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Extracting classical trajectories from atomic spectra
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We describe how to reconstruct individual classical trajectories from spectroscopic data. The ac
dipole moment of a trajectory can be found from the effect of an oscillating field on the spectrum.
The inverse Fourier transform of such data yields the component of the electron trajectory along
the direction of the oscillating field. We demonstrate the method by experimentally extracting z(t)
for two electron trajectories that influence the Stark spectrum of Rydberg lithium. Within the
experimental resolution, the reconstructed orbits agree well with classical predictions.
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The classical behavior of a dynamical system is ex-
pected to be derivable from its underlying quantum
structure, and new methods of connecting classical and
quantum approaches continue to be developed. Periodic
orbit theory [1] and its variants allow one to learn about
the actions and stabilities of classical orbits from a sys-
tem’s quantum density of states (though it is typically
used the other way around). There are only a few meth-
ods that can be used to find the trajectories themselves—
their position as a function of time—and the methods
are either indirect {2] or require knowledge of the quan-
tum wavefunctions in addition to the spectrum [3,4]. We
present here the results of a new experimental study in
which the trajectory itself is reconstructed directly from
spectroscopic data.

Rydberg atoms in external fields are an excellent labo-
ratory for studying semiclassical methods experimentally.
Their spectra can be interpreted with a variation of pe-
riodic orbit theory known as closed orbit theory [5,6].
Closed orbit theory relates fluctuations in the atomic
photoabsorption spectrum to the system’s classical closed
orbits (orbits that begin and end at the nucleus). A
spectrum taken under conditions obeying classical scal-
ing laws can be Fourier transformed to yield a “recur-
rence spectrum,” in which each closed orbit appears as
a peak in a plot of intensity vs. action [7]. This proce-
dure establishes the existence and action of the closed
orbits, and provides some information about their sta-
bilities and initial directions. From thie change in peak
positions when experimental parameters are changed, it
is also possible to learn about the periods and average
electric dipole moments of the orbits [8]. However, the
orbits themselves (the electron position as a function of
time) have hitherto been experimentally inaccessible.

The idea that the shape of an orbit could be deduced
from spectroscopic data arose from a study of recurrence
spectra of Rydberg atoms in.static fields, perturbed by
an additional weak time-dependent electric field [9]. The
oscillating field was observed to reduce the strengths of
recurrences systematically. The effect was explained by
generalizing closed orbit theory to time-dependent sys-
tems. Most intriguingly, the pattern of the weakening
depends on the Fourier transform of the classical motion
of the electron. Would it be possible to use such experi-
ments to measure the Fourier transform of the motion for
a range of frequencies, take the inverse Fourier transform,
and thereby learn about the shape of the orbit itself?

‘We present here the results of a new study which shows
that this is indeed possible. By doing spectroscopy in an
oscillating field, we gain new information that allows us
to reconstruct, a trajectory directly, without measuring
the wavefunction. We describe this new method and use
it to reconstruct two of the electron orbits important to
the Stark spectrum of lithium. Within the limits of the
experiment, the measured orbits are in excellent agree-
ment with the orbits predicted by classical simulation.

We use cw laser spectroscopy to study the Rydberg
spectrum of lithium in a constant electric field F = F3,
perturbed with a weak oscillating field F; = F;Z cos(wt).
The experimental setup is similar to that used in an ear-
lier study of recurrence spectra in a static field [10]. The
oscillating field is coupled through a static field plate, and
its strength is calibrated by measuring sideband struc-
ture on a low-lying Rydberg state. While the atoms are
in the combined fields, we measure the laser photoexcita-
tion rate from the 3s state to final states corresponding to
principal quantum numbers around n = 125 and m = 0.

The system can be described by the Hamiltonian for
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FIG. 1. A series of experimental recurrence spectra taken
at € = —2.05 and & = 1.4, with 19 different oscillating
electric field strengths. The recurrences at 5 = 7.23 corre-
spond to the 2/3 orbit, those at S = 10.68 to the 3/4 or-
bit. The lines are fits of the data to Eq. (2). The fits yield
Ta/3|Zass| = 0.417 and Ty4|Zs/a| = 0.221 (classical calcu-
lation gives 0.437 and 0.219, respectively). The data were
recorded from 248.8 < w < 260.6.

hydrogen because the large-scale structure important to
these experiments is unaffected by the lithium core elec-
trons [10]. The Hamiltonian obeys a classical scaling law
and can be written

H= %2 - % +7 [1 +f cos(&.'zi)] = FY2E@®), (1)

where the tildes denote scaled quantities: 7 = F!/2r,
$ = F~Y/4p, and { = F3/%t [9). Because of the scaling
law, the unperturbed classical dynamics depends only on
the scaled energy € = EgF~1/2, where Ey is the initial
energy of the electron, measured relative to the field-
free ionization threshold. The classical dynamics of the
perturbed system depends on ¢ and also on the scaled
parameters f = Fy /F and & = wF~3/4 that characterize
the oscillating field.

We measure scaled spectra of this system by record-
ing the photoabsorption spectrum as a function of w =
F~1/4 while the laser energy, the static and rf field am-
plitudes, and the rf frequency are varied simultaneously
so as to maintain €, f, and @ constant. The magni-
tude squared of the Fourier transform of a scaled spec-
trum with respect to w is called a recurrence spectrum.
Such a spectrum exhibits a peak at the scaled action
Sy = F1/48, of each classical closed orbit & of the elec-
tron. Examples of recurrence spectra are shown in Fig. 1.

As explained in references [9,11], a recurrence spec-
trum in a static plus weak oscillating field is similar to
that in a static field alone, except that the recurrence
strength (i.e., the height of the peak) associated with or-

bit % is reduced by the factor
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where w is given by the average value of F~1/4, (The ex-
perimental range of w is here assumed to be small com-
pared with the average value of w.) T} is the period
of the unperturbed orbit k, and Zj(@) is its complex ac
dipole moment. The combination T} Z is given by
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where Z;(7) describes the z motion of the electron along
the unperturbed closed orbit as a function of time, leav-
ing the atom at time —7}/2 and returning at time T} /2.
(The z motion is singled out by the polarization of the
oscillating field.) Note that Eq. (2) applies even when
the frequency of the rf field is comparable to or exceeds
the frequencies of the classical orbits.

We determine Z(7) from experimental data with the
following procedure: 1. Measure recurrence spectra at a
series of increasing values of f, at a fixed frequency @
(see Fig. 1). 2. Select the recurrence peak corresponding
to the classical orbit of interest, measure its height as a
function of f, and from these results obtain experimental
values of ax (f) at that frequency. 3. Obtain T} |Zk (d))] by
fitting these data to Eq. (2). 4. Repeat the entire process
for successive values of &. 5. Insert the missing complex
phase information to derive T3 Z;(@) from its modulus
(this step is explained below). 6. Fourier invert Eq. (3) to
obtain (7). The z and y components of the orbit could
be reconstructed by performing additional experiments
with other oscillating field polarization directions [12].

A major difficulty is the loss of the complex phase of
Z)(w). Physically, this phase indicates when an electron
must leave the atom (relative to the phase of the oscil-
lating field) in order for the trajectory to be maximally
perturbed. That information is not available because the
experiment averages the absorption over many cycles of
the rf field.

Fortunately, in our system it is possible to recover
the phase. All of the closed orbits of hydrogen in a
static electric field are time-reversal symmetric about
their midpoints—that is, Zx(—7) = Z (7). For orbits
with this time-reversal symmetry, Z, is real, and we sub-
sequently denote it ZF(@).

It only remains to determine this real function from its
absolute value. First we find its sign at & = 0 by noting
that Z £(0) is the orbit’s static dipole moment, which can
be found from the unscaled relation T Z{¥(0) = —0S/0F.
From S = S(E, F) = §(e)F~'/4, it can be shown that

TkZ,‘eR(O) . %Efk + %S’k . (4)

The period T}, can, in turn, be measured experimentally

by varying the scaled energy and using the relation Ty, =
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FIG. 2. Computed classical trajectories at e = —2.05. Solid
line: 2/3 orbit; dotted line: 3/4 orbit. Vertical axis is distance
along the Z axis; horizontal axis is radial distance p from the
Z axis. N

85, /8e. Note that the accuracy of this measurement is
not critical because we only use Eq. (4) to get the sign
of T, ZE at @ =0.

Furthermore, since ZF(&) comes from the finite-time
Fourier transform of a continuous function, it depends
continuously and smoothly on @. Therefore, knowing
the sign of ZF at @ = 0, we can determine its sign for
increasing @ by inverting the sign at each zero crossing.
(Such a zero crossing can be seen in Fig. 3, near @ =
1.65.)

Thus Z2(&), including its sign, is determined. We in-
vert Eq. (3) by expressing Z;(7) as a sum of smooth ba-
sis functions, 3" anén (7). Then ZE(&) = 3, an®n(7),
where the basis functions ®,(@) and ¢,(r) are related
by a Fourier transform. We determine the coefficients a,,
from a least squares fit of ZF(@) to the signed experi-
mental data.

‘We have studied two closed orbits of lithium, the “2/3”
and the “3/4” orbits. (The orbit label, described in [13],
identifies the bifurcation in which it was created from
the primitive closed orbit that exists along the positive z
axis.) The exact classical orbits, computed numerically,
are shown in Fig. 2. The chosen energy was € = —2.05,
slightly below the saddle point of the potential surface at
€ = —2. The orbits are both directed “downhill” toward
the saddle point. They were chosen because their rela-
tively long periods enabled the limited frequency range
of the experiment to access a significant fraction of the
total Fourier power within Zj ().

Figure 1 shows the recurrences corresponding to these
orbits at a single value of & and a range of values of f.
Such series of measurements were made for 17 different
scaled &equen~cie§ in the range 0.6 < @ < 4.0. The result-
ing values of T}, |Zk| for the 2/3 and 3/4 orbits are shown

(a)

FIG. 3. Experimental measurement of T'|Z(@)| Circles
are results of fits to data like those in Fig. 1 to the form of
Eq. (2). Solid lines are classical calculation. (a) 2/3 orbit; (b)
3/4 orbit. The points at & = 0 are found using Eq. (4).

FIG. 4. Reconstruction of classical orbits. The light solid
lines show the exact classical trajectories, Z(t). The heavy
solid lines show the experimental reconstructions. The dashed
lines show the exact trajectories, filtered through the exper-
imental frequency window, 0.6 < & < 4.0. (a) 2/3 orbit; (b)
3/4 orbit.

in Fig. 3. It can be seen that across the experimentally
accessible frequency range, agreement between data and
theory is good—within about 10%. _

The periods for the orbits were found to be T35 =
3.75 + 0.31 and T} /o = 4.4+ 0.3 (the true values are
3.720 and 3.915, respectively). The accuracy is limited
by the calibration of the electric field. The uncertainty
does not include possible systematic effects due to other
orbits with similar actions, though these may be present
in the 3/4 orbit. Inserting these numbers into Eq. (4)
correctly indicates that Z#{0) is negative for both orbits.

Figure 4 shows () for the two trajectories. The heavy



solid lines show the orbits as reconstructed by the exper-
iment. The qualitative behavior of the trajectories can
easily be discerned. The light lines are the exact classical
trajectories. Note that, as seen in Fig. 2, both orbits ini-
tially move from the nucleus in the —z direction before
they are turned back toward the nucleus by the electric
field. The 2/3 orbit loops back to the nucleus once before
closing while the 3/4 loops back twice.

The time resolution of the reconstructed trajectories
is limited by the experimental frequency range. This in
turn was limited by the difficulties coupling rf power into
the field plates, permitting an actual frequency range of
200-1260 Mhz, and a scaled frequency range 0.6 < @ <
4.0, Therefore, details with a time scale shorter than
AT ~ 1 /&y = 0.25 are not probed by this experiment.
Expressed another way, at @ = 4, the oscillating field goes
through about 2.5 cycles during the time of an orbit—
adequate to determine only 3 or 4 coefficients in the orbit
reconstruction. In order to illustrate the severe effect of
the finite frequency range, Fig. 4 also shows the exact
trajectories filtered through the experimental frequency
window (dashed lines).

Our experiment produces quite accurate, albeit low-
resolution, pictures of classical trajectories important to
the Stark spectrum of lithium. Even the low-resolution
reconstructions afforded by the experiment allow one to
see the qualitative motion of each classical trajectory and
in particular the different number of loops executed by
each orbit—information that is available from no other
experiment.

When classical trajectories are extracted from a quan-
tum system, the resolution is necessarily limited by
Heisenberg’s uncertainty principle. How close is this ex-
periment to that limit? Or put another way: to what
extent could the resolution of the reconstructed trajec-
tory be improved by increasing the frequency range of
the experiment?

The semiclassical analysis relies on the assumptions
that the rf frequency is much lower than the laser fre-
quency, and that the classical orbits are large compared
with the size of the atom. If either of these assumptions
breaks down, then the fuzziness of the initial state would
create fuzziness in the reconstructed trajectory. Consid-
ering that the size of the initial state is only a few Bohr
radii, whereas the smallest distance probed in this exper-
iment is a few thousand Bohr radii, we are clearly orders
of magnitude away from the uncertainty principle limits.
Hence, the resolution in the current experiment is limited
by experimental, not fundamental, restrictions. Much
more classical detail could be extracted by our method.

'We have demonstrated that it is possible to reconstruct
classical trajectories from spectral data. We applied the
method to a system whose classical and quantum dynam-
ics were already fully understood. In principle, it could
be applied to more complex systems for which the classi-
cal or even quantum behavior is not well known. Finally,

this work illuminates another aspect of the quantum-
classical correspondence, by providing a new systematic
way to extract classical information from quantum sys-
tems.
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