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Abstract. Graphical models based on chain graphs, which admit both
directed and undirected edges, were introduced by by Lauritzen, Wermuth
and Frydenberg as a generalization of graphical models based on undirected
graphs, and acyclic directed graphs. More recently Andersson, Madigan
and Perlman have given an alternative Markov property for chain graphs.
This raises two questions: How are the two types of chain graphs to be
interpreted? In which situations should chain graph models be used and
with which Markov property?

The undirected edges in a chain graph are often said to represent ‘sym-
metric’ relations. Several different symmetric structures are considered, and
it is shown that although each leads to a different set of conditional indepen-
dences, none of those considered corresponds to either of the chain graph
Markov properties.

The Markov properties of undirected graphs, and directed graphs, in-
cluding latent variables and selection variables, are compared to those that
have been proposed for chain graphs. It is shown that there are qualita-
tive differences between these Markov properties. As a corollary, it is proved
that there are chain graphs which do not correspond to any cyclic or acyclic
directed graph, even with latent or selection variables.

1. Introduction

The use of acyclic directed graphs (often called ‘DAG’s) to simultaneously
represent causal hypotheses and to encode independence and conditional in-
dependence constraints associated with those hypotheses has proved fruit-
ful in the construction of expert systems, in the development of efficient
updating algorithms (Pearl {22]; Lauritzen and Spiegelhalter [19]), and in
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2 THOMAS S. RICHARDSON

inferring causal structure (Pearl and Verma [25]; Cooper and Herskovits
[5]; Spirtes, Glymour and Scheines [31]).

Likewise, graphical models based on undirected graphs, also known as
Markov random fields, have been used in spatial statistics to analyze data
from field trials, image processing, and a host of other applications (Ham-
mersley and Clifford [13]; Besag [4]; Speed [29]; Darroch et al. [8]). More
recently, chain graphs, which admit both directed and undirected edges
have been proposed as a natural generalization of both undirected graphs
and acyclic directed graphs (Lauritzen and Wermuth [20]; Frydenberg [11]).
Since acyclic directed graphs and undirected graphs can both be regarded
as special cases of chain graphs it is undeniable that chain graphs are a
generalization in this sense.

The introduction of chain graphs has been justified on the grounds that
this admits the modelling of ‘simultaneous responses’ (Frydenberg [11]),
‘symmetric associations’ (Lauritzen and Wermuth [20]) or simply ‘associa-
tive relations’, as distinct from causal relations (Andersson, Madigan and
Perlman [1]). The existence of two different Markov properties for chain
graphs raises the question of what sort of symmetric relation is represented
by a chain graph under a given Markov property, since the two properties
are clearly different. A second related question concerns whether or not
there are modelling applications for which chain graphs are particularly
well suited, and if there are, which Markov property is most appropriate.

One possible approach to clarifying this issue is to begin by conside-
ring causal systems, or data generating processes, which have a symmetric
structure. Three simple, though distinct, ways in which two variables, X
and Y, could be related symmetrically are: (a) there is an unmeasured,
‘confounding’, or ‘latent’ variable that is a common cause of both X and
Y; (b) X and Y are both causes of some ‘selection’ variable (conditioned
on in the sample); (c) there is feedback between X and Y, so that X is a
cause of Y, and Y is a cause of X. In fact situations (a) and (b) can easily
be represented by DAGs through appropriate extensions of the formalism
(Spirtes, Glymour and Scheines [31]; Cox and Wermuth [7]; Spirtes, Meek
and Richardson [32]). In addition, certain kinds of linear feedback can also
be modelled with directed cyclic graphs (Spirtes [30]; Koster [16]; Richard-
son [26, 27, 28]; Pear] and Dechter [24]). Each of these situations leads to a
different set of conditional independences. However, perhaps surprisingly,
none of these situations, nor any combination of them, lead in general to
either of the Markov properties associated with chain graphs.

The remainder of the paper is organized as follows: Section 2 contains
definitions of the various graphs considered and their associated Markov
properties. Section 3 considers two simple chain graphs, under both the ori-
ginal Markov property proposed by Lauritzen, Wermuth and Frydenberg,
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and the alternative given by Andersson, Madigan and Perlman. These are
compared to the corresponding directed graphs obtained by replacing the
undirected edges with directed edges in accordance with situations (a), (b)
and (c) above. Section 4 generalizes the results of the previous section: two
properties are presented, motivated by causal and spatial intuitions, that
the set of conditional independences entailed by a graphical model might sa-
tisfy. It is shown that the sets of independences entailed by (i) an undirected
graph via separation, and (ii) a (cyclic or acyclic) directed graph (possibly
with latent and/or selection variables) via d-separation, satisfy both pro-
perties. By contrast neither of these properties, in general, will hold in a
chain graph under the Lauritzen-Wermuth-Frydenberg (LWF) interpreta-
tion. One property holds for chain graphs under the Andersson-Madigan-
Perlman (AMP) interpretation, the other does not. Section 5 contains a
discussion of data-generating processes associated with different graphical
models, together with a brief sketch of the causal intervention theory that
has been developed for directed graphs. Section 6 is the conclusion, while
proofs not contained in the main text are given in Section 7.

2. Graphs and Probability Distributions

This section introduces the various kinds of graph considered in this paper,
together with their associated Markov properties.

2.1. UNDIRECTED AND DIRECTED GRAPHS

An undirected graph, UG, is an ordered pair (V,U), where V is a set of
vertices and U is a set of undirected edges X —Y between vertices.!
Similarly, a directed graph, DG, is an ordered pair (V,D) where D is a
set of directed edges X — Y between vertices in V. A directed cycle consists
of a sequence of n distinct edges X; » Xo— --- > X, > X;(n > 2). If
a directed graph, DG, contains no directed cycles it is said to be acyclic,
otherwise it is cyclic. An edge X — Y is said to be out of X and into Y,
X and Y are the endpoints of the edge. Note that if cycles are permitted
there may be more than one edge between a given pair of vertices e.g.
X +Y «+ X. Figure 1 gives examples of undirected and directed graphs.

2.2. DIRECTED GRAPHS WITH LATENT VARIABLES AND SELECTION
VARIABLES

Cox and Wermuth [7] and Spirtes et al. [32] introduce directed graphs in
which V is partitioned into three disjoint sets O (Observed), S (Selection)

1Bold face (X) denote sets; italics (X) denote individual vertices; greek letters ()
denote paths.
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Figure 1. (a) undirected graphs; (b) a cyclic directed graph; (c} acyclic directed graphs

and L (Latent), written DG(0O, S, L) (where DG may be cyclic). The inter-
pretation of this definition is that DG represents a causal or data-generating
mechanism; O represents the subset of the variables that are observed; S
represents a set of selection variables which, due to the nature of the me-
chanism selecting the sample, are conditioned on in the subpopulation from
which the sample is drawn; the variables in L. are not observed and for this
reason are called latent.?

Ezample: Randomized Trial of an Ineffective Drug with Unpleasant
Side-Effects®

A simple causal mechanism containing latent and selection variables is given
in Figure 2. The graph represents a randomized trial of an ineffective drug
with unpleasant side-effects. Patients are randomly assigned to the treat-
ment or control group (A). Those in the treatment group suffer unpleasant
side-effects, the severity of which is influenced by the patient’s general le-
vel of health (H), with sicker patients suffering worse side-effects. Those
patients who suffer sufficiently severe side-effects are likely to drop out of
the study. The selection variable (Sel) records whether or not a patient re-
mains in the study, thus for all those remaining in the study Sel = Stay In.
Since unhealthy patients who are taking the drug are more likely to drop
out, those patients in the treatment group who remain in the study tend
to be healthier than those in the control group. Finally health status (H)
influences how rapidly the patient recovers. This example is of interest be-
cause, as should be intuitively clear, a simple comparison of the recovery
time of the patients still in the treatment and control groups at the end of
the study will indicate faster recovery among those in the treatment group.
This comparison falsely indicates that the drug has a beneficial effect, whe-
reas in fact, this difference is due entirely to the side-effects causing the
sicker patients in the treatment group to drop out of the study.* (The only
difference between the two graphs in Figure 2 is that in DG;1(01,S1,L1)

*Note that the terms variable and vertez are used interchangeably.

31 am indebted to Chris Meek for this example.

“For precisely these reasons, in real drug trials investigators often go to great lengths
to find out why patients dropped out of the study.
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Figure 2. Randomized trial of an ineffective drug with unpleasant side effects leading
to drop out. In DG1(01,81,L1), H € 01, and is observed, while in DG2(0z2, Sz, Lz2)
H € Lz and is unobserved (variables in L are circled; variables in S are boxed; variables
in O are not marked).
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Figure 3. (a) mixed graphs containing partially directed cycles; (b) chain graphs.

health status (H) is observed so H € O1, while in DG3(02,S2,L2) it is
not observed so H € La.)

2.3. MIXED GRAPHS AND CHAIN GRAPHS

In a mized graph a pair of vertices may be connected by a directed edge or an
undirected edge (but not both). A partially directed cycle in a mixed graph
G is a sequence of n distinct edges (E\,..., Ey,), (n > 3), with endpoints
X;, Xiy1 respectively, such that:

(a) Xl = Xn+1,

(b) Vi (1 <i < n) either X;—X;41 or X;—X;41, and

(c) 34 (1 <€ j < n) such that X; = X;11.
A chain graph CG is a mixed graph in which there are no partially direc-
ted cycles (see Figure 3). Koster [16] considers classes of reciprocal graphs
containing directed and undirected edges in which partially directed cycles
are allowed. Such graphs are not considered separately here, though many
of the comments which apply to LWF chain graphs also apply to reciprocal
graphs since the former are a subclass of the latter.

To make clear which kind of graph is being referred to UG will denote

undirected graphs, DG directed graphs, CG chain graphs, and G a graph
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which may be any one of these. A path between X and Y in a graph G (of
whatever type) consists of a sequence of edges (F1, ..., E,) such that there
exists a sequence of distinct vertices (X = Xi,...,Xp41 = Y) where E;
has endpoints, X; and X;11 (1 <i <mn), ie. E; is X;—X;+1, Xi = Xit1,
or X; < X;y1 (1 <i<n).5 If no vertex occurs more than once on the path
then the path is acyclic, otherwise it is cyclic. A directed path from X to
Y is a path of the form X — --- 2Y.

2.4. THE GLOBAL MARKOV PROPERTY ASSOCIATED WITH
UNDIRECTED GRAPHS

A global Markov property associates a set of conditional independence re-
lations with a graph G.% In an undirected graph UG, for disjoint sets of
vertices X, Y and Z, (Z may be empty), if there is no path from a variable
X € X, to a variable Y € Y, that does not include some variable in Z,
then X and Y are said to be separated by Z.

Undirected Global Markov Property; separation (=)
UG =y XY | Zif X and Y are separated by Z in UG.”

Thus the undirected graphs in Figure 1(a) entail the following conditio-
nal independences via separation:

UG, =y ALD|C; ALLD | {B,C}; BILC | D; BILC | {A,D};
AlLB|C AlB|D; ALB|{C,D}

UGy Ev AUB|C; AUB|{C,D}; ALD|C; ALD|{B,C}
BID|C; BILD|{A,C}.

Here, and throughout, all and only ‘elementary’ independence relations
of the form {X} UL {Y} | Z (Z may be empty) are listed. For instance, note
that UG also entails {A}1.{B, D} | {C}.

5Path’ is defined here as a sequence of edges, rather than vertices; in a directed cyclic
graph a sequence of vertices does not in general define a unique path, since there may be
more than one edge between a given pair of vertices. (Note that in a chain graph there
is at most one edge between each pair of vertices.)

80ften global Markov conditions are introduced as a means for deriving the conse-
quences of a set of local Markov conditions. Here the global property is defined directly
in terms of the relevant graphical criterion.

"X IY | Z’ means that ‘X is independent of Y given Z’; if Z = @, the abbrevia-
tion XY is used. When converient braces are omitted from singleton sets {V}, e.g.
VAY | Z instead of {V}I1Y |Z
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2.5. THE GLOBAL MARKOV PROPERTY ASSOCIATED WITH
DIRECTED GRAPHS

In a directed graph DG, X is a parent of Y, (and Y is a child of X) if there
is a directed edge X —Y in G. X is an ancestor of Y (and Y is a descendant
of X) if there is a directed path X — --- =Y from X toY,or X=Y. Thus
‘ancestor’ (‘descendant’) is the transitive, reflexive closure of the ‘parent’
(‘child’) relation. A pair of consecutive edges on a path 7 in DG are said
to collide at vertex A if both edges are into A, i.e. A+, in this case A
is called a collider on =, otherwise A is a non-collider on w. Thus every
vertex on a path in a directed graph is either a collider, a non-collider, or
an endpoint. For distinct vertices X and Y, and set Z C V\{X,Y}, a path
7 between X and Y is said to d-connect X and Y given Z if every collider
on 7 is an ancestor of a vertex in Z, and no non-collider on 7 is in Z. For
disjoint sets X, Y, Z, if there is an X € X, and Y € Y, such that there
is a path which d-connects X and Y given Z then X and Y are said to be
d-connected given Z. If no such path exists then X and Y are said to be
d-separated given Z (see Pearl [22]).

Directed Global Markov Property; d-separation (f=p;)
DG Eps XU Y | Z if X and Y are d-separated by Z in DG.

Thus the directed graphs in Figure 1(b,c) entail the following conditional
independences via d-separation:

DG]_ |=DS BJ.LC : {A, D};

DGy s BIC|A; ALD|{B,Ck

DG3 k=ps AUB|C; ALB|{C,D}; ALD|C; ALD |{B,C};
BlD|C; BULD |{AC}.

Note that the conditional independences entailed by DG3 under d-sep-
aration are precisely those entailed by UG, under separation.

2.6. THE GLOBAL MARKOV PROPERTY ASSOCIATED WITH
DIRECTED GRAPHS WITH LATENT AND SELECTION VARIABLES

The global Markov property for a directed graph with latent and/or se-
lection variables is a natural extension of the global Markov property for
directed graphs. For DG(0, S, L), and XUYUZ C O define:

DG(0,S,L) Eps XALY | Z if and only if DG ps XALY | ZUS.
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In other words, the set of conditional independence relations entailed
by DG(0O, S, L) is exactly the subset of those independence relations entai-
led by the directed graph D@, in which no latent variables occur, and the
conditioning set always includes (implicitly) all the selection variables in S.
Since, under the interpretation of DG(0, S, L), the only observed variables
are in O, conditional independence relations involving variables in L are not
observed. Similarly, samples are drawn from a subpopulation in which all
variables in S are conditioned on, e.g. in the example in Section 2.2, the only
patients observed were those for which Sel = Stay In. Thus the variables
in S will be conditioned upon in every conditional independence relation
observed to hold in the sample. Hence DG(O, S, L) entails a set of conditio-
nal independences which hold in the observed distribution P(O | S = In).
(See Spirtes and Richardson [33]; Spirtes, Meek and Richardson [32]; Cox
and Wermuth [7].) Thus the graph DG,(01,S1,L1), shown in Figure 2,
entails the following conditional independences:

DG1(01,81,11) Eps AUR|H; ALLR|{H,Ef},

since DG =ps AILR| {H,Sel}; ALR|{H,Ef,Sel}.

However, the graph DG3(O2, S2, L) does not entail any independences,
since health status is unobserved, H ¢ O3, so neither of the above men-
tioned independences entailed by the graph DG1(0O1, S1, L) is entailed by
DGy(02,82,L,).

2.7. GLOBAL MARKOV PROPERTIES ASSOCIATED WITH CHAIN
GRAPHS

There are two different global Markov properties which have been proposed
for chain graphs. In both definitions a conditional independence relation is
entailed if sets X and Y are separated by Z in an undirected graph the
vertices of which are a subset of those in the chain graph, while the edges
are a superset of those occurring between these vertices in the original chain
graph.®

2.7.1. The Lauritzen- Wermuth-Frydenberg chain graph Markov property

A vertex V in a chain graph is said to be anterior to a set W if there is
a path 7 from V to some W € W in which all directed edges (X -Y) on
the path (if any) are such that Y is between X and W on n, Ant(W) =
{V | V is anterior to W}. Let CG(W) denote the induced subgraph of CG
obtained by removing all vertices in V\W and all edges with an endpoint

8More recently, both of these Markov properties have been re-formulated in terms of
a separation criteria that may be applied to the original chain graph, rather than an
undirected graph derived from it (see Studeny and Bouckaert [36], Arndersson et al. [2]).
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Figure 4. Contrast between the LWF and AMP Markov properties. Undirected graphs
used to test AILD | {B,C} in CG: under (a) the LWF property, (b) the AMP property.
Undirected graphs used to test BALD | C in CG2 under (c) the LWF property, (d) the
AMP property.

in V\W. A complez in CG is an induced subgraph with the following
form: X > Vi— --- —Vp <Y (n > 1). A complex is moralized by adding
the undirected edge X —Y. Moral(CG) is the undirected graph formed by
moralizing all complexes in CG, and then replacing all directed edges with
undirected edges.

LWF Global Markov Property for Chain Graphs (=.wr)

CG Ewr XUY |Zif X is separated from Y by Z in the undirected
graph Moral(CG(Ant(X UY U Z))).

Hence the chain graphs in Figure 3(b) entail the following conditional
independences under the LWF Markov property:

CG, ke ALB; AUD|{B,C}; BIC|{A,D};

CG; e ALB|C; AILLB|{C,D}; ALD|C; ALD |{B,C};
BLD|C; BID |{A,C}.

Notice that the conditional independences entailed by C'G2 under the
LWF Markov property are the same as those entailed by DG3 under d-sep-
aration, and UG5, under separation (see Figure 1).

2.7.2. The Andersson-Madigan-Perlman chain graph Markov property

In a chain graph vertices V and W are said to be connected if there is a path
containing only undirected edges between V and W, Con(W) = {V | V
is connected to some W € W}. The extended subgraph, Ezt(CG, W),
has vertex set Con(W) and contains all directed edges in CG(W), and all
undirected edges in CG(Con(W)). A vertex V in a chain graph is said to
be an ancestor of a set W if there is a path « from V to some W € W in
which all edges on the path are directed (X —Y) and are such that Y is
between X and W on 7. (See Figure 5.) Now let

9Note that other authors, e.g. Lauritzen [17], have used ‘ancestral’ to refer to the set
named ‘anterior’ in Section 3.
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Figure 5. Constructing an augmented and extended chain graph: (a) a chain graph
CG; (b) directed edges in Anc({A, E, X}); (c) undirected edges in Con(Anc({4, E, X}))
(d) Ext(CG, Anc({A, E, X})); (e) Aug(Ext(CG, Anc({4, E, X}))).
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Figure 6. (a) Triplexes (X,Y, Z) and (b) the corresponding angmented triplex. (c) A
chain graph with a bi-flag (X, A, B,Y) and two triplexes (A4, B,Y), (X, A, B); (d) the
corresponding augmented chain graph.

Anc(W) = {V | V is an ancestor of some W € W}.

A triple of vertices (X,Y,Z) is said to form a triplez in CG if the
induced subgraph CG({X,Y,Z}) is either X - Y—Z, X Y < Z, or
X —Y «+ Z. A triplex is augmented by adding the X — Z edge. A set of four
vertices (X, 4, B,Y’) is said to form a bi-flag if the edges X - A, Y — B,
and A— B are present in the induced subgraph over {X, A, B,Y'}. A biflag
is augmented by adding the edge X —Y. Aug(CQ) is the undirected graph
formed by augmenting all triplexes and bi-flags in CG and replacing all
directed edges with undirected edges (see Figure 6). Now let

Aug[CG; X, Y, Z] = Aug(Ext(CG, Anc(X U Y U Z))).

AMP Global Markov Property (=4up)

CG Eaup XY | Z if X is separated from Y by Z in the undirected
graph Aug[CG;X,Y,Z].

Hence the conditional independence relations associated with the chain
graphs in Figure 3(b) under the AMP global Markov property are:

CG1 Eamwp ALB; AUB|C; ALB|D; ALD; ALD|B; BIC;
BlC | A;
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Figure 7. A chain graph and directed graphs in which C and D are symmetrically
related.

Both LWF and AMP properties coincide with separation (d-separation) for
the special case of a chain graph which is an undirected (acyclic, directed)
graph. Thus chain graphs with either property are a generalization of both
acyclic, directed graphs and undirected graphs. Cox and Wermuth [7] dis-
tinguish between the LWF and AMP Markov properties by using dashed
lines, X ----Y, in chain graphs under the AMP property.

2.8. MARKOV EQUIVALENCE AND COMPLETENESS

Two graphs G, G under global Markov properties R;, Ry respectively are
said to be Markov equivalent if Gy |=p, XY | Z if and only if G f=p,
X1UY | Z. Thus CG2 under the LWF Markov property, DG3 under d-sep-
aration, and UG5 under separation are all Markov equivalent. For a given
global Markov property R, and graph G with vertex set V, a distribution
P is said to be G-Markoviany if for disjoint subsets X, Y and Z, G |=»
XUY |Zimplies X1LY | Z in P. A global Markov property is said to be
weakly complete if for all disjoint sets X, Y and Z, such that G XY | Z
there is a G-Markoviang distribution P in which XY | Z. The property
R is said to be strongly complete if there is a G-Markoviany distribution
P in which G r XUY |Z if and only if X1Y | Z in P. All of the
global Markov properties here are known to be strongly (and hence weakly)
complete (Geiger [12]; Frydenberg [11]; Spirtes [30]; Meek [21]; Spirtes et
al. [31]; Studeny and Bouckaert [36]; Andersson et al. [2]).

3. Directed Graphs with Symmetric Relations

In this section the Markov properties of simple directed graphs with symme-
trically related variables are compared to those of the corresponding chain
graphs. In particular, the following symmetric relations between variables
X and Y are considered: (a) X and Y have a latent common cause; (b) X
and Y are both causes of some selection variable; (c) X is a cause of Y,
and Y is a cause of X, as occurs in a feedback system.

The conditional independences relations entailed by the directed graphs
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Figure 8. A chain graph and directed graphs in which the pairs of vertices B and C,
and C and D, are symmetrically related.

in Figure 7 are:

DGla(Ola, Sla:Lla) |=Ds A_LLB, A_LLB I C; AJ.LB | .D; AJ.LD,
AULD|B; BILC; BIC | A4;

DG15(O1b, S1b,Lab) FEps ALB|C; ALB | D; BILC|D; ALD|C;
AUB|{C,D};ALD| {B,C};BJ.LC | {A,D};

DG1¢(O1¢,S1c,L1c) Fps ALB; AUB|{C,D}.

It follows that none of these directed graphs is Markov equivalent to CG;
under the LWF Markov property. However, DG14(01a, S1a, L1a) is Markov
equivalent to CG; under the AMP Markov property. Turning now to the
directed graphs shown in Figure 8, the following conditional independence
relations are entailed:

DG2,(02a,82a,L2a) Eps AWB; AUB|D; AULD; ALD | B; BID;
Bl D | A4;

DG2(O2p,S2b,L2b) Fps ALB|C; ALB|{C,D}; ALD|C;
ALLD | {B,C}; BALD|C; BILD | {A,C};

DG9c(O32c; Sac, Lac) does not entail any conditional independences.

It follows that none of these directed graphs is Markov equivalent to
CGy under the AMP Markov property. However, DGoy(O2p, San, Lap) is
Markov equivalent to CGy under the LWF Markov property. Further, note
that DG2,(O2p, S2b, L) is also Markov equivalent to UGy (under sepa-
ration) and DG3 (under d-separation) in Figure 1(a).

There are two other simple symmetric relations that might be consi-
dered: (d) X and Y have a common child that is a latent variable; (e) X
and Y have a common parent that is a selection variable. However, wi-
thout additional edges X and Y are entailed to be independent (given S)
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in these configurations, whereas this is clearly not the case if there is an
edge between X and Y in a chain graph.

Hence none of the simple directed graphs with symmetric relations cor-
responding to CG; are Markov equivalent to CG1 under the LWF Markov
property, and likewise none of those corresponding to CGs are Markov
equivalent to CG2 under the AMP Markov property. In the next section a
stronger result is proved: in fact there are no directed graphs, however com-
plicated, with or without latent and selection variables, that are Markov
equivalent to CG1 and CG3 under the LWF and AMP Markov properties,
respectively.

4. Inseparability and Related Properties

In this section two Markov properties, motivated by spatial and causal
intuitions, are introduced. It is then shown that these Markov properties
hold for all undirected graphs, and all directed graphs (under d-separation)
possibly with latent and selection variables. Distinct vertices X and Y are
inseparable, in G under Markov Property R if there is no set W such that
G Er XY | W.If X and Y are not inseparableg, they are separabler. Let
[G]I® be the undirected graph in which there is an edge X —Y if and only
if X and Y are inseparableg in G under R. Note that in accord with the
definition of |=ps for DG(O,S,L), only vertices X,Y € O are separableps
or inseparable,s, thus [DG(O, S, L)]S is defined to have vertex set O.

For an undirected graph model [UG] is just the undirected graph
UG. For an acyclic, directed graph (without latent or selection variables)
under d-separation, or a chain graph under either Markov property [G]LS
is simply the undirected graph formed by replacing all directed edges with
undirected edges, hence for any chain graph CG, [CGI¥S, = [CG]™s,.

In any graphical model, if there is an edge (directed or undirected) bet-
ween a pair of variables then those variables are inseparable,. For undirec-
ted graphs, acyclic directed graphs, and chain graphs (under either Markov
property), inseparability, is both a necessary and a sufficient condition for
the existence of an edge between a pair of variables. However, in a direc-
ted graph with cycles, or in a (cyclic or acyclic) directed graph with latent
and/or selection variables, inseparability s is not a sufficient condition for
there to be an edge between a pair of variables (recall that in DG(O, S, L),
the entailed conditional independences are restricted to those that are ob-
servable).

An inducing path between X and Y in DG(O, S, L) is a path = between
X and Y on which (i) every vertex in OUS is a collider on 7, and (ii) every
collider is an ancestor of X, Y or 8.1 In a directed graph, DG(O, S, L),

10The notion of an inducing path was first introduced for acyclic directed graphs with
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Figure 9. Examples of directed graphs DG(O, S, L) in which A and B are inseparableps.

variables XY € O, are inseparableps if and only if there is an inducing
path between X and Y in DG(O,S,L).!! For example, C and D were
inseparableps in DG14(01a; S1a, Li1a), and DG15(O1pb, S1b, L1p), while in
DG1.(O1c,S1c,Li1c) A and B were the only separables variables. Figure 9
contains further examples of graphs in which vertices are inseparableps.

4.1. ‘BETWEEN SEPARATED’ MODELS

A vertex B will be said to be betweenr X and Y in G under Markov pro-
perty R, if and only if there exists a sequence of distinct vertices (X =
X0, X1,y X0 =B, Xny41,+ -+ Xnam = Y) in [GIPS such that each conse-
cutive pair of vertices X;, X;11 in the sequence are inseparabley in G un-
der R. Clearly B will be betweenp, X and Y in G if and only if B lies
on a path between X and Y in [G]i'. The set of vertices between X and
Y under property R in graph G is denoted Betweeny(G;X,Y’), abbrevia-
ted to Betweeng(X,Y), when G is clear from context. Note that for any
chain graph CG, Between,y»(CG; X,Y) = Between ,,p(CG; X,Y), for all

vertices X and Y.

Between, Separated Models

A model G is betweeny separated, if for all pairs of vertices X, ¥ and
sets W (X, Y ¢ W):

GEr XUY |W =G =z X11Y | W N Betweeng(G; X,Y)

(where {X,Y}UW is a subset of the vertices in [G]I®).

It follows that if G is between, separated, then in order to make some
(separable) pair of vertices X and Y conditionally independent, it is always
sufficient to condition on a subset (possibly empty) of the vertices that lie
on paths between X and Y.

The intuition that only vertices on paths between X and Y are relevant
to making X and Y independent is related to the idea, fundamental to much

latent variables in Verma and Pearl [37]; it was subsequently extended to include selection
variables in Spirtes, Meek and Richardson [32].

HInseparability ps is a necessary and sufficient condition for there to be an edge between
a pair of variables in a Partial Ancestral Graph (PAG), (Richardson [26, 27]; Spirtes et
al. [32, 31]), which represents structural features common to a Markov equivalence class
of directed graphs.
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+1Ins P X A B—C——Y—————— 0
S
R E F

D
Figure 10. Betweenz(G;X,Y) = {4,B,C,D,E,F,Q}, CoConr(G;X,Y) = {A,B,
C,D,E,F,Q,T}, while P, R and S, are vertices not in CoCong(G; X,Y)

of graphical modelling, that if vertices are dependent then they should be
connected in some way graphically. This is a natural correspondence, present
in the spatial intuition that only contiguous regions interact directly, and
also in causal principles which state that if two quantities are dependent
then they are causally connected (Hausman [14]).12

Theorem 1 (i) All undirected graphs H are betweens separated.
(ii) All directed graphs DG(O,S,L) are betweenps separated.

Proof: The proof for undirected graph models is given here. It is easy to see
that the proof carries over directly to directed graphs without selection or
latent variables (i.e. V=0, S = L = ) replacing ‘separated’ by ‘d-separ-
ated’, and ‘connected’ by ‘d-connected’. The proof for directed graphs with
latent and/or selection variables is in the appendix.

Suppose, for a contradiction, UG |=s X 1LY | W, but UGH, X 1Y |
W N Betweeng(X,Y). Then there is a path 7 in UG connecting X and Y
given WNBetweeng(X,Y ). Since this path does not connect given W, it fol-
lows that there is some vertex V on 7, and V € W\Between(X,Y’). But if
V is on 7, then 7 constitutes a sequence of vertices (X = X, X3,...,Xp =
V,Xn41,-..,Xntm = Y) such that consecutive pairs of vertices are insep-
arables (because there is an edge between each pair of variables). Hence
V € Betweeny(X,Y ), which is a contradiction. 0

In general, chain graphs are not between,yr separated or between,,
separated. This is shown by CG; and CG3 in Figure 3:

CGy Ewwr ALD|{B,C},
so A and D are separable,yr, but Between,;,»(CG1; A, D) = {C} and
CGi e ALD | {C}.
For the AMP property note that
CG2 Faur BALD | {A,CY},

12%Where ‘A and B are causally connected’ means that either A is a cause of B, B is a
cause of A, or they share some common cause (or some combination of these).
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but Between 44,,(CG2; B, D) = {C}, and yet

CG2 #AMP BiLD | {C}

4.2. ‘CO-CONNECTION DETERMINED’ MODELS

A vertex W will be said to be co-connectedy to X and Y in G if X, Y and
W are vertices in [G]"® satisfying:

(i) There is a sequence of vertices (X, A, Ag, ..., A, W) in [G]P® which
does not contain Y and consecutive pairs of variables in the sequence
are inseparable, in G under R.

(ii) There is a sequence of vertices (W, By, B3, ..., By, Y) in [G] which
does not contain X and consecutive pairs of variables in the sequence
are inseparabley in G under R.

Let CoCong(G; X,Y) = {V | V is co-connected; to X and Y in [G]Is}.

It is easy to see that B will be co-connectedg to X and Y in G if and
only if (a) B is not separated from Y by X in [G]™S, and (b) B is not
separated from X by Y in [G]IS. Note that for any chain graph CG, and
vertices X, Y, CoCony»(CG; X,Y) = CoCon,up(CG; X,Y).

Clearly Between(G; X,Y) C CoCong(G; X,Y’), so being co-connected ;
to X and Y is a weaker requirement than being between, X and Y. Both
Betweeny(G; X,Y) and CoCongx(G; X,Y) are sets of vertices which are to-
pologically ‘in between’ X and Y in [G]I.

Co-Connection; Determined Models

A model G will be said to be co-connectiony determined, if for all pairs
of vertices X, Y and sets W (X,Y ¢ W):

Glr XUY | W < G r X ALY | WN CoCong(G; X,Y)

(where {X,Y} UW is a subset of the vertices in [G]1*®).

This principle states that the inclusion or exclusion of vertices that are not
in CoCong(X,Y) from some set W is irrelevant to whether X and Y are
entailed to be independent given W.

Theorem 2 (i) Undirected graph models are co-connections determined.
(ii) Directed graphs, possibly with latent and/or selection variables, are
co-connectionpg determined.
(iii) Chain graphs are co-connection,yp determined.

Proof: Again the proof for undirected graphs is given here. The proofs for
directed graphs and AMP chain graphs are given in the appendix.
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Since Betweeng(X,Y) C CoCons(X,Y), an argument similar to that
used in the proof of Theorem 1 (replacing ‘Betweeng’ with ‘CoCong’) shows
that if UG s X 1Y | W then UG s X1Y | W N CoCong(X,Y).
Conversely, if UG s X1Y | W N CoCong(X,Y) then X and Y are
separated by W N CoCong(X,Y) in UG. Since W N CoCony(X,Y) C W
it follows that X and Y are separated by W in UG.3

For undirected graphs UG s X 1Y | W = UG = XY | WN
Betweeng(X,Y), i.e. undirected graphs could be said to be between; deter-
mined. Chain graphs are not co-connection,yr determined. In CG1 B and
C are separable, s, since CGy =rwr BALC | {4, D}, but CG1¥,,,.B1C |
{D} and CoCon;wr(CG1; B,C) = {D}. In contrast, chain graphs are co-con-
nection 4, determined.

5. Discussion

The two Markov properties presented in the previous section are based on
the intuition that only vertices which, in some sense, come ‘between’ X and
Y should be relevant as to whether or not X and Y are entailed to be inde-
pendent. Both of these properties are satisfied by undirected graphs and by
all forms of directed graph model. Since chain graphs are not betweeny se-
parated under either Markov property, this captures a qualitative difference
between undirected and directed graphs, and chain graphs. On the other
hand since chain graphs are co-connection,,, determined, in this respect,
at least, AMP chain graphs are more similar to directed and undirected
graphs.

5.1. DATA GENERATING PROCESSES

Since the pioneering work of Sewall Wright [38] in genetics, statistical mo-
dels based on directed graphs have been used to model causal relations, and
data generating processes. Models allowing directed graphs with cycles have
been used for over 50 years in econometrics, and allow the possibility of re-
presenting linear feedback systems which reach a deterministic equilibrium
subject to stochastic boundary conditions (Fisher [10]; Richardson [27]).
Besag [3] gives several spatial-temporal data generating processes whose
limiting spatial distributions satisfy the Markov property with respect to a
naturally associated undirected graph. These data generating processes are
time-reversible and temporally stationary. Thus there are data generating
mechanisms known to give rise to the distributions described by undirected
and directed graphs.

13This is the ‘Strong Union Property’ of separation in undirected graphs (Pearl [22]).
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Cox [6] states that chain graphs under the LWF Markov property “do
not satisfy the requirement of specifying a direct mode of data generation.”
However, Lauritzen!? has recently sketched out, via an example, a dynamic
data generating process for LWF chain graphs in which a pair of vertices
joined by an undirected edge, X —Y, arrive at a stochastic equilibrium, as
t — o00o; the equilibrium distribution being determined by the parents of X
and Y in the chain graph.

A data generation process corresponding to a Gaussian AMP chain
graph may be constructed via a set of linear equations with correlated
errors (Andersson et al. [1]}. Each variable is given as a linear function of its
parents in the chain graph, together with an error term. The distribution
over the error terms is given by the undirected edges in the graph, as
in a Gaussian undirected graphical model or ‘covariance selection model’
(Dempster [9}), for which Besag [3] specifies a data generating process.
The linear model constructed in this way differs from a standard linear
structural equation model (SEM): a SEM model usually specifies zeroes in
the covariance matrix for the error terms, while the covariance selection
model sets to zero elements of the inverse error covariance matrix.

The existence of a data generating process for a particular chain graph
(under either Markov property) is important since it provides a full justifi-
cation for using this structure. As has been shown in this paper, the mere
fact that two variables are ‘symmetrically related’ does not, on its own,
justify the use of a chain graph model.

5.2. A THEORY OF INTERVENTION IN DIRECTED GRAPHS

Strotz and Wold [35], Spirtes et al. [31] and Pearl [23] develop a theory
of causal intervention for directed graph models which makes it sometimes
possible to calculate the effect of an ideal intervention in a causal system.
Space does not permit a detailed account of the theory here, however, the
central idea is very simple: manipulating a variable, say X, modifies the
structure of the graph, removing the edges between X and its parents, and
instead making a ‘policy’ variable the sole parent of X. The relationships
between all other variables and their parents are not affected; it is in this
sense that the intervention is ‘ideal’, only one variable is directly affected.!®

Egzample: Returning to the example considered in section 2.2, hypotheti-
cally a researcher could intervene to directly determine whether or not the
patient suffers the side-effects, e.g. by giving all of the patients (in both the

4Personal communication.
151t should also be noted that for obvious physical reasons it may not make sense to
speak of manipulating certain variables, e.g. the age or sex of an individual.
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Figure 11. Intervening in a causal system: (a) before intervention; (b) intervening to
directly control side-effects; (c) intervening to directly control health status.

treatment and control groups) something which either prevents or precipi-
tates the side-effects. The graph in Figure 11(b) shows the result of such an
intervention. After the intervention, which group the patient was assigned
to initially (treatment/control) becomes independent of whether the patient
suffers side-effects, as would be expected. The graph in Figure 11(c) shows
the result of intervening to control the patient’s health status directly.

One common objection to this intervention theory is that it makes a
distinction between models that are statistically equivalent,'® and hence
which could not be differentiated purely on the basis of observational data.
For example the graphs A — B and A < B, are statistically equivalent,1?
and yet the effect on B of intervening to manipulate A will clearly be dif-
ferent. This is true, but misses the point: scientists are often able to control
certain variables directly, and to perform controlled experiments, thus cer-
tain models can often be ruled out on the basis of background knowledge.
This objection is also over-simplistic: when there are more than two va-
riables it is often the case that all Markov equivalent models share certain
structural features in common, even when latent and/or selection variables
may be present (Verma and Pearl [37]; Frydenberg [11]; Spirtes and Verma
[34]; Richardson [28]; Spirtes and Richardson [33]). Thus knowing that the
data was generated by a model in a particular Markov equivalence class,
even if which particular model is unknown, may be enough to predict the
results of certain interventions (see Spirtes et al. [31]; Pearl [23]). A theory
of intervention constitutes an important part of a causal data generating
mechansim; specification of the dynamic behaviour of the system is another
element, which may be of great importance in settings where feedback is
present (Richardson [27, Ch. 2];).

In the absence of a theory of intervention for chain graphs, a resear-

16Tn the sense that they represent the same set of distributions.
17This observation is the basis for the slogan “Correlation is not Causation.”
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cher would be unable to answer questions concerning the consequences
of intervening in a system with the structure of a chain graph. However,
Lauritzen'® has recently given, in outline, a theory of intervention for LWF
chain graphs, which is compatible with the data generating process he has
proposed. Such an intervention theory would appear to be of considerable
use in applied settings when the substantive research hypotheses are causal
in nature.

6. Conclusion

The examples given in this paper make clear that there are many ways in
which a pair of variables may be symmetrically related. Further, different
symmetric relationships, in general, will lead to quite different Markov pro-
perties. In particular, as has been shown, there are qualitative differences
between the Markov properties associated with undirected and directed
graphs (possibly with latent and/or selection variables), and either of those
associated with chain graphs. Consequently, the Markov structure of a chain
graph does not, in general, correspond to any symmetric relationship that
can be described by a directed graph model via marginalizing or condi-
tioning. For this reason, the inclusion of an undirected edge, rather than a
directed edge, in a hypothesized chain graph model, should not be regarded
as being ‘weaker’ or ‘safer’, substantively, than the inclusion of a directed
edge.

This paper has shown that there are many symmetric relations which do
not correspond to chain graphs. However, this leaves open the interesting
question of which symmetric relations chain graphs do correspond to. A
full answer to this question would involve the specification, in general, of a
data generating process for chain graphs (under a given Markov property),
together with an associated theory of intervention.
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7. Proofs

In DG(O,S,L) suppose that u is a path that d-connects X and Y given
ZUS, C is a collider on y, and C is not an ancestor of S. Let length(C, Z)
be 0 if C is a member of Z; otherwise it is the length of a shortest directed
path d from C to a member of Z. Let

Coll(u) = {C | C is a collider on y, and C is not an ancestor of S}.
Then let

size(p, Z) = |Coll(u)| + Z length(C, Z)
CeColl(y)

where |Coll(u)| is the cardinality of Coll(). A path u is a minimal acyclic
d-connecting path between X and Y given ZUS, if p is acyclic, d-connects
X and Y given ZUS, and there is no other acyclic path p’ that d-connects
X and Y given Z U S such that size(y,Z) < size(p, Z). If there is a path
that d-connects X and Y given Z then there is at least one minimal acyclic
d-connecting path between X and Y given Z.!°

In the following proofs u(A, B) denotes the subpath of u between ver-
tices A and B.

Lemma 1 If p is a minimal acyclic d-connecting path between X and Y
given ZUS in DG(0,S,L), ZU{X,Y} C O, then for each collider C; on
i that is not an ancestor of S, there is a directed path 6; from C; to some
vertez in Z, such that §; intersects p only at Cji, 6; and 6; do not intersect
(2 # 7) and no vertez on any path d; is in S.

Proof: Let 8; be a shortest acyclic directed path from a collider C; on p to
a member of Z, where C; is not an ancestor of S, and hence no vertex on é;
is in S. We will now be prove that §; does not intersect u except at C; by
showing that if such a point of intersection exists, then y is not minimal,
contrary to the assumption.

Form a path p’ in the following way: if d; intersects p at a vertex other
than C; then let Wx be the vertex closest to X on u that is on both 4; and
i, and let Wy be the vertex closest to Y on u that is on both é; and u.
Suppose without loss of generality that W is after Wy on §;. Let ' be the
concatenation of u(X,Wx), 6;(Wx,Wy), and pu(Wy,Y). It is now easy to
show that u' d-connects X and Y given Z U S. (See Figure 12.) Moreover
size(u', Z) < size(u,Z) because p' contains no more colliders than p and a

197t is not hard to prove that in a DG, if there is a path (cyclic or acyclic) d-connecting
X and Y given Z, then there is an acyclic path d-connecting X and Y given Z.
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Figure 12. Finding a d-connecting path u’ of smaller size than u, in the case where u
intersects with a directed path é; from a collider C; to a vertex in Z.
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Figure 13. Finding a d-connecting path ' of smaller size than u, in the case where two
directed paths, 4; and J;, intersect.

shortest directed path from Wx to a member of Z is shorter than ;. Hence
1 is not minimal, contrary to the assumption.

It remains to be shown that if x4 is minimal, then §; and d; (i # j) do
not intersect. Suppose this is false. (See Figure 13.)

Let the vertex on d; closest to C; that is also on §; be T Let p' be the
concatenation of u(X, C;), 6;(C;, T), 6;(T, C;), and u(C;,Y). It is now easy
to show that u’ d-connects X and Y given ZUS and size(y', Z) < size(u, Z)
because C; and C; are not colliders on g, the only collider on u' that may
not be on u is T', and the length of a shortest path from T to a member
of Z is less than the length of a shortest path from C; to a member of Z.
Hence p is not minimal, contrary to the assumption. O

Lemma 2 If p is a minimal d-connecting path between X and Y, given
ZUS in DG(O,S,L), B is a vertez on p, and ZU{X,Y, B} C O, then there
is o sequence of vertices (X = Xo,X1,...,Xn = B, Xpn41,.+.» Xpntm =
Y) in O, such that X; aend X;1 (0 < i < n+ m) are inseparabdleps in
DG(0,S,L).

Proof: Since p is a d-connecting path given S U Z every collider on p that
is not an ancestor of S is an ancestor of a vertex in Z. Denote the colliders
on y that are not ancestors of S as Cy, ..., Cy. Let §; be a shortest directed
path from Cj; to some vertex Z; € Z. It follows by Lemma 1 that J; and p
intersect only at C;, and that §; and d; (j # j') do not intersect, and no
vertex on some path §; is in 8. A sequence of vertices X; in O, such that
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each X; is either on u or is on a directed path 4; from Cj; to Z; can now be
constructed:

Base Step: Let Xy = X.

Inductive Step: If X; is on some path ¢; then define W;;; to be Cj;
otherwise, if X; is on u, then let W;, 1 be X;. Let V;41 be the next vertex on
@, after Wiy, such that V;y; € O. If there is no vertex C between W;,
and Vi on p, then let X;,, = V;;,. Otherwise let Cj« be the first collider
on u, after W;;, that is not an ancestor of S, and let X;,, be the first
vertex in O on the directed path d;+ (such a vertex is guaranteed to exist
since Zj», the endpoint of §;«, is in O). It follows from the construction
that if B is on u, and B € O, then for some i, X; = B.

Claim: X; and X;, are inseparableps in DG(O, S,L) under d-separation.
If X; and X1 are both on u, then u(X;, X;11) is a path on which every
non-collider is in L, and every collider is an ancestor of S. Thus u(X;, X; 1)
d-connects X; and X;, given ZUS for any Z C O\{X;, Xi+1}. So X; and
Xit1 are inseparableps. If X; lies on some path 4;, but X;, is on g, then
the path 7 formed by concatenating the directed path X; < --- +-Cj; and
#(Cj, Xi11) again is such that every non-collider on 7 is in L, and every
collider is an ancestor of S, hence again X; and X1 are inseparablepg.
The cases in which either X;,, alone, or both X; and X;,; are not on g
can be handled similarly. O

Corollary 1 If B s a vertez on a minimal d-connecting path m between
X and Y given ZU S in DG(0,S,L), ZU {X,Y,B} C O, then B €
Betweenps(X,Y).

Proof: This follows directly from Lemma 2 O

Corollary 2 If u is a minimal d-connecting path between X and Y given
ZUS in DG(0,S,L), C is a collider on u that is an ancestor of Z but not S,
d is a shortest directed path from C to some Z € Z, and ZU{X,Y,C} C O,
then Z € CoConps(X,Y).

Proof: By Lemma 1, § does not intersect u except at C. Let the sequence of
vertices on § that are in O be (V1,...,V, = Z). It follows from the construc-
tion in Lemma 1 that there is a sequence of vertices (X = Xy, X31,..., X5 =
Vi, Xn+1,- -+, Xn+m = Y) in O such that consecutive pairs of vertices are
inseparablegs. Since, by hypothesis, C is not an ancestor of S, it follows that
no vertex on d is in S. Hence §(V;, V;11) is a directed path from V; to V;11 on
which, with the exception of the endpoints, every vertex is in L and is a non-
collider on 4, it follows that V; and V4, are inseparable,s in DG(O, S, L).
Thus the sequences (X = Xy, X1,...,Xp = WV,...,V, = Z) and (Y =
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Xntmy---s Xn = V1,...,V, = Z) establish that Z € CoConps(X,Y) in
DG(O,S,L). O

Theorem 1 (i) A directed graph DG(O, S, L) is betweenps separated under
d-separation.

Proof: Suppose, for a contradiction, that DG(O,S,L) Eps X 1Y | W,
(WU {X,Y} CO), but DG(O,S,L)F,, X 1Y | W N Betweenps(X,Y).
In this case there is some minimal path # d-connecting X and Y given
SU (W nNBetweenys(X,Y)) in DG(O, S, L), but this path is not d-connect-
ing given S U W. It is not possible for a collider on 7 to have a descendant
in S U (W N Betweenpg(X,Y)), but not in S U W. Hence there is some
non-collider B on 7, s.t. B € SUW, but B ¢ SU (W N Betweenps(X,Y)).
This implies B € W\Between 5(X,Y’), and since W C O, it follows that
B € 0. But in this case by Corollary 1, B € Betweenpg(X,Y'), which is a
contradiction. O

Theorem 2 (ii) A directed graph DG(O,S,L) is co-connectionps deter-
mined.

Proof: Since Betweenpg(X,Y) C CoConpg(X,Y), the proof of Theorem 1
above, replacing ‘betweenps’ with ‘co-connected,s’, suffices to show that
if DG(0,S,L) kps X1Y | W then DG(O,S,L) ps XY | W N
CoConps(X,Y).

To prove the converse, suppose, for a contradiction, DG(O,S,L) ps
X1UY | WNCoConps(X,Y), but DG(O,S,L)F#,, X LY | W, where WU
{X,Y} C O. It then follows that there is some minimal d-connecting path
7 between X and Y in DG(0O, S,L) given W U S. Clearly it is not possible
for there to be a non-collider on 7 which is in S U (W N CoConps(X,Y)),
but not in SUW. Hence it follows that there is some collider C on 7 which
has a descendant in S U W, but not in S U (W N CoConps(X,Y)). Hence
C is an ancestor of W\CoConps(X,Y’), but not S. Consider a shortest
directed path § from C to some vertex W in W. It follows from Lemma
1, and the minimality of 7 that § does not intersect m except at C. It now
follows by Corollary 2, that W € CoConps(X,Y). Therefore if C is an
ancestor of a vertex in S U W, then C is also an ancestor of a vertex in
S U (W N CoConps(X,Y)). Hence ® d-connects X and Y given SU (W N
CoConps(X,Y)), which is a contradiction. ]

Lemma 3 Let CG be a chain graph with vertex set V; X,Y € V and
W C V\{X,Y}. Let H be the undirected graph Aug[CG; X,Y, W]. If there
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I S O R O
(a) (b) (©)

Figure 14. (a) A chain graph CG with CoConamp(CG;X,Y) = {B,W}; (b) a path
u in Aug[CG; X,Y,{W}]; (c) a path g’ in Aug[CG; X,Y, {W}] every vertex of which
occurs on p and is in CoConanr(CG; X,Y).

is a path p connecting X and Y in H, then there is a path u' connecting
X and Y in H such that if V is a vertea: on y' then V is on u, and
V € COCO”AMP(X Y) U {X Y}

Proof: If X and Y are adjacent in H then the claim is trivial since p’' =
(X,Y) satisfies the lemma. Suppose then that X and Y are not adjacent
in H.

Let the vertices on p be (X = X;,..., X, =Y). Let a be the greatest
7 such that X; is adjacent to X in H. Let § be the smallest ¥ > «a such
that X is adjacent to Y in H. (Since X and Y are not adjacent , 8 < n.)

It is sufficient to prove that {X,,...,Xg} C CoConyup(X,Y), since
then the path 4’ = (X, X,,..., Xg,Y) satisfies the conditions of the lemma.

This can be proved by showmg that there is a path in [CG]%, from X
to each X; (a < i < ) which does not contain Y. A symmetric argument
shows that there is also a path from Y to X; (o < i < 8) in [CG]IS,, which
does not contain X. The proof is by induction on <.

Base case: i = «. Since X is adjacent to X, in H, either there is a
(directed or undirected) edge between X and X; in CG, or the edge was
added via augmentation of a triplex or bi-flag in Ext(CG, Anc({X,Y} U
W)). In the former case there is nothing to prove since X and X; are
adjacent in [CG]L%,. If the edge was added via augmentation of a triplex
then there is a vertex T such that (X, T, X;) is a triplex in CG, hence T
is adjacent to X and X; in [CG]{%%,. Since X and Y are not adjacent in
H, T #£Y,so {X,T,X;) is a path which satisfies the claim. If the edge
was added via augmentation of a bi-flag then there are two vertices Tp,
T, forming a bi-flag (X, T, T, X;). From the definition of augmentation
it then follows that Ty and T7 are adjacent to X and X; in H. Since we
suppose that X and Y are not adjacent in H it follows that neither Ty
nor Ty can be Y. Hence (X, Ty, Ty, X;) is a path in [CG]IRS, satisfying the
claim.

Inductive case: i > «a; suppose that there is a path from X to X;_;
in [CG)ins, which does not contain Y.

Since 1 — 1 < B, X;_1 is not adjacent to Y in H. By a s1m11a.r proof
to that in the base case it can easily be shown that there is a path from
X;_1 to X; in [CG)i8, which does not contain Y. This path may then be
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Figure 15. (a) A chain graph, CG, in which CoConsmp(CG;X,Y) = {U};
(b) the undirected graph Aug[CG; X,Y,{U,W}]; (¢) Hi, the induced subgraph of
Aug[CG; X,Y, {U,W1}] over CoConanr(X,Y)U {X,Y} = {U,X,Y}; (d) the undirec-
ted graph Hz, Aug[CG; X,Y,{U,W} N CoConamp(X,Y)].

concatenated with the path from X to X;_; (whose existence is guaranteed
by the induction hypothesis) to form a path connecting X and X;_; in
[CG)is, which does not contain Y. O

Lemma 4 Let CG be a chain graph, and let Hy be the induced subgraph of
Aug[CG; X, Y, W] over CoCon,yp(X,Y)U{X,Y}. Let Hy be the undirected
graph Aug[CG; X, Y, W N CoCon,pp(X,Y)]. Hy is a subgraph of Hj.

Proof: We first prove that if a vertex V is in Hy then V is in H. If V occurs
in Hy then V € CoCony,up(X,Y)U{X,Y}. Clearly X and Y occur in both
H; and Hy, so suppose that V € CoConyyp(X,Y).

It follows from the definition of the extended graph that if V is a vertex
in Ext(CG,T) then there is a path consisting of undirected edges from
V to some vertex in T. Since V is in Ext(CG, Anc({X,Y } UW)) there
is a path 7 of the form (V = Xo— --- — X, = -+ 5> Xpym = W) in
CQG, where W € {X,Y} UW, and n,m > 0. Let X; be the first vertex
on 7 which is in {X, Y} UW, je. Vi (0 < i< k) X; ¢ {X,Y}UW.
Now, if X}, € W then since V' € CoCon,yp(X,Y), and 7(V, X;) is a path
from V to X; which does not contain X or Y, it follows that X;; € W N
CoConyp(X,Y). Hence V occurs in Ext(CG, Anc(WNCoCon,yp(X,Y))),
and so also in Hy. Alternatively, if X; € {X,Y}, then again X} occurs in
Ext(CG, Anc({X,Y'})), and thus in Hs.

Hence, if there is an edge A—B in Hi, then A and B occur in Hy. There
are three reasons why there may be an edge in Hj:
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(a) There is an edge (directed or undirected) between A and B in CG.
It then follows immediately that there is an edge between A and B in Ha.

(b) The edge between A and B in H; is the result of augmenting a
triplex in Ext(CG, Anc({X,Y } U W)). Then there is some vertex T' such
that (A,T,B) forms a triplex in Ext(CG, Anc({X,Y} U W)). Since, by
hypothesis, A, B € CoCon,(X,Y), it follows that T' € CoCon (X, Y)U
{X,Y}, and hence T occurs in H;. It then follows by the previous reasoning
that T is in H9, and so the triplex is also present in Ext(CG, Anc({X,Y}U
(W N CoConyup(X,Y)))). Hence there is an edge between A and B in H».

(c) The edge between A and B in Hj is the result of augmenting a bi-flag
in Ext(CG, Anc({X,Y } UW)). This case is identical to the previous one,
except that there are two vertices Tp, T1, such that (A, Ty, T, B) forms a bi-
flag in Ext(CG, Anc({X,Y }UW)). As before, it follows from the hypothesis
that A, B € CoCon,yp(X,Y), that Tp, 71 € CoCongyp(X,Y) U {X,Y},
hence Ty and Ty occur in Hs and the bi-flag is in Ext(CG, Anc({X,Y} U
(W N CoCon,up(X,Y)))). Thus the A—B edge is also present in Hp. O

Theorem 2 (iii) Chain graphs are co-connection,yp determined.

Proof: (CG l=aur X LY | W = CG [=4pp XY | W N CoConypp(X,Y))
Let H be Aug[CG; X,Y,W]. Since CG | up XY | W, X and Y are
separated given W in H.
Claim: X and Y are separated in H by W N CoCon,up(X,Y). Suppose,
for a contradiction, that there is some path g in H, connecting X and ¥
on which there is no vertex in W N CoCon,up(X,Y). It then follows from
Lemma. 3 that there is a path u' in H composed only of vertices on p which
are in CoConyp(X,Y). Since no vertex on y is in W N CoCon,yp(X,Y),
it then follows that no vertex on y’ is in W. So X and Y are not separated
by W in H, contradicting the hypothesis.

However, Aug[CG; X,Y, W N CoCon,p(X,Y)] is a subgraph of H, so
X and Y are separated by W N CoCon,u»(X,Y) in Aug[CG; X,Y,W N
CoConyyp(X,Y)]. Thus CG e XiLY | W N CoCon e (X, Y).

(CG f=aup X LY | WN CoConyup(X,Y) = CG l=aue XULY | W)

The proof is by contraposition. Suppose that there is a path p from X to Y
in Aug[CG; X,Y, W]. Lemma 3 implies that there is a path y' from X to Y’
in Aug[CG; X,Y, W] every vertex of which is in {X,Y}UCoCon,u(X,Y).
It then follows from Lemma, 4 that this path exists in Aug[CG; X,Y,W N
CoCon,up(X,Y)]. O
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