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Abstract

While inference in decomposable graphical Gaussian models is completely
solved the non-decomposable case still poses difficulties concerned with the
evaluation of normalising constants. We propose an importance sampler based
on the asymptotic distribution of the maximum likelihood estimates, or equiv-
alently of the posterior distribution in a conjugate analysis, to solve this inte-
gration numerically. An example of model comparison based on Bayes factors
involving non-decomposable models is given.
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1 Introduction

Let X be a p-dimensional Normal random vector with mean zero and positive definite
concentration matrix {2 = X!, In graphical Gaussian models the conditional inde-
pendence structure of X is represented by means of an undirected graph G = (V, V)
with V = {1,...,p}. A missing edge from the graph, (¢,7) ¢ V, denotes pairwise
conditional independence and corresponds to a zero element in 2, w;; = 0, (see, for
instance, Whittaker, 1990; Lauritzen, 1996).

It is natural for a model selection procedure to choose candidates from the set
of all graphs and a restriction to the subset of decomposable models with chordal
graphs is somewhat artificial. While the analysis of decomposable models may be
reduced to the analysis of saturated marginal models corresponding to the cliques
of the graph, in the non-decomposable case this is not possible and inference for
the incomplete prime components of the graph still presents open problems. Large
sample approximation to standard errors of non-decomposable models (Roverato and
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Whittaker, 1996) are available, but in the Bayesian approach the difficulties due to
the evaluation of normalising constants (see Dellaportas et al., 1996) has proscribed
the computation of the Bayes factor when at least one of the competing models is
non-decomposable.

In this paper we propose an importance sampler for the numerical evaluation of
the normalising constant in a conjugate analysis of the graphical Gaussian model.
The problems are twofold. First the support of the required distribution is that of a
positive definite matrix constrained by a given zero structure. Sampling from standard
matrix distributions such as the Wishart give zero probability to this support (in the
decomposable case this problem may be circumvented by factorising the support and
sampling from the clique marginals). Secondly, the shape of the required distribution
over its support needs to be closely tracked by the sampler as the high dimensional
spaces (p variables give p(p+1)/2 parameters) quickly lead to numerical inaccurancy.
We solve these problems by using the asymptotic normal distribution (Roverato and
Whittaker, 1997) and checking that the acceptance probability on the support is
sufficiently high.

The notation and a description of the problem are presented in Section 2. In
Section 3 we describe the importance sampling procedure. In Section 4 we present
an example of near neighbour model comparison based on the Bayes factor. We end
with a discussion.

2 Background

2.1 Notation

Let V be a finite set with |V| = p, and let I' be a p X p symmetric invertible matrix.
The rows and columns of I' are indexed by the elements of V, so that I itself is
indexed by V x V. When V = {1,...,p}, I is indexed by row and column numbers.

The Isserlis matrix of I, Iss(I'), (Isserlis, 1918; Roverato and Whittaker, 1997) is
the symmetric matrix indexed by W x W where W = {(¢,5) : ¢,7 € V,i < 7}, with
elements

{Iss(D) } iy (rs) = VirYis T YisVir-

For an arbitrary undirected graph G = (V,V) we use the convention that for all
i € V the pair (7,7) is included in the edge set V and that if (3,7) € V then 7 < j. The
set W is therefore the edge set of the complete graph and we denote by V = W\V
the set of edges not in G. For example, for the graph in Figure 1, with V' = {1, 2,3},
V= {(1,1),(2,2),(3,3),(1,2),(2,3)} and ¥ = {(1,3)}.
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Figure 1: Example of undirected graph.

For any undirected graph G = (V,V) the pair (V,V) is a partition of W. To



this correspond the submatrices Iss(I')yy, Iss(I')yp and Iss(T')py as well as the partial
matrix Iss(T)yyp = Iss(T)yy — Iss(T)yp[Iss(T)pp] ss(T)py-

For a set C C W we define the C-incomplete matrix I'C as the symmetrised matrix
indexed by V x V with elements {v;} for all (i,j) € C, and with the remaining
elements unspecified. For example, in the graph in Figure 1 above the incomplete
matrices corresponding to the sets V and V are respectively

Y1 Yiz ¥ ) *  * Y3
IV=1| 71 72 7 and Y = * % % ,
* Y32 733 Y31 k%

where asterisks denote unspecified elements. The matrix I'"V is a shorthand for
(-1, If it is possible to fill an incomplete matrix I'® to obtain a (full) positive
definite matrix we say that I'C admits a positive completion.

Let TV be a V-incomplete matrix, with G = (V,V), which admits a positive
completion. We say that ['¢ is the completion of I'V if it is the unique positive
definite matrix such that

rg)Y =1v and {Tz'}; =0 for all (3,7 e V. 1
G Jij

See Grone et al. (1984) for a proof of the existence and uniqueness of such matrix.

When G is non-chordal matrix completion can be performed using the standard
iterative proportional fitting algorithm (Whittaker, 1990). Note that (1) can be
reformulated as the equations satisfied by the maximum likelihood estimate of ¥ for
a given graphical model.

For an undirected graph G = (V,V), we denote by M,(G) the set of all V-
incomplete matrices and by M7 (G) the set of all V-incomplete matrices that admit
positive completion. Furthermore we denote by Mo(G) the set of all symmetric
matrices indexed by V x V with element (i, ) equal to zero whenever (i,7) € V.
The intersection of Mo(G) with the set of all positive definite matrices is denoted by
ME(G).

The trace of the product of two square matrices is tr(®T) = > 7, Y%, dijvij-
If ® € Mo(G) only the specified elements of I'V enter into this sum, and so we can
write tr(®T) = tr(®I'Y).

2.2 Normalising constants
The function k(Q|AY,b) = C(AY,b)g(R|AY,b) on © € M (G) specified by

(014”8 = exp { ~21x(04") + T log ] | @)
with the normalising constant
-1
C(a”,b) = [ [, s@ia’y) «m} , ®)
M (G)

is relevant in the statistical inference of graphical Gaussian models. Its parameters
are an incomplete matrix AY € M} (G) and a positive constant b.
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With A = S, the sample covariance matrix, and b = n, the sample size, k(Q|SY, n)
is proportional to the likelihood function and has maximum value at {} = S5 (Speed
and Kiiveri, 1986) the inverse of the completion of $¥ with respect to G. In Bayesian
inference, for the choice of hyper parameters AY = DY and b = h, k(Q{DV, ) is the
density of the conjugate prior for ). The corresponding posterior distribution has
density k(QTV,d) where T = (hDY +nSV)/(h+n) and d = h+n. When compatible
conjugate priors are used, the Bayes factor for comparing models Gy = (V4, V1) and
G2 = (V2, V) can be written as

P(D|G,) _ C(D™,h)C(T",d)
o) = BbiG,) ~ o™, 9007,y W

The multivariate normal distribution
N (AgY, b7 Iss(AG Yyyip) (5)

is the asymptotic sampling distribution of the maximum likelihood estimates, and
the limiting distribution of the conjugate posterior, when AY and b are appropriately
chosen (Roverato and Whittaker, 1997).

When G is chordal the conjugate prior is hyper Wishart (Dawid and Lauritzen,
1993), and it is the hyper Markov combination with Wishart marginals W (b + |C| +
1,(bAcc)™!) over the cliques C' of the graph. In this case the solution in closed
form of integral (3) is available. In the non-decomposable case the integral (3) can
be simplified by decomposing it according to the prime components of the graph
and their separators. However for an incomplete prime component the integral is
intractable and we consider its numerical evaluation in the next section.

3 The importance sampler

Importance sampling evaluates C = [ g{z)dz approximately by drawing N samples
{z1,...,zn} from a distribution with density ¢(z) and computing C=N"1! Efil ‘Zi(z—g,
for instance see Fishman (1996).

The importance sampler g(z) we propose for the numerical evaluation of the
normalising constant C'(AY,d) is based on (5). The rationale is that as b — co the
distribution of Q is asymptotically equal to (5).

Pseudo code outlining the procedure is:
initialise:
Sum=9
input b, AY
evaluate the mean of (5): v = AZ!
evaluate the variance of (5): ® = b~ Iss(Ag" Jyyp
make a small sample correction: ¥, = b"'pT""lz/:, b, = ﬂ'ﬁb’ilfb
loop overt =1 to N

generate Y ~ N(i.,®,)
fill QY with zeros to give Q;



evaluate the Cholesky decomposition: Chol(f);)
if the Cholesky decomposition fails (i.e. £; # 0) then reject €2;

else
evaluate g = g(€%;]AY,d) from (2) (use Chol();) for the determinant)
evaluate ¢ = ¢(Q2Y) from the density of N (., ®.)
increment Sum= Sum +g¢/q
end loop

return Sum/N

The efficiency of the procedure crucially depends on the acceptance rate, deter-
mined by the proportion of random incomplete matrices that, filled with zeros, are
positive definite. There are two points to note: firstly the Cholesky decompostion is
efficient because used in sequential form it allows an early rejection of a non positive
matrix; and if the matrix is positive the procedure evaluates a required determinant.
Secondly, the small sample correction to transform the mean and variance of (2) by
the multiplying factor (b+ ps +1)/b is a tuning constant. If the prime component is
complete then p, = p, the number of variables of the component, and makes the first
two moments equal to those of the corresponding Wishart. Otherwise our experience
suggests that p, be chosen equal to the largest clique size of the prime component.
This substantially improves the acceptance rate when b is small.

Table 1 gives some indication of the accuracy of the procedure. The logarithm
of the normalising constant, log C, for decomposable (saturated) models with p =
6 (21 parameters) are calculated exactly and compared to estimates, log 6, from
the importance sampler. Increasing values of b are considered while A is given an
intraclass correlation form (unitary diagonal elements and all off-diagonal elements
equal to p with —1/(p—1) < p < 1 so as to assure A > 0). For p = 6 we set p = 0.4,
the mid point of the interval [-1/(p—1),1]. The approximation is really rather good,
but as the acceptance rate is low when b is small, additional sampling is required. In

Table 1: Exact and estimated constants for the saturated model with p = 6 (21

parameters).

b logC(A,b) logC(A,b) CPU time samplesize accept. rate
1 -34.8929 -34.8415 91.74 600 16.74%
2 -21.5596 -21.5385 63.20 400 21.94%
4 -6.9924 -6.9857 33.45 200 33.45%
6 2.9681 2.9656 26.75 150 45.32%
10 18.4858 18.4871 29.50 150 66.22%
15 34.6974 34.6964 32.75 150 83.70%
20  49.3941 49.3928 33.75 150 92.88%
30 76.7027 76.7029 23.29 100 98.85%
50  127.7852 127.784 9.69 40 99.98%
75  188.9807 188.989 5.62 25 100.00%

Table 2 we compute log C for chordless cycle models of increasing dimensions. We set
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b = p/2, half of the minimum sample size required for the estimation of the model,
and this keeps the acceptance rate nearly constant as p increases. Figure 3 shows

Table 2: Normalising constant for chordless cycle models.

p b no.param. log C’C{Tb) CPU time sample size accept. rate

4 2 8 -5.1780 21.65 400 45.87%

8 4 16 3.1423 55.30 400 36.64%
12 6 24 20.2257 108.85 400 38.49%
16 8 32 45.3430 197.08 400 44.59%
20 10 40 78.0100 324.33 400 52.56%

the convergence of the procedure for the chordless cycle with p = 20. Although an
acceptable approximation is reached quite quickly the low acceptance rate makes the
variance of the procedure decrease rather slowly.

log-constant estimate

778 78.0 78.2 78.4

77.6

100000

200000

300000 400000

sample size

500000

Figure 2: Convergence of procedures initialised with different random seeds for a

chordless cycle model with p = 20 (40 parameters) and b = 10.

Figure 3 gives some instances of the CPU time required for the computations.

4 Example

In this Section we present an application of the procedure to the computation of Bayes
factors for real data. Where the comparison involves only decomposable models the
exact Bayes factor is also given.
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Figure 3: Time required on a Sun Sparc Ultra 2 220 station for the estimation of the
normalising constant for chordless cycle models; full line: b = p/2, dashed line: b = p,
dotted line: b = 2p.

Table 3 gives summary statistics for six variables measured in Genoa and Padua
paediatric hospitals on 107 three month old babies. These data come from a larger

Table 3: Summary statistics for the HIV data: sample variances {main diagonal),
correlations (lower triangle) and partial correlations (upper triangle).

X, | 88374 0479 -0.043 -0.033 0.356 -0.236
X2 | 0.483 0.1919 0.068 -0.084 -0.224 -0.110
Xz | 0.220 0.067 8924231.9  0.085 0.552 -0.330
X4 | -0.040 -0.133 0.149 20392.4 0.091 0.013
Xs | 0253 -0.124 0.523 0.179 19527952 0.384
Xe | -0.276 -0.314 -0.183 0.064 0.213 1.378
X1 X3 X3 X4 Xs Xs

Italian study (Boccuzzo, 1991) investigating early diagnosis of HIV infection in chil-
dren from HIV positive mothers. The variables are related to various measures on
blood and its components: X; and X, to immunoglobin G and A, respectively; X4 to
the platelet count; X3, X5 lymphocyte B and T4, respectively; and X to the T4/T8
lymphocyte ratio.

Discussion with the experts running the study suggests the presence of a strong
association between variables X;, X; and between variables X3, X5, Xg; together
with an association structure of these variables compatible with the graph of Figure
4.



Imm.G, 1

Imm.A, 2

4, Plat. ©

5, Lymp.T4

6, Lymp.Rat.

3, Lymp.B

Figure 4: Hypothesised model for HIV diagnosis.

A minimal form of model checking is to compare the decomposable model sug-
gested by the experts with graph in Figure 4 to neighbouring models that differ
exactly by one edge. Some of these are non-decomposable.

We used the conjugate prior and set the hyper parameter i equal to 3. The
hyper parameter D is specified in the form AY2PA/2 where P is the intraclass
correlation matrix given above and A = diag(10,10°,107,10%,107,10) incorporates
the information on the scale of the variables.

Table 4 gives the Bayes factors for the nearest neighbouring comparison where G
is always the smaller model. The values are logged for comparison with Jeffreys’scale
(Jeffrey, 1961, Appendix B).

Table 4: Hypothesized model for HIV diagnostic data: nearest neighbour compar-

isons.

(i,5) logio(B) logy(B)

(1,2)
(1,5)
(1,6)
(2,5)
(3,5)
(3,6)
(5,6)

(3,7) logo(B) logio(B)
excluded edges
-6.4414  -6.4440
non-d.  -3.1855
-1.6479  -1.6403
-0.7296  -0.6940
-8.5698  -8.5547
-1.8332 -1.8114
non-d.  -4.3846

included edges
(1,3) 0.9582  0.9411
(1,4) 0.7425  0.7314
(2,3) non-d. 0.4855
(2,4) 0.3283  0.3001
(2,6) 0.2194  0.2036
(3,4) 0.0959  0.1033
(4,5) -0.6297 -0.6518
(4,6) 0.0675 0.0551

The entries in Table 4 show that the approximation error is of the order of the
second decimal place. This is due to the high variance of the procedure evaluating
the constant of the prior and would be reduced if the prior were more informative.
However it is far from affecting the inference made.



5 Discussion

There are other ways to construct an importance sampler.

For a graphical Gaussian model with graph G = (V,V) function (2) can be
alternatively expressed as either a function of the moment parameter Z¥ € M} (G)
or of the canonical parameter X3! = O € MZF(G). Consider the following diagram
involving the sets described in Section 2.1,

Q € MIG) c Mo(G)

I 1
Ve MHG) € MJG).

The difference between Mo(G) and M., (G) is only notational and these two sets
have an obvious bijective mapping. However the bijective mapping between Mg (G)
and M*,(G) is not trivial because if I'V € M (G) the corresponding full matrix
completed with zeros is not necessarily positive definite. So the mapping between
M}(G) and Mo(G) requires the operations of matrix completion and inversion: any
matrix BY € M} (G) uniquely identifies a matrix Q = 7' € MF(G).

Constructing an importance sampler based on the moment parameter has the
advantage that samples from M} (G) are easy to draw, for example, by marginalising
the sample obtained from an appropriate Wishart distribution. However in the non-
decomposable case the evaluation of (2) requires a matrix completion operation, to be
performed numerically, for each sample. This makes the procedure highly ineflicient.

On the other hand the approach based on the canonical parameter allows an
efficient evaluation of (2) but the standard matrix distributions give zero probability
to MZ(G).

Our proposed solution is based on obtaining a random realisation Y from M..(G),
considering the corresponding 2 € Mo(G) and checking if this element belongs to
MZ(G). This is only feasible if the importance sampler gives positive probability to
ME(G); it is efficient if this probability is high and its shape closely resembles that
of g(-).

Our importance sampler works well when b is large, for instance, when evaluating
the constant for a posterior distribution. It is less efficient when b is small relative to
the number of variables in the largest incomplete prime component of the graph.
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