+1

(

Pl|l+1,Ql|l+1
)

because the state

of layer l + 1 is fixed during the evaluation of Lil+1

(

Pl|l+1,Ql|l+1
)

. This

may be interpreted as the total number of bits per symbol L
(

PL,QL
)

that is required to encode the Lth layer of the Markov chain, plus the sum
over layers l (for 0 ≤ l ≤ L − 1) of the total number of bits per symbol

Lil+1

(

Pl|l+1,Ql|l+1
)

that is required to make the transition backwards from

layer l to layer l − 1 (for 1 ≤ l ≤ L) of the Markov chain (averaged over all

states of layer l using
∑Ml+1

il+1=1 P l+1
il+1

Lil+1

(

Pl|l+1,Ql|l+1
)

).

This result has a very natural interpretation. Both the source P and
the model Q are Markov chains, and corresponding parts of the model are
matched up with corresponding parts of the source. First of all, the number

of bits that is required to encode the Lth layer of the source is L
(

PL,QL
)

.

Having done that, the number of bits that is required to encode the L− 1th

layer of the source, given that the state of the Lth layer is already known,

is L
(

PL−1|L,QL−1|L
)

, which must then be averaged over the alternative

possible states of the Lth layer to yield
∑ML

iL=1 PL
iL

L
(

PL−1|L,QL−1|L
)

.This

process is then repeated to encode the L−2th layer of the source, given that
the state of the L − 1th layer is already known, and so on back to layer 0.
This yields precisely the expression for L (P,Q) given above.

2.4 Dynamical Markov Source Encoding

The above theory of coding Markov sources, in which both the source P and
the corresponding model Q are multilayer Markov chains, may be extended
to the case where each layer has a memory of its own previous state; thus
the static Markov source becomes a dynamical Markov source (usually with
a discretised time index). In this case the source and the model are doubly
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Markov, where, in the simplest case, there is one Markov chain linking
together different layers at the same time slice (as above), and there is
another Markov chain linking together the same layer at different time slices.
There are many possible variations on this theme.

This dynamical source differs from the static source used previously only
insofar as Pl+1|l is now modulated by a prior probability on the states of
layer l + 1 (in the simplest case), so that the Markov source P (t) at time
slice t has a statistical structure that depends directly on P (t − 1), and thus
indirectly on all P (τ) for τ < t − 1. The simplest model Q (t) that can be
used for this dynamical source is the same as was used in the case of a static
source, but this will not be as efficient a model as one which modelled the
dynamics of the source. Apart from the introduction of a state-dependent
prior probability, the entire theory of dynamical sources and models is the
same as the static theory.

3 Application To Unsupervised Neural Networks

In section 3.1 the theory of Markov source coding (that was presented in
section 2.3) is applied to a multilayer neural network. In section 3.2 this
approach is applied to a 2-layer neural network to obtain a folded Markov
chain (FMC) network [17], which is generalised to a multilayer neural net-
work in section 3.3 to obtain a network of coupled 2-layer FMCs. In section
3.4 a crude “mean field” approach to optimising this type of multilayer net-
work is presented, where the concept of probability leakage is introduced.
Finally, the problem of coding the output layer of a multilayer network is
addressed in section 3.5.

3.1 Source Model Of Layered Network

In this section the optimisation of the joint PDF of the states of all of the
layers of an (L + 1)-layer unsupervised neural network will be considered. It
turns out that this leads to new insight into the optimisation of a multilayer
encoder network.

The Markov chain source P =
(

P0,P1|0, · · · ,PL−1|L−2,PL|L−1
)

(or,

equivalently, P =
(

P0|1,P1|2, · · · ,PL−1|L,PL
)

) may be used to describe

the true behaviour (i.e. not merely a model) of a layered neural network as
follows

P 0
i0

= true probability that layer 0 has state i0
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PL
iL

= true probability that layer L has state iL

P
l+1|l
il+1,il

= true probability that layer l + 1 has state il+1

given that layer l has state il

P
l|l+1
il,il+1

= true probability that layer l has state il

given that layer l + 1 has state il+1 (11)

Thus P0 is an external source, and
(

P1|0, · · · ,PL−1|L−2,PL|L−1
)

is an in-

ternal source, where external/internal describes whether the source is out-
side/inside the layered network, respectively. Pl+1|l is not part of the source
itself (i.e. the external source), rather it is the way in which layer l of the
neural network is connected to layer l + 1. There is an analogous interpre-
tation of PL and the Pl|l+1.

The Markov chain model Q =
(

Q0,Q1|0, · · · ,QL−1|L−2,QL|L−1
)

(or,

equivalently, Q =
(

Q0|1,Q1|2, · · · ,QL−1|L,QL
)

) may then be used as a mo-

del (i.e. not actually the true behaviour) of a layered neural network as
follows

Q0
i0

= model probability that layer 0 has state i0

QL
iL

= model probability that layer L has state iL

Q
l+1|l
il+1,il

= model probability that layer l + 1 has state il+1

given that layer l has state il

Q
l|l+1
il,il+1

= model probability that layer l has state il

given that layer l + 1 has state il+1 (12)

Q has an analogous interpretation to P, except that it is a model of the
source, rather than the true behaviour of the source.

It turns out to be useful for the true Markov behaviour (i.e. P) and the
model Markov behaviour (i.e. Q) to run in opposite directions through the

Markov chain. Thus P =
(

P0,P1|0, · · · ,PL−1|L−2,PL|L−1
)

(flow of influence

from layer 0 to layer L of the Markov chain) and Q =
(

Q0|1,Q1|2, · · · ,QL−1|L,QL
)

(flow of influence from layer L to layer 0 of the Markov chain). In the
conventional language of neural networks, P is a “recognition model” and
Q is a “generative model”. Note that the terminology “recognition model”
is strictly speaking not accurate in this context, because P describes the
true behaviour (i.e. it is not merely a model) of a multilayer source. The
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effect of the Pl+1|l on the external source P0 is to compute (in a stochas-
tic fashion) various functions of the state of the source, so the Pl+1|l can
be interpreteted as computing “statistics” of the external source. A better
terminology would be to say that P is a “multilayer statistic”, rather than
a “recognition model”.

However, terminology depends on one’s viewpoint. In Markov chain
density modelling P is a source when viewed from the point of view of the
model Q. In conventional density modelling P0 is a source when viewed

from the point of model Q0, in which case
(

P1|0, · · · ,PL−1|L−2,PL|L−1
)

is a

recognition model and
(

Q0|1,Q1|2, · · · ,QL−1|L,QL
)

is a generative model.

In this report, terminology will thus be used in a context-dependent way.
Now evaluate the expression for L (P,Q) in the case where P and Q run

in opposite directions through the Markov chain. Thus use Bayes’ theorem
in the form

P l+1
il+1

P
l|l+1
il,il+1

= P l
il

P
l+1|l
il+1,il

(13)

and define Kil

(

Pl+1|l,Ql|l+1
)

in such a way that it depends on P
l+1|l
il+1,il

(flow

of influence from layer l to layer l+1) and log Q
l|l+1
il,il+1

(flow of influence from
layer l + 1 to layer l)

Kil

(

Pl+1|l,Ql|l+1
)

≡ −
Ml+1
∑

il+1=1

P
l+1|l
il+1,il

log Q
l|l+1
il,il+1

(14)

The P l+1
il+1

Lil+1

(

Pl|l+1,Ql|l+1
)

terms in L (P,Q) (see equation 10) may thus

be rewritten as

Ml+1
∑

il+1=1

P l+1
il+1

Lil+1

(

Pl|l+1,Ql|l+1
)

=
Ml
∑

il=1

P l
il
Kil

(

Pl+1|l,Ql|l+1
)

(15)

whence L (P,Q) may finally be written as

L (P,Q) =
L−1
∑

l=0

Ml
∑

il=1

P l
il
Kil

(

Pl+1|l,Ql|l+1
)

+ L
(

PL,QL
)

(16)

The various parts of the
∑L−1

l=0

∑Ml

il=1 P l
il
Kil

(

Pl+1|l,Ql|l+1
)

term may be

interpreted as follows. P l
il

is the source probability that the state of layer l is
il (after propagation of the external source from layer 0 via layers 1, 2, · · · , l−
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1), P
l+1|l
il+1,il

is the source probability that the state of layer l + 1 is il+1 given

that the state of layer l is il, and Q
l|l+1
il,il+1

is the model probability that the
state of layer l is il given that the state of layer l + 1 is il+1. Finally, the

term L
(

PL,QL
)

is the total number of bits that is required to code the Lth

layer of the network (i.e. its output layer).

3.2 2-Layer Folded Markov Chain Network

The expression for L (P,Q) in equation 16 is rather complicated, but it has a
simple internal structure which allows it to be systematically analysed. Thus
apply equation 16 to a 2-layer network to obtain the objective function

L (P,Q) =
M0
∑

i0=1

P 0
i0

Ki0

(

P1|0,Q0|1
)

+ L
(

P1,Q1
)

(17)

Now change notation in order to make contact with previous results on
vector quantisers (VQ) [9]

i0 → x
∑M0

i0=1 →
∫

dx input vector

i1 → y
∑M1

i1=1 →∑M
y=1 output code index

P 0
i0
→ Pr (x) input PDF

P
1|0
i1,i0

→ Pr (y|x) recognition model

Q
0|1
i0,i1

→ V 1√
2πσ

exp

(

−‖x−x′(y)‖2

2σ2

)

Gaussian generative model

Q1
i1
→ Q (y) output prior

(18)

where x is a continuous-valued input vector (e.g. the activity pattern in
layer 0), σ is the (isotropic) variance of the Gaussian generative model, V

is an infinitesimal volume element in input space, and y is a discrete-valued
output index (e.g. the location of the next neuron to fire in layer 1). This
allows L (P,Q) to be written as

L (P,Q) = −
∫

dxPr (x)
M
∑

y=1

Pr (y|x) log

(

V
1√
2πσ

exp

(

−‖x − x′ (y)‖2

2σ2

))

+ L
(

P1,Q1
)

=
1

2σ2

∫

dxPr (x)
M
∑

y=1

Pr (y|x)
∥

∥x− x′ (y)
∥

∥

2 − log
V√
2πσ

+ L
(

P1,Q1
)

(19)

13



Now define the 2-layer “folded Markov chain” (FMC) objective function
DFMC as (see [17] for details of the FMC approach)

DFMC ≡
∫

dxPr (x)
M
∑

y=1

Pr (y|x)

∫

dx′ Pr
(

x′|y
) ∥

∥x− x′∥
∥

2
(20)

and use the symmetry of DFMC to write it in the form

DFMC = 2

∫

dxPr (x)
M
∑

y=1

Pr (y|x)
∥

∥x − x′ (y)
∥

∥

2
(21)

where x′ (y) takes the value that minimises DFMC (i.e. x′ (y) =
∫

dxPr (x|y) x).
This allows L (P,Q) to be written as

L (P,Q) =
1

4σ2
DFMC − log

V√
2πσ

+ L
(

P1,Q1
)

(22)

If the cost of coding the output layer (i.e. L
(

P1,Q1
)

) is ignored, then
provided that V and σ are fixed quantities, the 2-layer Markov source coding
objective function L (P,Q) can be minimised by minimising the 2-layer FMC
objective function DFMC . The basic FMC approach can be generalised by
replacing the (isotropic) variance σ by a vector of (anisotropic) variances,
or even a full covariance matrix if there is enough training data to permit
this.

Equation 21 is also the objective function for a soft vector quantiser
(VQ), where Pr (y|x) is a soft encoder, and x′ (y) is reconstruction vector
attached to code index y, and ‖x − x′ (y)‖2 is the L2 norm of the reconstruc-
tion error. A hard VQ (i.e. winner-take-all encoder) has Pr (y|x) = δy,y(x);
this emerges as the optimal form when DFMC is minimised w.r.t. Pr (y|x).
This shows that the VQ objective function (equation 21) is closely related
to the objective function for 2-layer Markov source encoding (equation 17),
provided that the cost of coding the output layer L

(

P1,Q1
)

is ignored.
The effect of the L

(

P1,Q1
)

term in L (P,Q) is to encourage P 1
i → δi,i0

(only one state in layer 1 is used) and Q1 → P1 (perfect model in layer
1). The behaviour P 1

i → δi,i0 is in conflict with the requirements of the
DFMC term in L (P,Q), which requires that more than one state in layer 1
is used, in order to minimise the reconstruction distortion.There is a tradeoff
between increasing the number of active states in layer 1 in order to enable
the Gaussian generative model (Q0 is a Gaussian mixture distribution) to
make a good approximation to the external source P0, and decreasing the
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number of active states in layer 1 in order to make the average total number
of bits L

(

P1,Q1
)

that are required to specify an output state as small as
possible.

In this report the L
(

P1,Q1
)

term will usually be omitted. The optimal
network is then a hard VQ, where only 1 output state is active for a given
input state, but different output states are used for input states that lie
in different quantisation cells, so the net effect is that all output states are
used.

3.3 Coupled FMC Networks

The results of section 3.2 will now be generalised to an (L + 1)-layer network.
The objective function for coding a Markov source (equation 16) can be
written, using a notation which is analogous to that given in equation 18
(where the superscripts are layer indices) as

L (P,Q) =
L−1
∑

l=0

(

Dl
FMC

4 (σl)
2 − log

V l

√
2πσl

)

+ L
(

PL,QL
)

(23)

which is a sum of 2-layer FMC objective functions (where each term is

weighted by
(

σl
)−2

), plus an output coding cost L
(

PL,QL
)

. The layer

index l identifies the input layer of each of the 2-layer FMCs, and the output
layer of the lth 2-layer FMC is identified with the input layer of the (l + 1)th

2-layer FMC, which overall yields a chain of L coupled 2-layer FMCs. This
will be called an FMC-ladder, or simply a ladder.

If the cost of coding the output layer is ignored, then the multilayer Mar-
kov source coding objective function L (P,Q) is minimised by minimising

the sum of 2-layer FMC objective functions
∑L−1

l=0
Dl

F MC

(σl)
2 . As the number of

network layers is increased, the effect of omitting L
(

PL,QL
)

has less and

less effect on the overall optimisation, because its effect is swamped by the
∑L−1

l=0
Dl

F MC

(σl)
2 term.

Just as the objective function for a 2-layer FMC (equation 21) is equiva-

lent to the objective function for a soft VQ, the objective function
∑L−1

l=0
Dl

F MC

(σl)
2

for an FMC-ladder is equivalent to the objective function for a chain of cou-
pled soft VQs [13]. In the simplest case, the VQ connecting layer l to layer
l + 1 encodes the scalar code index yl which is output by the VQ connec-
ting layer l − 1 to layer l. Clearly, a VQ is not necessarily a good way of
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encoding yl, because VQs are designed to encode continuous-valued vectors.
This problem will be addressed in the section on probability leakage (section
3.4), where the properties of the output from a VQ are optimised in such a
way as to approximate what the input of the next VQ expects to see.

3.4 Probability Leakage

The objective function
∑L−1

l=0
Dl

F MC

(σl)
2 for an FMC-ladder couples the optimi-

sation of the individual 2-layer FMCs together. Because the output of FMC
l is the input of FMC l+1 (for l = 0, 1, · · · , L−2), the optimisation of FMC
k has side effects on the optimisation of FMCs k + 1, k + 2, · · · , L − 1. This
leads to the effect called self-supervision, in which top-down connections
from higher to lower network layers are automatically generated, to allow
the lower layers to process their input more effectively in the light of what
the higher layers discover in the data [15, 16]. This can be made explicit in
the objective function by grouping the terms as follows

L−1
∑

l=0

Dl
FMC

(σl)
2 =

D0
FMC

(σ0)2
+

(

D1
FMC

(σ1)2
+

(

D2
FMC

(σ2)2
+ (· · · (· · · (· · ·)))

))

(24)

From the point of view of FMC k, the effect of FMCs k+1, k+2, · · · , L−1 is
to add an additional piece of objective function to the basic FMC objective

function
Dk

F MC

(σk)
2 thus

Dk
FMC

(σk)
2 → Dk

FMC

(σk)
2 +

(

Dk+1
FMC

(σk+1)
2 + (· · · (· · · (· · ·)))

)

(25)

This expression can be bounded above as follows

Dk
FMC

(σk)
2 +

(

Dk+1
FMC

(σk+1)
2 + (· · · (· · · (· · ·)))

)

≤ Dk
FMC

(σk)
2 +

[

Dk+1
FMC

(σk+1)
2 + (· · · (· · · (· · ·)))

]

worst case

(26)

where the input to each of the FMCs k + 1, k + 2, · · · , L − 1 is assumed to
be uniformly distributed in the worst case. Minimising Dk

FMC then locates

a least upper bound on
Dk

F MC

(σk)
2 +

(

Dk+1

F MC

(σk+1)
2 + (· · · (· · · (· · ·)))

)

, as required.

A tighter upper bound can be obtained by combining FMC k and FMC
k +1 into a single 3-layer FMC [17] whose input and output are layer k and
layer k + 2 respectively, and there is also a hidden layer k + 1.

Dk
FMC

(σk)
2 +

(

Dk+1
FMC

(σk+1)
2 + (· · · (· · · (· · ·)))

)

≤ D
k,k+1
FMC

(σk,k+1)
2 +

[

Dk+2
FMC

(σk+2)
2 + (· · · (· · · (· · ·)))

]

worst case

(27)
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where a self-explanatory notation has been used. The 3-layer FMC objective
function (see equation 20 for the 2-layer case) is given by

D
k,k+1
FMC =

Mk
∑

yk=1

Pr
(

yk
)

Mk+1
∑

yk+1=1

Pr
(

yk+1|yk
)

Mk+2
∑

yk+2=1

Pr
(

yk+2|yk+1
)

Mk
∑

y′k=1

Pr
(

y′k|y′k+1
)

Mk+1
∑

y′k+1=1

Pr
(

y′k+1|yk+2
)

×
∥

∥

∥yk − y′k
∥

∥

∥

2
(28)

The summations
∑Mk+2

yk+2=1
(· · ·) can be evaluated thus

Pr
(

y′k+1|yk+1
)

=

Mk+2
∑

yk+2=1

Pr
(

y′k+1|yk+2
)

Pr
(

yk+2|yk+1
)

(29)

which yields

D
k,k+1
FMC =

Mk
∑

yk=1

Pr
(

yk
)

Mk+1
∑

y′k+1=1





Mk+1
∑

yk+1=1

Pr
(

y′k+1|yk+1
)

Pr
(

yk+1|yk
)





×
Mk
∑

y′k=1

Pr
(

y′k|y′k+1
) ∥

∥

∥yk − y′k
∥

∥

∥

2
(30)

which may be rearranged (in the same way that equation 21 is obtained
from equation 20) to obtain

D
k,k+1
FMC = 2

Mk
∑

yk=1

Pr
(

yk
)

Mk+1
∑

yk+1=1





Mk+1
∑

y′k+1=1

Pr
(

yk+1|y′k+1
)

Pr
(

y′k+1|yk
)





∥

∥

∥yk − y′k
(

yk+1
)∥

∥

∥

2
(31)

where the notation yk+1 and y′k+1 have been interchanged for convenience.
If this result is compared with the expression for Dk

FMC , then it is seen that

D
k,k+1
FMC can be obtained from Dk

FMC by making the replacement

Pr
(

yk+1|yk
)

→
Mk+1
∑

y′k+1=1

Pr
(

yk+1|y′k+1
)

Pr
(

y′k+1|yk
)

(32)

where the transition matrix element Pr
(

yk+1|y′k+1
)

is given in equation 29;

it specifies the probability that code index y′k+1 is damaged by the 2-layer
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FMC k+1 in such a way as to convert it to code index yk+1. Numerical values

for the Pr
(

yk+1|y′k+1
)

can be assigned assuming a manifestly suboptimal

2-layer FMC k+1, which will give an upper bound on D
k,k+1
FMC . For instance,

Pr
(

yk+1|y′k+1
)

could be modelled by an additive Gaussian noise process,

with a zero mean and a large enough variance that it guarantees an upper
bound on D

k,k+1
FMC . Finally, minimising this upper bound on D

k,k+1
FMC (i.e.

Dk
FMC with the replacement in equation 32) then locates a least upper

bound on
D

k,k+1

F MC

(σk,k+1)
2 +

(

Dk+2

F MC

(σk+2)
2 + (· · · (· · · (· · ·)))

)

, as required.

The process in equation 32 is called “probability leakage”, because the

transition matrix Pr
(

yk+1|y′k+1
)

leaks probability from index y′k+1 to index

yk+1. The application of this idea to Kohonen self-organising maps will be
discussed in 5.

The above least upper bound approach can be extended to minimising
the overall objective function as follows:

1. Minimise the upper bound on D
0,1
FMC by introducing probability lea-

kage into D0
FMC .

2. Then minimise D
1,2
FMC by introducing probability leakage into D1

FMC .

3. Etc.

4. Then minimise D
L−2,L−1
FMC by introducing probability leakage into DL−2

FMC .

5. Then minimise DL−1
FMC . No probability leakage occurs in network layer

L, because it is the final layer.

3.5 Coding The Output Layer

The general expression for L (P,Q) in equation 16 is the sum of two terms:

an FMC-ladder
∑L−1

l=0

∑Ml

il=1 P l
il
Kil

(

Pl+1|l,Ql|l+1
)

, plus the cost L
(

PL,QL
)

of coding layer L. The L
(

PL,QL
)

term has precisely the form that is com-

monly used in density modelling, so any convenient density model could be
used to parameterise QL in layer L.

A typical implementation of the type of network that minimises L (P,Q)
thus splits into two pieces corresponding to the two different types of term
in the objective function. The input space (i.e. layer 0) is connected to
the output space (i.e. layer L) by an FMC-ladder corresponding to the
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∑L−1
l=0

∑Ml

il=1 P l
il
Kil

(

Pl+1|l,Ql|l+1
)

term. In the special case where L = 0

(i.e. no FMC-ladder is used) this approach reduces to standard input den-
sity modelling. There are various ways in which QL can be computed, all of
which are special cases of the Markov random field (MRF) density model-
ling approach (all finite connectivity density models are MRFs). There are
various possibilities for this MRF model:

1. Boltzmann machine (BM). This is the most general type of MRF mo-
del (assuming that the restriction of the classical BM to binary va-
riables and quadratic interactions is not imposed), and can be com-
putationally very expensive. This includes all the well-known image
modelling MRF approaches, with or without hidden variables.

2. Hopfield network. This is a zero temperature BM, which is computa-
tionally cheaper than a finite temperature BM, but is correspondingly
less powerful. This is discussed in section 4.

3. Helmholtz machine (HM). This approach defines an upper bound on

L
(

PL,QL
)

, which reduces the computational load that would other-

wise occur if a BM were used.

4 Two Types of Density Model

This section discusses the relationship between two types of density model.
The first type is the conventional density model that aims to approximate
the input probability density (i.e. the objective function is L

(

P0,Q0
)

),
and the second type is the one introduced here which aims to approximate
the joint probability density of a Markov source (i.e. the objective func-
tion is L (P,Q)). In order to relate L

(

P0,Q0
)

to L (P,Q) it is necessary
to introduce additional layers (i.e. layers 1, 2, · · · , L) into L

(

P0,Q0
)

in an
appropriate fashion. The Helmholtz machine (HM) [5, 6, 2, 3] does this
by replacing L

(

P0,Q0
)

by a different objective function (which has these
additional layers present as hidden variables), and which is an upper bound
on the original objective function L

(

P0,Q0
)

. It turns out that Helmholtz
machine (HM) objective function (which is generally written as DHM ) and
the folded Markov chain (FMC) objective function (which is generally writ-
ten as DFMC) introduced here are closely related. The essential difference
between the two is that the Helmholtz machine objective function does does
not include the cost of specifying the state of layers 1, 2, · · · , L given that
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the state of layer 0 is known (this is known as the “bits-back” term ), which
thus allows it to develop distributed codes (which are expensive to specify)
more easily. It is not clear whether the Helmholtz machine objective func-
tion is the best approach to distributed codes, because there are other ways
of encouraging distributed codes to develop.

4.1 FMC versus Helmholtz Machine

In the conventional density modelling approach to neural networks, there are
two basic classes of model. In the case of both unsupervised and supervised
neural networks the source is P0, which is the network input (unsupervised
case) or the network output (supervised case). Additionally, in the case
of supervised neural networks P0 is conditioned on the network input as
P0|input. Thus in both cases there is only an external source (i.e. source
layers 1, 2, · · · , L are not present), which is modelled by Q0 (unsupervised
case) or Q0|input (supervised case). Q0 or Q0|input can be modelled in any
way that is convenient. Frequently a multilayer generative model of the form

Q0
i0

=
∑

i1,i2,···,iL
Q

0|1
i0,i1

· · ·Ql|l+1
il,il+1

· · ·QL
iL

(33)

is used, where the il (for 1 ≤ l ≤ L) are hidden variables, which need to
be summed over in order to calculate the required marginal probability Q0

i0
,

and the notation is deliberately chosen to be the same as is used in the
Markov chain model

Qi0,i1,···,iL = Q
0|1
i0,i1

· · ·Ql|l+1
il,il+1

· · ·QL
iL

(34)

Helmholtz machines and FMCs are related to each other. Thus the
L
(

P0,Q0
)

that is minimised in conventional density modelling can be ma-
nipulated in order to derive DHM

L
(

P0,Q0
)

≤ L
(

P0,Q0
)

+
M0
∑

i0=1

P 0
i0

Gi0

(

P1|0,Q1|0
)

= −
M0
∑

i0=1

P 0
i0

M1
∑

i1=1

P
1|0
i1,i0

log
(

Q0
i0

Q
1|0
i1,i0

)

+
M0
∑

i0=1

P 0
i0

M1
∑

i1=1

P
1|0
i1,i0

log P
1|0
i1,i0

= L
((

P0,P1|0
)

,
(

Q0,Q1|0
))

−
M0
∑

i0=1

P 0
i0

Hi0

(

P1|0
)
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= L (P,Q) −
M0
∑

i0=1

P 0
i0

Hi0

(

P1|0
)

≡ DHM (35)

where the inequality follows from Gi0

(

P1|0,Q1|0
)

≥ 0. Thus the objective

function L
(

P0,Q0
)

for conventional density modelling is bounded above by
the objective function DHM for optimising a 2-layer HM with one hidden

layer. The −∑M0

i0=1 P 0
i0

Hi0

(

P1|0
)

term is minus the entropy of layer 1 given

that layer 0 is known (averaged over layer 0); this is the “bits-back” term of
DHM . The L (P,Q) term is the standard Markov source objective function
(see equation 17), which may be be rearranged in order to make contact
with the FMC approach as in section 3.2. Thus

DHM ≤ L (P,Q)

=
1

4σ2
DFMC − log

V√
2πσ

+ L
(

P1,Q1
)

(36)

where the inequality follows from Hi0

(

P1|0
)

≥ 0.

Two inequalities L
(

P0,Q0
)

≤ DHM ≤ L (P,Q) are used in the above

derivation. L
(

P0,Q0
)

≤ DHM arises because
∑M0

i0=1 P 0
i0

Gi0

(

P1|0,Q1|0
)

≥ 0

(i.e. the model Q1|0 is imperfect, so that Q1|0 6= P1|0), and DHM ≤ L (P,Q)

arises because
∑M0

i0=1 P 0
i0

Hi0

(

P1|0
)

≥ 0 (i.e. the source P1|0 is stochastic).

If the model is perfect (Q1|0 = P1|0) and the source is deterministic (P1|0 is
such that the state of layer 1 is known once the state of layer 0 is given), then
the pair of inequalities reduces to L

(

P0,Q0
)

= L (P,Q). In this special case
the objective function for optimising a density model in layer 0 is the same
as for optimising the corresponding joint density model in layers 0 and 1.

Now rewrite the expression for DHM in order to see how it acts to disrupt
the “sparse coding” property of DFMC .

DHM =
M0
∑

i0=1

P 0
i0

Ki0

(

P1|0,Q0|1
)

+
M0
∑

i0=1

P 0
i0

Gi0

(

P1|0,Q1
)

(37)

The
∑M0

i0=1 P 0
i0

K
(

P1|0,Q0|1
)

part (i.e. the pure 2-layer FMC, which is equal

to 1
4σ2 DFMC − log V√

2πσ
if Q0|1 is Gaussian) and the

∑M0

i0=1 P 0
i0

G
(

P1|0,Q1
)

part compete with each other when the 2-layer HM objective function is

minimised. Assuming that P 0
i0

> 0, the
∑M0

i0=1 P 0
i0

G
(

P1|0,Q1
)

part likes to
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make Q1 approximate P1|0, because this reduces G
(

P1|0,Q1
)

. On the other

hand, assuming that P 1
i1

> 0, the
∑M0

i0=1 P 0
i0

K
(

P1|0,Q0|1
)

part likes to make

Q0|1 approximate P0|1, because this reduces
∑M0

i0=1 P 0
i0

K
(

P1|0,Q0|1
)

. These

two conditions cannot be met simultaneously, because
∑M0

i0=1 P 0
i0

G
(

P1|0,Q1
)

acts

to make P1|0 “spread out” to become like Q1, whereas
∑M0

i0=1 P 0
i0

K
(

P1|0,Q0|1
)

acts to make P1|0 a “sparse coder”.
The above derivation can be generalised to an (L + 1)-layer network.

Firstly, the 2-layer result can be written as

L
(

P0,Q0
)

≤ L
((

P0,P1|0
)

,
(

Q0,Q1|0
))

−∑M0

i0=1 P 0
i0

Hi0

(

P1|0
)

= L (P,Q) −∑M0

i0=1 P 0
i0

Hi0

(

P1|0
) 2-layer HM

≤∑M0

i0=1 P 0
i0

Ki0

(

P1|0,Q0|1
)

+L
(

P1,Q1
)

2-layer FMC
+L

(

P1,Q1
)

(38)

which may be generalised to

L
(

P0,Q0
)

≤ L
((

P0,P1|0, · · · ,PL|L−1
)

,
(

Q0,Q1|0, · · · ,QL|L−1
))

−∑L−1
l=0

∑Ml

il=1 P l
il
Hil

(

Pl+1|l
)

= L (P,Q) −∑L−1
l=0

∑Ml

il=1 P l
il
Hil

(

Pl+1|l
)

multilayer HM

≤∑L−1
l=0

∑Ml

il=1 P l
il
Kil

(

Pl+1|l,Ql|l+1
)

+L
(

PL,QL
)

coupled
2-layer FMCs

+L
(

PL,QL
)

(39)

If Pl+1|l is deterministic (i.e. the state of layer l + 1 is derived determi-

nistically from the state of layer l), then
∑L−1

l=0

∑Ml

il=1 P l
il
H
(

Pl+1|l
)

= 0, in

which case DHM simplifies to

DHM =
L−1
∑

l=0

(

1

4 (σl)
2 Dl

FMC − log
V l

√
2πσl

)

+ L
(

PL,QL
)

(40)

This highlights an important difference between the FMC and HM ap-
proaches: the FMC approach encourages the formation of deterministic

Pl+1|l (because this type of Pl+1|l a zero entropy H
(

Pl+1|l
)

), whereas the

−∑L−1
l=0

∑Ml

il=1 P l
il
H
(

Pl+1|l
)

term in the HM objective function tries to en-

courage stochastic Pl+1|l (because this type of Pl+1|l has a large entropy

H
(

Pl+1|l
)

). Thus the multilayer network produced by optimising a set of
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coupled FMCs tends to have a minimal amount of stochastic behaviour.
This is another way of saying that the FMC approach naturally leads to
sparse codes.

As in the case of a 2-layer network, if the source is deterministic and
the model is perfect, then L

(

P0,Q0
)

= L (P,Q), so that input density
optimisation is equivalent to joint density optimisation.

4.2 Alternative Viewpoints

The relationship between conventional density models and FMCs can be
stated from the point of view of a conventional density modeller. The goal
is to build a density model Q0 of the source P0, such that the number
of bits per symbol L

(

P0,Q0
)

required to encode P0 is minimised. Ho-
wever, if the source P0 is transformed through L layers of a network to
produce a transformed source PL, then L

(

P0,Q0
)

is bounded above by

the expression
∑L−1

l=0

∑Ml+1

il+1=1 P l+1
il+1

Lil+1

(

Pl|l+1,Ql|l+1
)

+L
(

PL,QL
)

, which

is the sum of the number of bits per symbol L
(

PL,QL
)

required to en-

code PL, plus (for l = 0, 1, · · · , L − 1) the number of bits per symbol
∑Ml+1

il+1=1 P l+1
il+1

Lil+1

(

Pl|l+1,Ql|l+1
)

required to encode Pl|l+1 (this is a set of

coupled FMCs). The relationship
∑Ml

il=1 P l
il
Kil

(

Pl+1|l,Ql|l+1
)

=
∑Ml+1

il+1=1 P l+1
il+1

Lil+1

(

Pl|l+1,Ql|l+1
)

was used to obtain this interpretation. Thus the problem of encoding the
source P0 can be split into three steps: transform the source from P0 to PL,
encode the transformed source PL, and encode all of the transformations
Pl|l+1 (for l = 0, 1, · · · , L−1) to allow the original source to be reconstructed
from the transformed source. The total number of bits required to encode
PL and Pl|l+1 (for l = 0, 1, · · · , L − 1) is then an upper bound on the total
number of bits required to encode P0. In this picture, coupled FMCs are
used to connect the original source P0 to the transformed source PL, so
they connect one conventional density modelling problem (i.e. optimising
Q0) to another (i.e. optimising QL).

The above description of the relationship between conventional density
models and FMCs was presented from the point of view of a conventional
density modeller, who asserts that the goal is to build an optimum (i.e. mi-
nimum number of bits per symbol) density model Q0 of the source P0. From
this point of view, the coupled FMCs are merely a means of transforming the
problem from modelling the source P0 to modelling the transformed source
PL. That this process is imperfect is reflected in the fact that more bits per
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symbol are required to encode the transformed source PL (plus the coupled
FMCs leading to it) than the original source P0. A conventional density
modeller might reasonably ask what is the point of using FMCs, if they give
only an upper bound on the number of bits per symbol for encoding the
original source P0. However, it is not at all clear that the conventional den-
sity modeller is using the correct objective function in the first place. Why
should the number of bits per symbol for encoding the original source P0 be
especially important? It is as if the world has been separated into an external
world (i.e. P0) and an internal world (i.e. the Pl+1|l for l = 0, 1, · · · , L− 1),
and a special status is accorded to the external world, which deems that it
is important to model its density P0 accurately, at the expense of modelling
the Pl+1|l accurately. In the FMC approach, this artificial boundary bet-
ween external and internal worlds is removed, because the coupled FMCs

model the joint density
(

P0,P1|0, · · · ,PL−1|L−2,PL|L−1
)

, where P0 and the

Pl+1|l are all accorded equal status. This even-handed approach is much
more natural than one in which a particular part of the source (i.e. the
external source) is accorded a special status.

In the language of multilayer neural networks, the
(

P0,P0|1, · · · ,PL−1|L−2,PL|L−1
)

is the source which comprises the bottom-up transformations (or recognition
models) which generate the states of the internal layers of the network, and

the
(

Q0|1,Q1|2, · · · ,QL−1|L,QL
)

is the model of the source which comprises

the top-down transformations (or generative models). Thus the network is
self-referential, because it forms a model of a source that includes its own in-
ternal states, because part of the source (i.e. the Pl+1|l for l = 0, 1, · · · , L−1)
is the state of the network layers. This self-referential behaviour is present
in both the conventional density modelling approach and in the FMC ap-
proach, but whereas in the former case it is not optimised in an even-handed
fashion, in the latter case it is optimised in an even-handed fashion. One
could adopt an extreme viewpoint, in which no distinction is made at all
between the part of the world that is external to the neural network, and
the part that is internal to the neural network. This is a natural approach,
because the neural network is itself part of the world, so it should therefore
be treated in exactly the same way as the part of the world that is external
to the neural network. In effect, the neural network is inevitable; it is the
world’s way of modelling itself.
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5 Kohonen Self-Organising Network

In this section the Kohonen topographic mapping neural network [7] will
be derived from the 2-layer FMC objective function including probability
leakage. The result is only approximate, because the training algorithm
proposed by Kohonen does not correspond to the minimisation of any objec-
tive function. However, the objective function approach is useful neverthe-
less, because it produces very similar results to Kohonen’s original proposal,
whilst also allowing such neural networks to be treated in a unified way.

5.1 2-Layer Folded Markov Chain Network

In section 3.4 the concept of probability leakage was introduced as an em-
pirical way of modelling the damage that FMCs k + 1, k + 2, · · · , L − 1 do
to the output of FMC k in the FMC-ladder. Probability leakage can rea-
dily be implemented by the replacement for Pr (y|x) given in equation 32.
In the case of the 2-layer FMC discussed in section 3.2, and in particular
the objective function given in equation 21, probability leakage leads to the
modified objective function

DFMC = 2

∫

dxPr (x)
M
∑

y=1

M
∑

y′=1

Pr
(

y|y′
)

Pr
(

y′|x
) ∥

∥x− x′ (y)
∥

∥

2
(41)

which corresponds to the objective function for a soft VQ with code noise
modelled by Pr (y|y′); this is related to earlier results on vector quantisation
for transmission along a noisy communication channel [8, 4]. The corres-
ponding hard VQ (i.e. Pr (y|x) = δy,y(x)) objective function becomes

DFMC = 2

∫

dxPr (x)
M
∑

y=1

Pr (y|y (x))
∥

∥x− x′ (y)
∥

∥

2
(42)

This is a self-organising map (SOM) objective function, because the
optimal code vectors x′ (y) must arrange themselves so that not only can
they reconstruct the input with small average L2 distortion, but they must
also make the information in the output layer robust with respect to the
damage that can be caused by probability leakage. Pr (y|y′) can be identified
with the topographic neighbourhood function used by Kohonen in his SOM
algorithm. However, minimisation of the objective function in equation 42
does not quite lead to the same training algorithm as specified by Kohonen;
the encoding process is no longer a nearest neighbour prescription, but a
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minimum distortion prescription (i.e. pick the winning code index as the
one that on average will lead to minimum L2 reconstruction distortion, when
the effects of probability leakage have been taken into account. Thus the
encoding process anticipates the average effect of probability leakage (which
in turn models the damage caused by the higher layers of the FMC-ladder,
as discussed in section 3.4).

If one does not mind the slight difference between the training algo-
rithm derived from equation 42 and Kohonen’s original algorithm, then this
approach supplies a nice interpretation of what the Kohonen algorithm is
actually doing. It can be understood only by referring to the type of damage
that higher layers of the network are going to do to the output of layer 1.

This approach may be generalised to a multilayer network. If leakage
is introduced in each layer then a multilayer Kohonen network is obtained.
See [10] for a simple application of multilayer Kohonen networks, and see
[11, 12] for an early paper written from the FMC point of view.

6 Partitioned Mixture Distributions (PMD)

This section introduces a useful parameterisation of the conditional probabi-
lity Pl+1|l for building the Markov source. Because the multilayer network
produced by optimising a set of coupled FMCs tends to have a minimal
amount of stochastic behaviour (see the end of section 4.1), a way of encou-
raging Pl+1|l to form distributed codes must be found, so that more that
one state in layer l + 1 can have high probability, given that the state in
layer l is known. Different parts of layer l + 1 could then be used to encode
different parts of layer l, which would then allow factorial codes to develop.
It turns out that there is a simple way of allowing such codes to develop,
called the partitioned mixture distribution (PMD) [18, 20, 22]. A PMD is
essentially a large number of mixture distribution models run “in reverse”
(i.e. used to compute posterior probabilities over class labels, rather than
to compute probability densities in the mixture distribution input space).
When these mixture distributions are used to connect together layer l and
layer l+1, where each mixture distribution is connected to only part of layer
l and layer l +1, then the resulting network (i.e. a PMD) contains all of the
ingredients that are necessary for factorial codes to develop.
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6.1 Multiple Recognition Models

In the expression for the objective function

L (P,Q) =
L−1
∑

l=0

Ml
∑

il=1

P l
il
Kil

(

Pl+1|l,Ql|l+1
)

+ L
(

PL,QL
)

(43)

the
∑L−1

l=0

∑Ml

il=1 P l
il
Kii

(

Pl+1|l,Ql|l+1
)

term corresponds to a set of cou-

pled FMCs (i.e. an FMC-ladder), in which the Pl+1|l and the Ql|l+1 (for
l = 0, 1, · · · , L−1) need to be constructed. Currently, in an FMC-ladder the
generative models Ql|l+1 are parameterised as Gaussian probability den-
sities, whereas the recognition models Pl+1|l are parameterised in a more
general way.

The simplest parameterisation of the recognition model P
l+1|l
il+1,il

is

P
l+1|l
il+1,il

=
P

l|l+1
il,il+1

P l+1
il+1

∑Ml+1

i′
l+1

=1 P
l|l+1
il,i

′

l+1

P l+1
i′
l+1

(44)

which guarantees the normalisation condition
∑Ml+1

il+1=1 P
l+1|l
il+1,il

= 1; this is
the posterior probability (of class il+1 given data il) derived from a mixture

distribution
∑Ml+1

i′
l+1

=1 P
l|l+1
il,i

′

l+1

P l+1
i′
l+1

. A limitation of this type of recognition

model is that it allows only a single explanation il+1 of the data il (in the

case of a hard P
l+1|l
il+1,il

) or a probability distribution over single explanations

(in the case of a soft P
l+1|l
il+1,il

), so it cannot lead to a factorial encoding of the
data.

The simplest way of allowing a factorial encoding to develop is to make
simultaneous use more than one recognition model. Each recognition model
uses its own Pl+1 vector and Pl|l+1 matrix to compute a posterior probabi-
lity of the type shown in equation 44, so that if each recognition model is
sensitised to a different piece of the data, then a factorial code can develop.
This approach can be formalised by making the replacement il+1 → il+1 in
equation 44 (i.e. replace the scalar code index by a vector code index, where
the number of vector components is equal to the number of recognition mo-
dels). If the components of il+1 are determined independently of each other,

then their joint posterior probability P
l+1|l
il+1,il

is a product of independent pos-
terior probabilities, where each posterior probability corresponds to one of
the recognition models, and thus has its own Pl+1 vector and Pl|l+1 matrix.
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If this type of posterior probability, which is a product of n independent
factors if there are n independent recognition models, is then inserted into
equation 21 (i.e. a 2-layer FMC, or equivalently a soft VQ) it yields

DFMC = 2

∫

dxPr (x)
M1
∑

y1=1

M2
∑

y2=1

· · ·
Mn
∑

yn=1

Pr (y1|x, 1) Pr (y2|x, 2) · · ·Pr (yn|x, n)

×
∥

∥x− x′ (y1, y2, · · · , yn)
∥

∥

2
(45)

where Pr (yk|x, k) denotes the posterior probability that (given input x) code
index yk occurs in recognition model k, and x′ (y1, y2, · · · , yn) takes the value
that minimises DFMC (i.e. x′ (y1, y2, · · · , yn) =

∫

dxPr (y1|x) Pr (y2|x) · · ·Pr (yn|x) x).
If the L2 norm is then expanded thus

∥

∥x− x′ (y1, y2, · · · , yn)
∥

∥

2 ≡

∥

∥

∥

∥

∥

∥

(

x− 1
n

∑n
k=1 x′

k (yk)
)

+
(

1
n

∑n
k=1 x′

k (yk) − x′ (y1, y2, · · · , yn)
)

∥

∥

∥

∥

∥

∥

2

(46)

then DFMC can be bounded above as follows

DFMC ≤ 2

∫

dxPr (x)
M1
∑

y1=1

M2
∑

y2=1

· · ·
Mn
∑

yn=1

Pr (y1|x, 1) Pr (y2|x, 2) · · ·Pr (yn|x, n)

×
∥

∥

∥

∥

∥

x− 1

n

n
∑

k=1

x′
k (yk)

∥

∥

∥

∥

∥

2

(47)

First of all the Pr (yk|x, k) are used to produce soft encodings in each of
the recognition models (k = 1, 2, · · · , n), then a sum 1

n

∑n
k=1 x′

k (yk) of the
vectors x′

k (yk) is used as the reconstruction of the input x. In the special
case where hard encodings are used, so that Pr (yk|x, k) = δyk ,yk(x), then the
upper bound on DFMC reduces to

DFMC ≤ 2

∫

dxPr (x)

∥

∥

∥

∥

∥

x− 1

n

n
∑

k=1

x′
k (yk (x))

∥

∥

∥

∥

∥

2

(48)

This is related to the objective function for a cooperative vector quantiser
(CVQ), where n VQs are used independently to encode the input, and then a
reconstruction is formed from a sum of vectors. Note that the code vectors
used for the encoding operation yk (x) are not necessarily the same as the
x′

k (yk), except in the special case n = 1.
Suppose that a single recognition model is independently used n times,

rather than n independent recognition models each independently being used
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once. This corresponds to constraining the Pl+1 vectors and Pl|l+1 matrices
to be the same for each of the n recognition models. The upper bound on
DFMC can be manipulated into the form

DFMC ≤ 2

n

∫

dxPr (x)
M
∑

y=1

Pr (y|x)
∥

∥x− x′ (y)
∥

∥

2

+
2 (n − 1)

n

∫

dxPr (x)

∥

∥

∥

∥

∥

∥

x−
M
∑

y=1

Pr (y|x)x′ (y)

∥

∥

∥

∥

∥

∥

2

(49)

where the k index is no longer needed. In the case n = 1 this correctly
reduces to equation 21 (the inequality reduces to an equality in this case).
When n > 1 the second term offers the possibility of factorial encoding,
because it contains a weighted linear combination

∑M
y=1 Pr (y|x)x′ (y) of

vectors.

6.2 Average Over Recognition Models

Now combine the above two approaches to factorial encoding, so that a single
recognition model is used (as in equation 49), which is parameterised in such
a way that it can emulate multiple recognition models (as in equation 47).
The simplest possibility is to make the replacement P l+1

il+1
→ Al+1

k,il+1
P l+1

il+1

(where Al+1
k,il+1

≥ 0) in equation 44, where k is a recognition model index

which ranges over k = 1, 2, · · · ,K (note that K is not constrained to be the
same as n), and to average over k, to produce

P
l+1|l
il+1,il

→ 1

K

K
∑

k=1

P
l|l+1
il,il+1

Al+1
k,il+1

P l+1
il+1

∑Ml+1

i′
l+1

=1 P
l|l+1
il,i

′

l+1

Al+1
k,i′

l+1

P l+1
i′
l+1

(50)

In effect, K recognition models are embedded between layer l and layer l+1,
and the Al+1 matrix specifies which indices il+1 in layer l +1 are associated
with recognition model k.

A partitioned mixture distribution (PMD) is precisely this type of mul-
tiple embedded recognition model. In the simplest type of PMD the Al+1

matrix is chosen to contain only 0’s and 1’s, which are arranged so that
the K recognition models partition layer l + 1 into K overlapping patches.
Other PMDs are possible. For instance, the Al+1 matrix could specify K re-
cognition models which partition layer l+1 into K non-overlapping patches.
In this case, because the n code indices are generated independently, they
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are not guaranteed to occupy different partitions (i.e. different recognition
models); some partitions might have no code indices, some might have only
one, and others might have more than one, subject only to the constraint
that the total number was n. This is not a fundamental problem, because
provided that n ≥ K there is a finite probability (which increases monotoni-
cally towards 1 as n → ∞) that at least one code index occupies each of the
K partitions. This is how a single recognition model (when parameterised
as a PMD given in equation 50) can emulate multiple recognition models.

As in the Kohonen network (see section 5) probability leakage (see sec-
tion 3.4) can be used to anticipate the damage that higher layers of a mul-
tilayer network cause, by encouraging the network properties to become
topographically ordered.

6.3 Full Bayesian Average Over Recognition Models

One possible criticism of the recognition model given in equation 50 is that
it is a mixture of K recognition models, where each contributing model is
assigned the same weight 1

K
. Normally, a posterior probability Pr (y|x)

is decomposed as a sum over contributing model posterior probabilities
Pr (y|x, k) as follows

Pr (y|x) =
K
∑

k=1

Pr (y|x, k) Pr (k|x) (51)

where each of the K recognition models is assigned a different data-dependent
weight Pr (k|x). The conditional probabilities Pr (k|x) and Pr (y|x) can be
evaluated to yield

Pr (k|x) =

∑M
y=1 Pr (x|y, k) Pr (y|k) Pr (k)

∑K
k′=1

∑M
y′=1 Pr (x|y′, k′) Pr (y′|k′) Pr (k′)

Pr (y|x, k) =
Pr (x|y, k) Pr (y|k) Pr (k)

∑M
y′=1 Pr (x|y′, k) Pr (y′|k) Pr (k)

(52)

so that

Pr (y|x) =
K
∑

k=1

Pr (x|y, k) Pr (y|k) Pr (k)
∑K

k′=1

∑M
y′=1 Pr (x|y′, k′) Pr (y′|k) Pr (k′)

(53)
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If the replacements Pr (k) → 1 and Pr (y|k) → Al+1
k,il+1

P l+1
il+1

(both of these

modulo a constant factor), and Pr (x|y, k) → P
l|l+1
il,il+1

, then

Pr (y|x) →
K
∑

k=1

P
l|l+1
il,il+1

Al+1
k,il+1

P l+1
il+1

∑K
k′=1

∑Ml+1

i′
l+1

=1 P
l|l+1
il,i

′

l+1

Al+1
k′,i′

l+1

P l+1
i′
l+1

(54)

which is not the same as the PMD recognition model in equation 50, which
would have been obtained if k were independent of x (i.e. Pr (k|x) = Pr (k)).

However, the PMD recognition model has a strong advantage over the
full recognition model in equation 54, because it uses only local connecti-
vity in layer l + 1, which determines the contributions to the sums over il+1

and k. In equation 54 the normalisation term in the denominator has a

double summation
∑K

k=1

∑Ml+1

il+1=1 P
l|l+1
il,il+1

Al+1
k,il+1

P l+1
il+1

, which involves all pairs

of indices k and il+1 which have Al+1
k,il+1

> 0, which thus corresponds to
long-range lateral interactions in layer l + 1. On the other hand, the PMD
recognition model in equation 50 has a normalisation term in the denomi-

nator which involves only a single summation
∑Ml+1

il+1=1 P
l|l+1
il,il+1

Al+1
k,il+1

P l+1
i′
l+1

, so

the lateral interactions in layer l + 1 are determined by the structure of the
matrix Al+1

k,il+1
, which defines only short-range lateral connections (i.e. for a

given recognition model k, only a limited number of index values il+1 satisfy
Al+1

k,il+1
> 0.

As discussed in section 2.4, a PMD can be endowed with a memory of
its previous state, just as a standard mixture distribution can, to obtain a
dynamical PMD [22].

7 Adaptive Cluster Expansion (ACE)

This section discusses the adaptive cluster expansion (ACE) [14, 19, 21],
which is a tree-structured density network.

7.1 ACE: Tree-Structured Density Network

Consider the objective function D for an L + 1 layer FMC-ladder

D ≡
L−1
∑

l=0

Ml
∑

il=1

P l
il
Kil

(

Pl+1|l,Ql|l+1
)
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= −
L−1
∑

l=0

Ml
∑

il=1

P l
il

Ml+1
∑

il+1=1

P
l+1|l
il+1,il

log Q
l|l+1
il,il+1

(55)

Now assume that the Q
l|l+1
il,il+1

part of the model (i.e. the Markovian part)

is perfect so that Q
l|l+1
il,il+1

= P
l|l+1
il,il+1

(for l = 0, 1, · · · , L − 1), and that the

P
l+1|l
il+1,il

part of the source (i.e. the Markovian part) is deterministic so that

P
l+1|l
il+1,il

= δil+1,il+1(il) (for l = 0, 1, · · · , L − 1), in which case D simplifies as
follows

D = −
L−1
∑

l=0

Ml
∑

il=1

P l
il

Ml+1
∑

il+1=1

P
l+1|l
il+1,il

log P
l|l+1
il,il+1

= −
L−1
∑

l=0

Ml
∑

il=1

P l
il

Ml+1
∑

il+1=1

δil+1,il+1(il) log
δil+1,il+1(il)P

l
il

P l+1
il+1

= −
L−1
∑

l=0

Ml
∑

il=1

P l
il

log P l
il

+
L−1
∑

l=0

Ml
∑

il=1

P l
il

Ml+1
∑

il+1=1

δil+1,il+1(il) log P l+1
il+1

= −
L−1
∑

l=0

Ml
∑

il=1

P l
il

log P l
il

+
L−1
∑

l=0

Ml+1
∑

il+1=1

P l+1
il+1

log P l+1
il+1

= −
M0
∑

i0=1

P 0
i0

log P 0
i0

+
ML
∑

iL=1

PL
iL

log PL
i
L

= H
(

P0
)

− H
(

PL
)

(56)

This is the number of bits per symbol that is required to convert a PL-
message into a P0-message, assuming that the Markovian part of the source
is deterministic, and that the model is perfect. This result is not very
interesting in itself.

However, if the Markovian part of the source is not only deterministic,
but is also tree-structured, and the model is similarly tree-structured, then
the notation must be modified thus

il → il =
(

i1l , i
2
l , · · ·

)

il+1 → il+1 =
(

i1l+1, i
2
l+1, · · ·

)

P
l+1|l
il+1,il

→ P
l+1|l
il+1,il

= P
l+1|l
i1
l+1

,i1
l

P
l+1|l
i2
l+1

,i2
l

· · · = δi1
l+1

,i1
l+1(i

1
l )

δi2
l+1

,i2
l+1(i

2
l )
· · ·
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Q
l|l+1
il,il+1

→ Q
l|l+1
il,il+1

= P
l|l+1

i1
l
,i1

l+1

P
l|l+1

i2
l
,i2

l+1

· · · (57)

where the components of the vector il have been partitioned as
(

i1l , i
2
l , · · ·

)

,
where each icl contains a complete set of siblings whose parent is in layer
l + 1, and the components of the vector il+1 have been partitioned as
(

i1l+1, i
2
l+1, · · ·

)

, where icl+1 is the parent of icl . This notation may be used to

rearrange D as follows

D = −
L−1
∑

l=0

∑

il

P l
il

∑

il+1

P
l+1|l
il+1,il

log

(

P
l|l+1

i1
l
,i1

l+1

P
l|l+1

i2
l
,i2

l+1

· · ·
)

= −
L−1
∑

l=0

∑

il

P l
il

∑

il+1

P
l+1|l
il+1,il

∑

c

log P
l|l+1
ic
l
,ic

l+1

= −
L−1
∑

l=0

∑

il

P l
il

∑

il+1

P
l+1|l
il+1,il

∑

c

log







P
l+1|l
ic
l+1

,ic
l
P l

ic
l

P l+1
ic
l+1







= −
L−1
∑

l=0

∑

il

P l
il

∑

c

log P l
ic
l

−
L−1
∑

l=0

∑

il

P l
il

∑

il+1

P
l+1|l
il+1,il

∑

c

log P
l+1|l
ic
l+1

,ic
l

+
L−1
∑

l=0

∑

il

P l
il

∑

il+1

P
l+1|l
il+1,il

∑

c

log P l+1
ic
l+1

= −
L−1
∑

l=0

∑

il

P l
il

∑

c

log P l
ic
l
+

L−1
∑

l=0

∑

il+1

P l+1
il+1

∑

c

log P l+1
ic
l+1

=
L−1
∑

l=0

∑

cluster c

H
(

Pl
c

)

−
L
∑

l=1

∑

component c

H
(

Pl
c

)

(58)

where the fact that −∑L−1
l=0

∑

il
P l

il

∑

il+1
P

l+1|l
il+1,il

∑

c log P
l+1|l
ic
l+1

,ic
l

= 0 has been

used.
This expression for D can be rewritten in terms of the mutual informa-

tion I
(

Pl
c

)

between the components of cluster icl+1 by making use of the

following result
∑

cluster c

I
(

Pl
c

)

≡
∑

component c

H
(

Pl
c

)

−
∑

cluster c

H
(

Pl
c

)
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= −
∑

component c

P l
ic
l
log P l

ic
l
+

∑

cluster c

∑

ic
l

P l
ic
l
log P l

ic
l

(59)

to yield

D =
∑

cluster c

H
(

P0
c

)

−
∑

cluster c

H
(

PL
c

)

+
L
∑

l=1

∑

cluster c

H
(

Pl
c

)

−
L
∑

l=1

∑

component c

H
(

Pl
c

)

= −
L
∑

l=1

∑

cluster c

I
(

Pl
c

)

+
∑

cluster c

H
(

P0
c

)

−
∑

cluster c

H
(

PL
c

)

(60)

Now add L
(

PL,QL
)

(the contribution from the output layer) to D

(the objective function for an FMC-ladder) to obtain L (P,Q), and as-
sume that the model is perfect in the output layer so that QL is given by

QL
iL

= PL
i1
l

PL
i2
l

· · ·. This allows L
(

PL,QL
)

to be simplified to L
(

PL,QL
)

=
∑

cluster c H
(

PL
c

)

, so that L (P,Q) simplifies as [14]

L (P,Q) = D + L
(

PL,QL
)

= −
L
∑

l=1

∑

cluster c

I
(

Pl
c

)

+
∑

cluster c

H
(

P0
c

)

(61)

The −∑L
l=1

∑

cluster c I
(

Pl
c

)

term is (minus) the sum of the mutual in-

formations within all of the clusters in the L + 1 layer network, and the
∑

cluster c H
(

P0
c

)

term is constant for a given external source P0. This means

that minimising L (P,Q) is equivalent to maximising
∑L

l=1

∑

cluster c I
(

Pl
c

)

.

This is the maximum mutual information result for ACE networks. The mu-
tual information maximisation principle in [1] is a special case of the above
result.

As was noted in section 4.1, if the source is deterministic and the model
is perfect (as they are here), then L

(

P0,Q0
)

= L (P,Q), which implies
that input density optimisation is equivalent to joint density optimisation.
This equivalence was used in [14], where the sum-of-mutual-informations
objective function was derived by minimising L

(

P0,Q0
)

.
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7.2 ACE: Hierarchical Vector Quantiser

If the above ACE network is modified slightly, so that the model Q has
exactly the same structure as before, but is Gaussian rather than perfect,

then Q
l|l+1
il,il+1

becomes

Q
l|l+1
il,il+1

→ Q
l|l+1
il,il+1

= Q
l|l+1

i1
l
,i1

l+1

Q
l|l+1

i2
l
,i2

l+1

· · · (62)

where the individual Q
l|l+1
ic
l
,ic

l+1

are Gaussian. The expression for D (i.e. an

FMC-ladder without the output term) then becomes (compare equation 23)

D = −
L−1
∑

l=0

∑

il

P l
il

∑

il+1

P
l+1|l
il+1,il

log
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,i2

l+1

· · ·
)

= −
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∑
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∑

il

P l
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∑
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(

P
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l+1

,i1
l

P
l+1|l
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l+1

,i2
l

· · ·
)

log

(

Q
l|l+1

i1
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,i1

l+1

Q
l|l+1
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l
,i2

l+1

· · ·
)

= −
L−1
∑

l=0

∑

il

P l
il

∑

c

∑

ic
l+1

P
l+1|l
ic
l+1

,ic
l
log Q

l|l+1
ic
l
,ic

l+1

=
L−1
∑

l=0

∑

c

(

D
l,c
FMC

4 (σl,c)
2 − log

V l,c

√
2πσl,c

)

(63)

which is the objective function for a tree of coupled soft VQs. Thus the
ACE network, with a Gaussian model Q, is a hierarchical vector quantiser,
in which each layer encodes the clusters in the previous layer [11, 12].

8 Conclusions

The objective function for optimising the density model of a Markov source
may be applied to the problem of optimising the joint density of all the
layers of a neural network. This is possible because the joint state of all of
the network layers may be viewed as a Markov chain of states (each layer is
connected only to adjacent layers). The objective function may readily be
shown to be equivalent to a sum of folded Markov chain objective functions,
each of which connects a pair of adjacent layers, plus a term which specifies
the cost of building a density model in the output layer. This representation
makes contact with the results reported in [17], which allows many results
to be unified into a single approach (i.e. a single objective function).
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The most significant aspect of this unification is the fact that all layers of
a neural network are treated on an equal footing, unlike in the conventional
approach to density modelling where the input layer is accorded a special
status. For instance, this leads to a modular approach to building neural
networks, where all of the modules have the same structure.
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