Level spacings for quantum maps in genus zero *
Steve Zelditch
Johns Hopkins University, Baltimore, Maryland 21218
March 1997

Abstract

We study the pair correlation function for a variety of completely integrable quantum maps in one
degree of freedom. For simplicity we assume that the classical phase space M is CP' = S? and that the
classical map is a fixed-time map ezptEg of a Hamilton flow. The quantization is then a unitary N x N
matrix U,y and its pair correlation measure p;\? counts the number of eigenvalues in intervals of length
comparable to the mea.n level spacing (~ 1/N) The physicists’ conjecture (Berry-Tabor conjecture) is
that as N — oo, pz't should converge to the pair correlation function pf °755%N = §, + 1 of a Poisson
process. We prove this on average in ¢ if H is a perfect Morse function on CP!. Under some conditions
on the second derivative we further prove that the variance from the mean tends to zero at a power
law rate. It follows that for a slightly sparse sequence of Planck’s constants, the quantum maps almost
always have Poisson pair correlation functions.
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0 Introduction

In this paper we shall be concerned with the fine structure of the spectra of some completely integrable
quantum maps in genus zero, that is, with quantizations of integrable symplectic maps y on the Riemann
sphere M = (CP*, Ndz A dZ). The quantum systems then consist of a sequence of unitary operators {Uy n}
on a Hilbert space H of dimension N. For simplicity, we restrict attention to quantizations Uy x of Hamilton
flows x: = exptEgy where the Hamiltonian H has no separatrix levels. Our interest is in the semiclassical
asymptotics (N — oo) of the pair correlation function pg,\p and number variance X, ;(N, L) of the quantum
systems. We first show that the time-averages of these objects tend to the Poisson limits

) 1 /b
—— [ pNdt > pFOISSON =5 1, [ 5, (N, L)dt - L
b—aj, "~ b—a J,

as N — oo. Thisis consistent with the Berry-Tabor conjecture [B.T] that eigenvalues of completely integrable
quantum systems behave like random numbers (waiting times of a Poisson process). However, it is only a
weak test of the conjecture since the averaging process itself induces a good deal of the randomness. A
much stronger test is whether the variance tends to zero. For special 2-parameter families of Hamiltonians
H, 3 = a¢(I) + BI (see §2 for the definition) we show that the variance tends to zero at a power law rate.
This implies that the individual systems are almost always Poisson along a slightly sparse subsequence of
Planck constants.

Before describing the models and results more precisely, let us recall what the level spacings problems
are about. In the quantization H — Hy of Hamiltonians on compact phase spaces M of dimension 2f, the
‘Planck constant’ is constrained to the values A = 1/N and spectrum of H w consist of dyy ~ N N eigenvalues
{An;} in a bounded interval [minH, maxH]. Similarly, the spectrum of a quantum map U, ny consists of
dn eigenvalues {¢?’~.i} on the unit circle S*. The density of states in degree N

- 1 dy N 1 dn .
dp{™ = v > 60w;),  resp.  dp{M = an D 6(e¥mi)
j=1 j=1

has a well defined weak limit as N — oo which may be calculated by standard methods of microlocal analysis
(§2). According to the physicists, there also exist asymptotic patterns in the spectra on the much smaller
length scale of the mean level spacing % between consecutive eigenvalues. The pair correlation function ps,
for instance, is the limit distribution of spacings between all pairs of normalized eigenvalues dyAn;. The
length scale ﬁ is usually below the resolving power of micrlocal methods. Hence the problem of rigorously
determining the limit , or even of determining whether it exists, has remained open for almost all quantum
systems. The sole exceptions are the cases of almost all flat 2-tori [Sa.2] and Zoll surfaces [U.Z].

On the other hand, there exist numerous computer studies of eigenvalue spacings in the physics literature
which indicate that limit PCFs often exist. The following conjectures give a rough guideline towards the
expected shape of the level spacings statistics:

e When the classical system is generic chaotic, p; = p§OF

NxN random matrices in the Gaussian orthogonal ensemble;

e When the classical system is generic completely integrable, ps = pFCISSON .— 1 4 §,. That is, the
normalized spacings between eigenvalues behave like waiting times of a Poisson process. The term §y comes
from the diagonal, while the term 1 reflects that any spacing between distinct pairs is as likely as any other.

where p§OF is the limit expected PCF for

These conjectures should not be taken too literally, and indeed cannot be since the term ‘generic’ is not
precisely defined. Our main purpose in this article is to test the Poisson conjecture against Hamiltonian
systems of one degree of freedom on the compact Kahler phase space CP!. Of course, they are necessarily



completely integrable. It might also be suspected that quantized Hamilton flows in one degree of freedom
are necessarily trivial, but this is not the case: as will be seen, toral completely integrable systems on CP!
are almost always Poisson along a slighty sparse subsequence of Planck constants. Moreover, it should be
recalled that many of the model quantum chaotic systems such as kicked tops and rotors and cat maps take
place in one degree of freedom and still defy rigorous analysis.

Now let us be more precise about the models we will study. In the usual Kahler quantization of
(CP', NdzAdz), Hn may be identified with the space Py of homogeneous holomorphic polynomials f(2;, z2)
of degree N on C2. A classial Hamiltonian H € C®°(CP!) resp. C*®(IR?/Z?) is then quantized as a self-
adjoint Toeplitz operator

AN =TyHOy : Hy = Hy, v = OvHYn;

where Il is the (Cauchy-Szego) orthogonal projection on #Hy (§1). Hence the quantum Hamiltonian system
amounts to the eigenvalue problem:

AMgn i =Anvioni:  —IH|loo AN < ANz < AvN < |1 H]|oo-

For a fixed value h = % of the Planck constant, the distribution of normalized spacings between all

possible pairs of eigenvalues of H() is given by the Nth pair correlation function (or measure)

N
1
4" (@) = 5 D 8z = NOwi = Ans))-

t,j=1

Here, the eigenvalues are rescaled, An,; = NAn,; to have unit mean level spacing, i.e. so that NAy 41 —
Ny, ~ 1 on average
Our first result gives an explicit formula for the limit pair correlation function

dps = lim N_,oodpgN) (z)

of a quantized Hamiltonian H™). 1t is of a similar nature to the pair correlation function for a Zoll Laplacian
([U.Z]) and involves dynamical invariants of the classical Hamiltonian flow ezptZg generated by H on the
classical phase space. Under some generic hypotheses (which will be stated precisely in §2), the formula is
given by:

Theorem A  For the generic H € C™(M), the limit pair correlation function for the system AW §s given

by:
M N(v)

p(N=ViO+ LYY [ fery @) Ers
keZ v=1 j=1 Y (cvsCut1)

where:

(i) V =vol{(21,22) € M x M : H(z1) = H(22)};

(i) {c,} is the set of critical values of H;

(i) For a regular value E € (c,,cy4+1, H (E) is a union of period orbits {v] ;v=(f ) of exptEy and T} (E)

s the minimal positive period of the jth component.

A more precise statement will be given in §2.

It follows that the pair correlation function of quantized Hamiltonians in one degree of freedom is quite
deterministic. On the other hand, the eigenvalues of the associated quantized Hamiltonian flow are much
more random.



Before describing the results, let us recall the definition of a quantum map and of its pair correlation
function. Suppose that x, is a symplectic map of a compact symplectic manifold (M,w). It is called quan-
tizable if it can be lifted to a contact transformation x of the prequantum S! bundle 7 : (X,a) = (M,w),
where do: = m*w. We are mainly interested here in Hamiltonian flows x; and these are always quantizable
(§1). We then define the quantization of the map x, to be

UM = Tnoy Tylly : Hy = Hy

where T, is the translation operator by x on #x and o, € C*°(M) is the ‘symbol’, designed to make U,(CN)
unitary. All of the usual quantum maps, e.g. ‘cat maps’ and kicker rotors can be obtained by this method
[Z]. '

Since the eigenvalues lie on the umit circle, the rescaling to unit mean level spacing leads to the periodized
pair correlation functions

N N
1 1 T
dph n(2) = 5 > ) 6z —N(Bni—0On,;—EN) = 38 > 60w — 0,5 — 2mE — 7
i,j=1 202 i,j=1¢c2ZZ

The large N behaviour of dp; ~ is quite ‘random’ in general because the rescaling destroys the Lagrangean

nature of U,(CN). The question is whether there is some asymptotic pattern to the randomness.

Our focus in this paper is on the Hamiltonian flows generated by perfect Morse functions H on 5% = CP!.
The reason for restricting attention to CP! is that it is the only symplectic surface carrying a Hamiltonian
S? action (i.e. it is a ’toric variety’), namely the usual rotation of the sphere about an axis. The moment
map is known as an action variable I. Ary perfect Morse function may be written as a function H = ¢(I)
of a global action variable. Any toral action can be quantized and in particular I can be quantized as an
operator I whose spectrum lies on a one dimensional ’lattice’. It follows that H is quantized as an operator
of the form ®([) and its flow can be quantized as a unitary group of the form Ut(N) = My etNE 11 N, where
N equals to N on #x. Hence the eigenangles have the form tN ¢({7) and the asymptotics of the PCF can
be reduced to the study exponential sums of the form

N .
S(N;E,t) = Zez”m“”(%’)t.

=1

The Poisson conjecture is essentially that these exponential sums behave like random walks. It is too difficult
to analyse the individual exponential sums, but we can successfully analyse some typical behaviour in families
of such systems. The first result is about the mean behaviour as the ¢ parameter varies.

Theorem B (a) Suppose H : M = R is a perfect Morse function on CPL. Then: the limit PCF P2z for

N . . .
Uffa:p)tE ., ond number variance X2+(L) are Poisson on average in the sense:

b
lm ia/ péff)dt=p50’ss =146
a

N3oo b

and

b
lim —— =W (L)dt = £5OTSS(L) = L
a

Nocob—a
for any interval [a,b] of R.

This result applies to the case of linear Hamiltonians and their Hamilton flows, whose pair correlation
functions are clearly not individually Poisson (see §3). For Poisson level spacings, we make some further



assumptions on the Hamiltonian (or phase ¢). Our main result concerns the mean and variance of a 2-
parameter family of Hamiltonians:

Theorem B (b)  Let I denote an action variable on CP! and let Hyp = a¢(I) + BI with |¢"| > 0.
Denote by pg;’(t, ,8) the pair correlation measure for the quantum map U o 6),N = exp(itN H,g;n))- Then
for anyt#0, any T > 0 and any f € S(R) with § € C2(IR) we have

o1 [ [ o) = pEOISO (1P = o

)-

Thus, the mean pair correlation function in the family is Poisson and the variance tends to zero at the
rate =2~ ° N Following [Sa.2], we observe then that along the slightly sparse sequence of Planck constants
1/h = N (logN)?, the individual PCF’s tend to Poisson for almost every (a, 8) (cf. Corollary 5.1.2).

It would be interesting to study quantizations of Hamilton flows in the case where the Hamilton had
saddle levels, as must happen if the genus is > 0. It would also be interesting to study completely integrable
maps which are not Hamilton flows. We hope to extend our methods and results to these cases in the future.

1 Toeplitz quantization

We now review the basics of Toeplitz quantization on CP!. For futher background on Kahler quantization,
we refer to [A] [G.S] [W]; for general Toeplitz quantization we refer to [B][B.G][Z].

Toeplitz quantization is a form of Kahler quantization, that is, of quantization of symplectic manifolds
in the presence of a holomorphic structure. The basic idea is that the quantum system is the restriction of
the classical system to holomorphic functions.

To be more precise, let (M,o) be a compact Kahler manifold with integral symplectic form. Then
there is a holomorphic line bundie L — M with connection 1-form a whose curvature equals o. In Kahler
quantization, the phase space (M, o) is quantized as the sequence of finite dimensional Hilbert spaces T'(L®")
where I' denotes the holomorphic sections. In Toeplitz quantization, these spaces are put together as the
Hardy space H2(X) of CR functions on the unit circle bundle X in L*.

Thus, the setting for Toeplitz quantization is a compact contact manifold (X, «) whose contact flow is
periodic with orbit space M. Corresponding to the Kahler structure on M is a CR structure on X and in
particular the Cauchy-Szego projector I : L2(X) — H?(X). This projector has the microlocal properties of
the orthogonal projection onto boundary values of holomorphic functions of a strictly pseudo-convex domain
and is called a Toeplitz structure on X.

1.1 Toeplitz quantization in genus zero

In the case of M = §2 = CP!, the contact manifold X and Toeplitz II can be constructed explicitly.

We first recall that the holomorphic line bundles over CP? are all powers of the hyperplane bundle H
and hence L = H®* for some k € ZZ. To determine the power we use that L is a positive line bundle of
Chern class equal to the area form of S2. It follows that L = 7%°S2, the holomorphic tangent bundle of
S2. The associated principal S is the unit cotangent bundle $*S? (relative to the standard metric). Hence
X =852

To define a CR structure on S*S?, we represent it as the boundary of a strictly pseudoconvex domain
Q) C €3. Namely we consider the quadric cone

V={zeC:22=0}



with 22 = 22 + 22 + 22 and the plurisubharmonic function p(z) = |2|?/2 — 1. Then the domain
Q={zeV:p(z) <0}
is strictly pseudoconvex and its boundary
X={zeC:22=0,[2> =2}

may be identified with the unit tangent bundle of S?: if z = z + iy, then z € X if and only if |z|> = |y|*> =
1,z-y = 0. Under the standard metric we may also identify the unit tangent bundle with $*S2. The contact
form on X is by definition equal to Imdp = %(ydz — zdy). Since z -y = 0 this is the usual action form
a=y-dz.

The CR structure on X = S$*5? arising from its representation as J( is the most symmetric one on X.
The group O(3) acts holomorphically on V by A(z + iy) = Az + iAy and preserves p. Hence it acts by
CR automorphisms on X. The geodesic flow also acts by CR automorphisms by Gz = e*z and commutes
with the action of O(3). It follows S x O(3) acts by unitary transformations on the Hardy space H?(X) of
boundary values of holomorphic functions on  and that the Cauchy-Szego projector II : L?(X) — H?*(X)
commutes with the action. Under the S! action the Hardy space decomposes into weight spaces

HY(X) = P H*(N). (1)
N=1

The group O(3) acts on H2(N) and as proved in [G], H2(N) is the irreducible representation of dimension
2N + 1. In fact there is an isomorphism

f— f*:Vn(8%) = H*(N)

from the space Vi of Nth order spherical harmonics on $? to H2(N), obtained by extended f as a homo-
geneous harmonic polynomial on 3, analytically continuing it to €3 and restricting it to X.

An alternative approach is to view X = SO(3) and pass to the double cover SU(2). Then L?(SU(2)) =
BK=, 1 ® Hy where {#Hx} runs over the irreducibles of SU(2). The CR structure is given by the lowering
operator L_ for the right action. The Szego projector IIy is then the orthogonal projection onto Hy ® ¥y
where 1 is the lowest weight vector in H3,.

1.2 Quantum maps

Symplectic maps x, of M = CP! may be quantized by the Toeplitz method as long as x lifts to a contact
transformation x of (X, a). The Toeplitz quantization is then essentially the translation operator T, by x
compressed to the Hardy space H?(X). Since T, does not usually usually preserve H2(X), IIT, II will not
usually be unitary. But in [Z] it is shown that there always exists a canonically defined symbol o, on M so
that
Uy :=1lo, T, I1

is unitary. It automatically commutes with the central action, so is the direct sum of the finite unitary
operators, U, x on ©y. We define U, n to be the quantization of x, with semiclassical parameter 1 /N. Its
eigenvalues have the form

SP(UX,N) = {621ri01v,,- j=1..., dN} (2)
where dy = dimHZ(N) = N.

Consider now the case of Hamilton flows x* = exptZx on M.



Proposition 1.2.1 Haemilton flows are always quantizable.

Proof What needs to be proved is that expt=g always lifts to a contact flow ¢* : X — X. Equivalently
that S lifts to a contact vector field, say X g. We prove this by lifting ezpt=g to a homogeneous Hamilton
flow ezpt=g on the symplectic cone

Y :={(z,ra;):z€ X,r >0} CT*X —0.
Let us define the function
r: - RY, r(z,rag) =1

Thus, & = X x R*, X = {r = 1} and the IR™ action is generated by the vector R = rZ.
The natural symplectic structure w on ¥ is the restriction of the canonical symplectic structure wr+ x on
T*X, which is homogeneous of degree 1. Denoting by 7 : X —+ M the projection, we have:

w=rr*wy +drAa 3)

The proof is simply that wr-x = dar-x where ar-x is the action 1-form. This equation restricts to X
where a7-x = ra. Taking the exterior derivative gives the formula.

Now return to H € C®°(M) and consider the Hamiltonian H(z,r) = r7*H(z) on X. It is homogeneous
of degree 1 so its Hamilton vector field =5 = w™!(dH) is homogeneous of degree zero and then its Hamilton
flow expt= g is homogeneous of degree one. We claim that (i) the flow preserves X; and (ii) its restriction
¢ to X is a contact flow lifting expt=g.

Indeed, we have

g w=d(rH) =rdH + Hdr =rig wym +tg,dr Ao
=rig wy — a(Eg)dr + dr(Eg)a.

Since all terms except dr(Eg)a are dt-independent we must have dr(Eg) = 0. It is then obvious that
—-a(Eg) = H, tzpwm = dH.
The second equation says that =g projects to Zg, i.e Eg is a lift of Sg. Since

Lz a=15,do+d(iz ) =dH —dH

)3

we also see that g is a contact vector field (here, £ is the Lie derivative). =

2 Density of States, pair correlation function and number variance

2.1 DOS

The limit DOS (density of states) of quantum Hamiltonians and quantum maps in the Toeplitz setting can
be easily determined from the trace formulae of [BM.G] and indeed the calculation is carried out in [Z,
Theorem A]. Let us recall the results.

In the case of Hamiltonians, the DOS in degree N is given by

1 N
dpoi,n(N) = D 5(A - Any)- 4)

=1

The following proposition is proved in [B.G, Theorem 13.13]:



Proposition 2.1.1 The limit DOS is given by
B = [ 1w (€ CmR)).

In the case of quantum maps the DOS in degree N is given by

dpin(2) = = Z& e2mifN i) z€ S : (5)

_1—1
The limit DOS g, is determined in [Z, Theorem A] and depends on whether the classical map is periodic

or aperiodic (i.e. the set of periodic points has measure zero).

Proposition 2.1.2 Let x be a symplectic map of (M,w).
(a) In the aperiodic case, B = c,df where c, is the constant ([, odu) with o the symbol of U,.
(b) If ¢* = id, then B is a linear combination of delta functions at the kth roots of unity.

2.2 The pair correlation function and number variance

We recall here the definitions of the pair correlation function and number variance for quantum maps U, y in

one degree of freedom. Then dimHy ~ N so the spectrum has the form Sp(Uy,n) = {e¥Vi : j=1,...,N}.

The spectrum may be identified with the periodic sequence {fn; +2mn : n € Z,j = 1,...,N} and then

rescaled to given a periodic sequence of period N and mean level spacing one: {NOn; +2mnN :n€ Z,j =
LN}

Definition 2.2.1 The pair correlation function of level N of a quantum map in one degree of freedom is the
distribution on IR given by

N
dpsn (x) = % g_:l ;a(N(em — Ox;) +2mnN — ) (6)

The limit pair correlation function is then:

P2 (@) =w— lim dpf(z).

We often write the integral [ fdpf dz as

N
A =5 3 3 FNGn;—6ny) +2enN).

ik=1nez
By the Poisson summation formula an equivalent definition is:
2t ite(On,;—0n,x) 1 2
Py (f) = N2 Zf( )Ze d _FZ |T7‘ Nl (7
fezZ dk=1 L

[IThe number variance for a quantum map Uy, n in one degree of freedom is defined as follows (cf. [Kea)):
First, the density of the scaled eigenangles is given by

N 00
Ps(6)=2_ D 6(8— Néy;2nNn) =3 [+ Z e?riton.ig=2mit/N] = -]%f Y TrUf ye 2 IN - (8)
j=l1neZ eZ ]_1 =1



Definition 2.2.2 The number variance is defined by:

1 N Z+L/2

SM(L) = ~ f | / pa(y)dy — L|dz
N 0 z—L/2

o0

_ 2 1 ) 71'£L Y] 2
= ;ezsm ( N INTrUy N

We observe that £ (L) is similar to pJ (f) for f = 222 except that the £ = 0 term has been removed.

2.3 Asymptotics of traces and exponential sums

Before getting down to our specific models, let us make some general remarks about the exponential sums
S(N,&) :=TrU} y.

First, Toeplitz theory gives a complete asymptotic expansion for the traces TrUi, N a8 N — oo (for fixed
£). To state the result, we will need some notation.

First, we recall that the S! action on X is denoted ¢°. For each £ put

0,,¢ = {#;mod2r : Fix(¢% o x) # 0}. 9)

Assuming (as we will) that the maps have clean fixed point sets, the set ©,; is finite and Fix(¢% o x) is
a conic submanifold of ¥. We denote its dimension by e; and its base Fix(¢% o x) N X by SFix(¢% o x).
The trace asymptotics then have the form:

Proposition 2.3.1 For each £ #0,

o0
e;—1
2 o Akl
TTUx,N = E E al,j,,N 2 r
;€0 7=0

Jor certain coefficients ay ;. .

The angles 8; thus play the role of actions in the semiclassical (Gutzwiller) trace formula. The leading
coefficients a¢,j,, may be described as the ‘symplectic spinor traces’ of the maps #% o x. These traces are
Toeplitz analogues of symplectic traces in the sense of [D.G][G.U] and have been discussed in [P.Z]. Namely,
suppose X, is a quantizable symplectic map of (M,w) and let x be its lift as a homogeneous symplectic map
of X. Suppose that it has a non-empty clean fixed point manifold Fiz(x). By [D.G] it carries a canonical
density dV. By inserting the radial vector R of X (the generator of the dilation action) into dV we get a
density du, on the base SFiz(x). The symplectic trace is the canonical volume u, (SFiz).

In the Toeplitz setting, the action of x on the symplectic normal space £+ must also be incorporated
into the trace. Namely, associated to the Toeplitz structure is a positive definite Lagrangean sub-bundle A
of TS* ® C and a ground state ex. We refer to [B.G, §11] for the definitions. Generally speaking, x will
take A to another Lagrangean-subbundle and e, to another ground state y.ex. After trivializing the ’bundle
of ground states’ the map 1, may be described as follows: the derivative dy times a linear symplectic map
dx|s+ on the symplectic normal bundle of . The quantization of the normal space is a space of Schwartz
functions and the quantization of dy|s. is its image M(dx|s. under the metaplectic representation. Then
X+ = M(dx|s+. Asin [Z], that in order for U,, to be unitary, its principal symbol must equal ({ea, xxea))™*



times the graph half-density. Since the symplectic spinor trace (as with the symplectic trace) is the symbolic
trace of the quantization of ¥, it is given by:

w00 = [ Uenxeen) i (10)

Having discussed the ingredients in the above Proposition, we now sketch the proof (a small modification
of [B.G, Theorem 12.9].
Proof Consider the Fourier series

o0
Ty e(0) = Y TrUf nei? = TrUte®VTI (11)
N=1

By the composition theorem of [B.G], T is a Lagrangean distribution on S* with singularities at the values
6; € O,¢ and with singularity degrees beginning at 3. Hence:

[o0)
Tee > Y age.u 4 _.(0-6)) (12)
0;€O e 7=0

where um () = Y y_o N™ 1e'¥?. Note that u,, is a periodic distribution with the same singularity at
6 = 0 as the homogeneous distribution (§ — 8; + z'O)ETJ"".

The leading coeflicients are given by the principal symbols of T, .(f) at the singularities. The recipe for
these symbols is given in the composition theorem of [B.G] (and as in the Lagrangean case), it is essentially
the integral of the principal symbol of U, , ;s; over SFiz (x o ¢% with respect to the canonical density (which
comes from the half-density part of the symbol of Uxo % - As discussed above, the symplectic spinor factor
of the symbol of Uxo % is precisely what has been put into the symplectic spinor trace above. By matching
Fourier series expansions one gets the expansion of the Proposition. =
Examples Let us consider the form of the trace for quantum maps in one degree of freedom:

(a) Suppose that x: = exptEx is the fixed time map of a Hamilton flow. The fixed point set then consists
of a finite number of level sets {H = E;(t)}, which must be periodic orbits or period ¢. Pick a base point
m; on each orbit and lift it to a point z; lying over m; in X. Then the lift of {H = Ej;(t)} to z; is a curve
which begins and ends on 77! (m;). The difference in the initial and terminal angle is of course given by the
holonomy with respect to . This holonomy angle ; is independent of the choice of m; and of =; and ©,,;
is the set of these holonomy angles. Then SFix x; o ¢% is two dimensional and hence e = 3.

As will be seen below, TTU)tCn n 18 a classical exponential sum. Replacing it by its trace expansion
above amounts to inverting it in the sense of the van der Corput method [G.K][H.1], i.e. applying Poisson
summation and the method of stationary phase. Our experience is that this inversion does not simplify the
pair correlation problem.

(b) Suppose next that x, has only isolated non-degenerate fixed point sets. Then x fixes the entire fiber

over each fixed point. The only singularity occurs at @ = 0 and the dimension of Fixy equals one. Hence
e=2.
Special case: Quantum cat maps These are the most familiar examples of quantum maps, so let us see
what the above proposition says about them. In this case, the trace can be calculated exactly and equals the
character of the finite metaplectic representations. For the exact calculation in Toeplitz setting, see [Z.1].
For the physics style calculation, see [Kea]. Here we do the calculation asymptotically.

First we observe that if g = ( Z 3 ) is hyperbolic then it has non-degenerate fixed points at (z,¢) €

R?/Z® such that g(x,€) = (z,£)modZ?, ie. at the points (g — I)~1ZZ%. The lifted map x actually
has no fixed points. However, g o ¢’ has fixed points if and only if [(g - (z,£),e2™¢+®)] = [(z,¢,0)),

10



where the bracket denotes the equivalence in the quotient space. Since g - (z,¢) = (z,£) + (m,n) for
some (m,n) € Z? we get that [(z,€) + (m,n), *+)] = [(z,£,6)]. But [(z,£) + (m,n),e?+9)] =
[(z, £), e2mit+8) ginmn) gimw((z:€):(mm))], Tt follows that

Omn = _%(mn + w((z, é)a (m7n))'

Hence 1
eg,l = {—E(mn + w((z1£)1 (mvn)) : gl(xv 5) = (x7€) + (mv'n’)}

and

TrU, N gir(mntw((m,n),(1-g)(m,n))_

i Z
Vdet(I - g) (m,n)€Z22 (I-9) Z2*

3 PCF for Hamiltonians: Proof of Theorem A

As mentioned in the introduction, the pair correlation problem for quantized Hamiltonians is similar to that
for Zoll surfaces as presented in [U.Z]. We can therefore follow the exposition in [U.Z, §3] to some degree
and are sketchy on some common details.

There is no difference in this problem between the case of M = CP! and the general case of symplectic
surfaces. So in this section M can be any closed surface. However, we will make some generic simplifying
assumptions on the Hamiltonian. The first one is

Assumption M: H : M — R is a Morse function.

Let £ denote the set of values of H and let c; < ¢2 < ... < ep+1 denote its set of critical values. Then the
inverse image H (¢, ¢,+1) consists of a finite number N (v) of connected components X each diffeomorphic
to (€y, cyy1) x S1. Hence for E € (cy,cu41), HH(E)NX ¥ consists of a periodic orbit 7} (E) of exptZy. Its
minimal positive period will be denoted by 77 (E).

For the sake of simplicity we will make a second assumption:
Assumption Q: Ty and T are independent over Q if j # k.

We can then state the formula for the pair correlation function:

Theorem 3.0.2 With assumptions M and Q on H, the limit pair correlation function is given by

M N(v)

/R @@ =vio+ X 33 [

F(kT}(E))T} (E)*dE
kez v=1 j=1 ¥ (CvsCut1)

for any f such that f € C(IR).

Proof: To determine the asymptotics of the sequence p2’ (f) we form the generating function

o0
T1(6) = Y PN (D,
N=1
We wish to show that Y is a classical Hardy-Lagrangean distribution on S*. The asympotics of p¥ (f) can
then be determined from the singularity data of Y. _
To show that Y #(6) is a Lagrangean distribution, we will identify with the trace of a Toeplitz type Fourier
Integral operator. The operator is defined as follows: We form the product manifold X x X and consider

the product Szego projector
OI: L3 (X x X) - H*(X) ® HY(X)

11



and the diagonal projector
o0 [o ]
Hdiag = @ IIny @Iy :L2(X X X) - @ Oy ®ROnN.
N=1 N=1
‘We next observe that

Py (f)=TrlIy ® HN/ f(t)eitN(ﬁN@I_I@ﬂN)dt.
R

Noting that N is the eigenvalue of the number operator A" we can rewrite this in the form
Trlly ® Iy / f(t)et N En I~ I&NHN) gy
R
The generating function is then given by

00 .
Tf(o) = Z TTeiG[N®I+I®J\f]HN ® HN/ f(t)eit(NHN®I—I®NHN)dt —
N=1 R

= Trilgig e WoIHen] / F)etWHOI-TeN ) 3y
R

We recall here that H = IIHII where H is the pull back to X of the function so denoted on M. We now
have to analyse each operator which occurs under the trace sign.

(a) Igieg: This operator is the composition of the product Szego projector II ® IT with the full diagonal
weight projection
Pyigg : LX(X ® X) = LY (X) ® L3 (X)

where L% (X) is the eigenspace of N of eigenvalue N.
From [G.S.2] it follows that Pys, is a Fourier Integral operator in the class I°(X® x X 1) where
X® = X x X and where T is the flow-out of the coisotropic cone

0 ={(¢1,; () € T(XD) : H(G:) — H(G2) =0}
That is, let ® = ezpt=g x exp — tEx denote the Hamilton flow generated on T*(X®) by H(¢;) — H(G).
Then in a well-known way, the map

ig  Rx O > T*XD) xT*(XP),  (t,¢,8) = (G, ), 8461, &)

defines a Lagrange immersion with image equal (by definition) to the flow out IT.
On the other hand II ® II is the exterior tensor product of two Toeplitz (hence Hermite type Fourier
Integral) operators. According to [B.G, Theorem 9.3], we therefore have

Ied=a+p8
with
aee I°(X® x X3 % x ¥)

and with WF(§) contained in a small conic neighborhood € of X x 0U0 x X. Moreover, the symbol of II ® IT
is given by
o(I @ IT) = o(II) ® o(IT)

on £ x X — C. Hence II ® I is essentially a Toeplitz structure on the symplectic cone £ x & C T*(X?).
The complication due to C will ultimately prove to be irrelevant in the analysis of the trace since it will not
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contribute to the singularities along the diagonal. Hence we can (and will) pretend that this component of

W F(II ® II) does not occur.
By the composition theorem for Hermite and ordinary Fourier Integral operators [BM, Theorem 7.5] it

follows that (modulo the term Pyja, 0 B)
Myiag € I°(X® x X3 T)
where T is the flowout Lagrangean in ¥ x X for the co-isotropic subcone © := @ N T C X. That is, the map
io :=iglrxe :RXx© X xX

is a Lagrange immersion with respect to the symplectic cone ¥ x ¥ and I is its image; of course it is only
an isotropic immersion with respect to T*(X ) x X,
(b) e®W®I+I®N] Thig operator does not require a fancy analysis since A is simply the differentiation
operator by the generator T of the contact flow. Hence e IN®I+I®N] ig the translation operator F(z,y) =
F(¢'(z), ' () by ¢* x ¢* on X
(c) IQI [ f(t)e“(N H®I-I®NH) 4 . Here we have inserted the factor II ® II, as we may, to simplify the
discussion.

Since [NV, II] = 0 = [V, H], we may remove the projection II from the exponent. Then the unitary under
the integral is given by

¢itHN g o—itHN

Each factor is the exponential of a pseudodifferential operator of real principal type and is therefore Fourier
Integral. It follows again from the composition theorem [B.G, Theorem 7.5] that

HCitHN [S I_%(X X X,C’ﬂ]R X X X 2)7 C:= {(t,'r,z',f,y,n) T+ UN(:BJ E)H(z) = 07¢t(z7€) = (y’n)}

where 1* is the Hamilton flow on T*X generated by o (z, £) H. Note that oar(5,¢) = (§,T), which generates
the lift of the central circle action on X to T*X. Also, the Hamilton flow of H on T*X is the two-fold lift
of the Hamilton flow of H on M: first from M to X and then from X to T*X. Since the Hamilton vector
field of or(z,¢)H on T™ X is given by

BonterH = HEop (o) T ON(z,0)ZH
and the Lie bracket of the two terms is zero, we have
Yt = exptHE,,,, , © €TPLON (z,)EH-
The isotropic cone C N ¥ x ¥ can be parametrized by
icg :RXERxIxE, (0 = (t,onH(),(¥HO).

The symbol of I @ IT [, f(t)e*W H®I-I®NH) dt may then be identified with the spinor £(¢)|dt|} ® o1.

Putting the above together we see that up to the factor of Py;,, the operator under the trace is a Hermite
Fourier Integral operator associated to the graph of ¢’ x id o 4* x ¢t on ¥ x X. The effect of the FPiiag
factor is to reduce this torus action to the quotient of ¥ x ¥ by the diagonal contact flow. As discussed in
[U.Z] and above in §2.3, the trace then has singularities at the angles §; for which the contact transformation
¢% x id o x ¢t has a non-trivial fixed point set for some ¢. 7777?

The fixed point set of the reduced flow has two components: that at ¢ = 0, when all points of O, :=
{(m1,my) : H(m,) — H(mg) = 0} are fixed; and that for the interval of periods ¢ = T'(E) of periodic orbits,
when the corresponding level sets {(my, mz) : H(m1) = H(ms) = E} are fixed.
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4 PCF for quantized perfect Hamiltonian flows on S%: Proof of
Theorem B

In this section we consider general Hamiltonians H on S? which are perfect Morse functions. Qur purpose
is to show that the pair correlation functions of their quantized Hamiltonian flows are Poisson on average.

4.1 The quantizations U,y and V; »

There are two approaches to the quantization of a Hamiltonian flow expt=g: (i) by first exponentiating and
then quantizing or (ii) by first quantizing and then exponentiating. The next proposition shows that the two
procedures lead to the same result.

Let us define the two procedures precisely: First, we exponentiate H to get the flow exptZy. To
quantize it, we use Proposition 2.3 to lift ezptEy to a contact transformation ¢* on X. Then ITyx:IIx is
an elliptic Toeplitz operator, and by [Z, §3] there exists a canonical symbol o; € S%(T*(X)) such that the
Uy, .~ = noyx:Ilx is unitary.

On the other hand, we could quantize H — H first and then exponentiate to get Vi, v = [ye N IHI

Proposition 4.1.1 V; vy = Uy .

Proof: Observe that Iy and eV HI commute. Indeed, Iy = o |, 5t Ad(e®N e=iN8dp and the averaging
operator commutes with both II and multiplication by H. It follows that

‘/;TNW,N - HNe—itNHHHHNeitNIIHHHN — HNe—it.AfIIHHeitNIIHHHN — HN-

Thus, V;,x is unitary on H2(N).

We then observe that Te®®NTIHI] = T[e#*NHT] is a unitary group of Fourier-Toeplitz integral operators
with underlying canonical relation given by the lift of the Hamilton flow of H to the symplectic cone
T C T*(X) = {(z,{,7a) : r € R*}. Indeed, IINHII is a first order Toeplitz (pseudodifferential) operator
with principal symbol rH. Hence its exponential is a Toeplitz Fourier integral operator with bicharacteristic
flow equal to the Hamilton flow of rH on ¥. By Proposition 2.3, this Hamilton flow is the lift of ezpt=g to
.

The theory of the finite Toeplitz operators IIye®NTHI[Iy is the non-homogeneous analogue of the
homogeneous theory. The only change is that the Lagrangean is non-homogeneous and equal to the graph of
¢t on X. The passage to non-homogeneous Toeplitz operators is precisly parallel to that of Fourier integral
operators and we omit the details.

Thus, Uy v and V; v are both Toeplitz Fourier integral operators associated to the graph of ¢!. Both
have principal symbols equal to the graph 1/2-density. Hence they differ by operators in the same class and
of order -1. But the method of quantum maps in [Z] just begins with a Toeplitz Fourier integral operator
which is unitary up to order -1 and applies the functional calculus to improve it. Hence we may begin with
Vi~ and since it is already unitary the improvement doesn’t change it. m

It follows that the PCF of V; v equals that of Uy y. The pair correlation function is therefore given by
the formula in §2.1. We now turn to the WKB analysis of the eigenvalues of Hy.

4.2 WKB in genus zero

We will assume H : S2 —+ R is a perfect Morse function, with a non-degenerate minimum value equal to
zero, and a non-degenerate maximum value equal to A. We then let x4 denote the distribution function of
H:M —[0,A], i.e. u(E) = |{H < E}| where | - | denotes the symplectic area. Under our assumptions it is
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a strictly increasing smooth function on (0, A). We denote its inverse function by ¢. The following Lemma
is of a now standard kind (cf. [CV]).

Lemma 4.2.1 There exists a sequence of smooth function ¢;, with ¢, = ¢ such that:
Avg = (L) + N 2poa (L) + N2 o) + ...
” N N N

Proof: Let I : §2 — [0,4x] be defined by I(z) = u(H(2)). Then I is an action variable for H: as functions
on the symplectic S?, I and H Poisson commute, {I, H} = 0, and the Hamilton flow of I is 27- periodic. It
is obvious that I generates the algebra a = {f € C®(S?) : {f, H} = 0} and hence we may write H = ¢()
where ¢ is the inverse function to .

The Toeplitz quantization IIIII of I is a positive operator satisfying e2mDIIM] — T 4 K where K is a
Toeplitz operator of order —1. In a well-known way [CV, loc.cit.], we may add lower order terms to IL7II to
arrive at a positive operator [ satisfying [I, D] = [H, I] = 0 and e?™P! = [. Therefore DI has only integral
eigenvalues. Since D = N on H?2(N), it follows that

Sp(f|aevy) = % .j€{0,1,...,N}}. (13)

Moreover, I generates the commutant of H={AecT:[4 H] = 0}, so there exists a polyhomogeneous
function @ such that

H=9), ®~¢+¢_1+.... (14)
Tt follows that the eigenvalues of H in H2(N) are given by
J J

In general, we will call a function I : S2 — IR an ‘action’ variable if the flow ezptZ; of its Hamilton
vector field 2 is 2r-periodic. That is, I generates a circular symmetry. Up to symplectic diffeomorphism,
the action variable is unique and could be taken to be the generator of rotations around the z-axis. Indeed,
any global action variable on S must have precisely two critical points and generate a flow with these as
its fixed points. This flow will be diffeomorphic to the rotational flow and will have a global transversal
connecting the fixed points. The travel time from this transversal defines an angle variable # symplectically
dual to I and the transformation x(I,8) = (cosr,8) is a global symplectic transformation.

It follows that any perfect Morse Hamiltonian has the form ¢(I) for some smooth function ¢ on (-1,1).
Moreover, non-degeneracy of the critical points forces d¢ # 0 since

d*H = ¢'(I)d*I + ¢"(I)dI ® dI (16)
so that d>H = ¢'(I)d?I ® dI at critical points.
Thus, S;(V, £) is an oscillatory sum of the form
N o
St(N, f) = Zezthdi(j,N) (17)
=1

with ®(j, N) = ¢(£) + L#,ﬁf_—) +.... We observe that (without any further assumptions on ¢) the terms of
order Q];—;’ or lower in ®(j, N) make no contribution to the pair correlation function. That is, let us put:

N :
Zy(N,8) = Z gittNDa(,N) (18)

i=1
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with 8(, N) == [p(£) + 228 8=2(8)) The following is obvious:

Proposition 4.2.2

S 3 D) S HISU, OF - 260V, ) = O/,
££0

For the sake of simplicity we will often take the quantum Hamiltonian to have the form ¢(I) so that the
lower order terms are zero. It would be straightforward to extend the results to the general case.
4.3 Proof of Theorem B: pair correlation on average
Owr goal is to prove:

Theorem 4.3.1 Suppose that |¢'(z)| > C1. Then the limit pair correlation function p% for U, n is Poisson

on average:

b
5 [ #nde=10)+ f0

for any interval [a,b] CR and any f € C°.

Proof: It suffices to show that

f 2 2 FCEE\zu, o)at = £(0)
10

. To prove this, we use the Hilbert inequality (cf. [Mo, §7.6 (28)])

1 P& L M1
; /lZez"‘"5*|2dt=N+O Za‘
—-Qa a j=1

N-—)oob a

=1
with
0= jmin 1K= pel
The two terms correspond respectively to the diagonal and to the off-diagonal in the square, and the O- symbol
is an absolute constant (which can be taken to be 3/2). In the case at hand, p; = NZ[qS(L) + —’(&— ]
so that

0N 2 £ [mingeppl¢'(z)] + O(1/N)].
It follows that if |¢'(z)| = C > 0 then

1t 9 N
m/ (N, 0)Pdt = N +O().

Therefore the limit equals

2!l 27r£
lim -—Zf( )+O(hmsupNZ f )).
&0
The first term tends to [ F(z)dz = £(0). When supp f C [-C, C] the second is
logN
<< —[ > —]
£<C’N

and tends to zero. m
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4.4 Proof of Theorem B (a): Number variance on average

Theorem 4.4.1 With the same hypotheses as above, we have

Proof
We have

1 [t 2
b = (19)
a

2 =1 mlL, 2 =1 wlL i
=N3> mein’ () + 3 2 woin’ () 5= a/ Z PmINKHR -~ ®at).  (20)
=1 £=1

J#k,j k=1

"~
Nl"‘
|i
vh
\
g
-3
<2
z
[
=)
Il

The first term may be rewritten as

12 N2 2L sinLz .,
D
=1
As above, the second is bounded by
NlogNZ _sz(ﬂ) (logN)

=1

5 Mean square Poisson statistics for quantum spin evolutions:
Proof of Theorem B (b)

We have just seen that averages of the pair correlation function pQ” ; of quantized Hamilton flows Uy y converge
to pFOIS50N a3 long as H is a perfect Morse function. In particular, the result is true for linear functions
H = al in the action. Since exponential sums with linear phases are far from random (see §4.1), it is evident
that the averaging is the agent producing the random number behaviour.

A much stronger test of the Poisson behaviour of U, is whether the variance

1
b—a / P2 (F) — p5 OT5%ON ()2 dt

tends to zero as N = co. It is easy to see that quantum Hamiltonian flows with linear Hamiltonians do
not have this property (§4.1). We therefore turn to quadratic Hamiltonians H = aI? + 8I. Our next result
shows that if average in two parameters, namely (a, ), then their quantum Hamilton flows are Poisson in
mean square:

Theorem 5.0.2 Let Hy g = al?+ (I and let pg(t, .6) be the pair correlation measure for the quantum map
Utt,a,8),n = exp(itN. I:I(a,g;N)). Then for any t #0, any T > 0 and any f € S(R) with f € C*(IR) we have

N (2T)2/ / 1923(t,0.,6) (F) = 7 OOV (f)|Pdedp = 0.
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Proof: Removing the £ = 0 and diagonal terms as above, it suffices to show that

& 2 — k2
e (2T)2/ / 7 G Y ettlal g+ 8 - B)Pdads =0. (21)
£0 J#k.3.k=1

To prove this, we use the Beurling - Selberg function Br, ;5. It has the properties
® Brys 2 X(-1,17i
o Supp Br ;s C (—[t]6, [2]9).

Here, x[T,7) is the characteristic function of [T, T]. Then the integral on the right side above is bounded
above by

N o 29
-k .
[ [ Brus@Brius@lgz SIS et + 66 - B)Pdads. (22
N N
£#£0 J#k,3,k=1
Squaring and evaluating the Fourier transforms gives
N N ) )
1 A . A=k i3k, . -
v 2 2 IGIEL X Y. Brust= 562 52))Brus (H0 (1 —k) £ (ja—F2)))-
£:17£0 £27#0 J17k1,41,k1=1 jeFka,j2,ka=1
(23)
By the support properties of BT,|t|5, the latter expression is bounded above by
£ 1/
w2 2 S ICHIFEIIN, 0, 6) (24)
£170 £2 70
with
Cfs ) e oA FEl A T e . .
I(N,£1,62) = #{(j1, k1, Ja, k2) € (1, N]" 1 js £ ki : |(&a N ety ) <6, |(€1(j1—k1)—La(j2—k2)))| < 6}.
(25)
Introduce new variables h; = j; — k;, m; = j; + k; so that the conditions read

|£1ﬁ11$’" —fhaga)| < §

|£1h1 - ezhzl < )

The change of variables is invertible so I(V, £y,£,) is the number of integer solutions (h1, ha,m1,m3) with
|m,;! S 2N, |h,’| S N - |m,|
Since |[£3h1 — £2h2| € N it can only be < § if it vanishes. Therefore the second condition is equivalent to

(f,h) =0 =h= z—1’1,1
£

Here we assume |h1| > |h2| so that |h1| = maz{|h1|, |h2|} ~ |h| and we abbreviat £ = (¢;, £2) etc. Substituting

in the first condition we get
Zlhl (m1 - TH2) = O(NJ)

Now let us count solutions. Since h; is determined from (h;,m,m2) it suffices to count these triples. First,
there are O(N) choices of m;. Then put mg = m; + M so that hhM = O(%J). From M < 2N the number
of pairs (h;, M) is bounded above by

2N

N1 N
E —— = —logN)
Fred) oL M
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Hence I(N,£;,62) << &Zﬂ
It follows that

3 2 T IR b, ) << B0 S 3 FEIFGRIS (26)

£17£0 £27#0 £15£0 £37#0

As above we use that f is compactly supported to get that this is
logN 2
<< 22 [ i1 (21)
Hence the remainder term is O(gl—‘fgv—Nz).

5.1 Proof of Theorem B(b) for general non-degenerate phases

Theorem 5.1.1 Let H, g = ap + BI where |¢"| > C >0 on [-1,1} and let pg(t’aﬁ) be the pair correlation

measure for the quantum map Ui o),N = exp(itN fI(a,ﬂ; Ny)- Then for any t # 0, any T > 0 and any
f € S(R) with f € C=(IR) we have

1 T ,T )
(27)2 _/;T /_T |pé\;7(t,a,ﬁ)(f) - PgPOISSON(f)FdadI@ — O(UOgVN) ‘

Proof The above method leads in this general case to the lattice point problem:

(am;bm . )
G(s(F) - 6(8) - L(6(%) - 6(5) = 0(1/N)

By the mean value theorem there exist &;;x, € [j1, k1] such that ¢(%) — o(5) = L4 (&ins IN) (i — Ki).-
As above we then get the system of constraints:

(&m:&m )
hitq (¢I(£j1 k1 /N) ¢, (6.11 k1 /N) 0(1)

Then writing ¢’(§j1k1 /N) - ¢l(£j1k1 /N) = ¢'”(€.1'1k1.1'2k2 /N) (61'1’61 - Ejzkz)/N we get the system:

(&m:&m )
h1£1¢”(Ej1k1j2kg/N)(£j1k1 - Ejzkz) = O(N)

By the assumption |¢"| > ¢ > 0 this gives

£1h1 = Zzhz
( h1f1(&juky — &jzka) = O(N) )
Let us put:
O = {1, 1,52, k2) : baly = haly,  hala(€jiky — Eika) < N},

and
le,gz,hl) = {(j1, k1, Jo, k2) 1 1 — k1 = ha, haby = hals, hily(&5ik, — Ejake) < N}
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so that
N _ N N _ N
Q(l],lz) - uhIQ(lhlz,hl) = |Q(11,£2)| - Z IQ(ll,lz,hl)l'

Here, | - | is the number of elements in the set. We would like to estimate IQ(;: 1,£2,ny)|- Note that besides the
diagonal solutions j; = ki, j2 = k2 which have been removed there is also a trivial class of solutions of the
form ¢, = {3,451 = ja, k1 = k2 which gives a lower bound of 1/N to the variance. We now aim to show that
the non-trivial solutions only change this by a logN factor.

It will be useful to write:

1 .
& =N@) ([ SeF+0-95)d)

and

i =G =N [ SO S663+ 1= 98+ =062 + 1 -0 Zpaoja
= [ ¢'<t(s1’ﬁl+(1—sl)’_fv—l)+(1—t)(s1%+(1—s1)’jv—2)ds1)

X([ 0T+ (= )+ (L= 052 + (1= ) )l + (1 = )b + s + (1= )]},

Performing the ds;dt we get an expression of the form
1
/ K(s; 51, k1,52, k2, N)[sj1 + (1 — s)kr + —8j2 + (1 — 8)k2)]ds = ajr + bk1 — cjz — dk2
0

where K (s; j1, k1, jo, k2, N) is the integral of a positive function with 0 < ¢ < K < C for some constansts ¢, C
independent of the j —k — N parameters. Therefore there exist positive functions a, b, ¢, d of (j1, k1, j2, k2, N)
each with values in [e, C] such that

N

[y 22,01 | << [{(J1, K1, G2, k2) : Ry = hala, by = j1 — K, |ajs + bky — cja — dka| << —- A

We have
c(j1 + kl) - C(]2 + kz) < aj1 + bky — cjs — dka, C(]l + kl) - C(jz + kz) > aj1 + bk — cjs — dks.

Hence |, z,,5,| is bounded above by the number of solutions of

N N
c ki) — k:
TR (1 + k1) —c(ja + 2)—h£ (28)
These inequalities are essentially the same as in the quadratic case We regard hy, bz, m1, ms with m; = j;+k;
as the independent variables. For a given m; there are at most 37— solutions of the inequalities in m,. Hence

c(jr+k1)—C(z+ ko) < —-

N2

Q
(R824 | << 757 A

and therefore
N2?logN

|1
We are now in the same position as in the quadratic case (cf. (32)) and it follows as before that the variance

is O(UesM) w

|Q£1112| <<
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Corollary 5.1.2 Let N, = [m(logm)?] (|| = integer part). Then for almost all (o, 8) with respect to
Lebseque measure and all t # 0 we have

H N _ POISSON
Jm p5.7; a8) = P2 :

Proof By the above,
DL R R POISSON ( £y(2
it f - f dadﬂ < Q.
m.z::l (27)? /_T /_T P2, () = P2 53]

Since the terms are positive it follows that for almost all (a, 4),
[e ]
> 1657 a0 () = pOIS5ON (f)Pdadp < oo
m=1

and for these (o, 8) the mth term tends to zero. m

Remark In this corollary we have adapted an argument from [Sa.2][R.S], where the pair correlation problem
is studied for flat tori and for some homogeneous integrable systems. Their main result was that the relevant
pair correlation functions are almost everywhere Poisson. After proving the almost everywhere convergence to
Poisson along a slightly sparse subsequence (as in the above Corollary), they show that for N, < M < N4,

Pg&a,g) H- Péw;(f,,a,ﬂ) (f) = 0(1)

as m — 0o. This last step seems to be much more difficult in our problem. The difference is that the spectra
in [Sa.2][R] increase with increasing N and the common terms cancel in the difference above. On the other
hand, our spectra change rapidly with NV and there are no (obvious) common terms to cancel.

6 Appendix: Linear and quadratic cases

In the case of linear and pure quadratic Hamiltonians, the exponential sums discussed above are very classical.
We briefly discuss what is known and add a few observations of our own.

First, the pair correlation problem for linear Hamiltonians H = af has been studied since the fifties
(V.Sos and S.Swierczkowski). See [Bl.2][R.S] for discussion and references the literature. The result is that
only three level spacings can occur for a given a and the pair correlation function is not even mean square

Poisson.
In the case of quadratic Hamiltonians, we get the incomplete Gauss sums:

N
Si(N;8) = Z ezwith[(ﬁ)2+a{§,]_
—

In the special case @ = 0 and ¢ = 1 they are classical complete Gauss sums

N o
G(L,0;N) ) e*mitk.

Jj=1
If (¢,N) =1 then
VN ifN = 1(mod2)

|G(£,0,N)| = { V2N ifN = 0(mod4)
0 if N = 2(mod4)
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In general

Hence the values of o
T
I =5 5 i s, v, 0
££0
depend on the residue class of N modulo 4. If N = 2 (mod 4) then Iy = 0. If N is odd, then

=Y enfEh=12 T © ¥ iE.

l;éo EEZ:k#0  E:(L,N)=k

When N = p, a prime number. Then (£,p) = 1 except for multiples kp with k € supp(f). They make a
neglible contribution, so
27¢
=T HED - [ fos = 500
P 40
Thus the prime sequence is Poisson.
In general, if (£, N) = k then k|N and £ = kq with (g, { ) =1. Since f( ) = f(&), we have

k

N
k k :
Iy = Z kN Z f(%)
EEIN T g=1,(g,¥)=1 ¥

The inner sum Iy} := & 24—1 (q )1 f (-,%-) has somewhat the form of a Riemann sum with mesh £ except
that f is only evalued at pomts of the partltlon whose numerators ¢ are relatively pnme to . The number
of such g equals ¢(%) ( the Euler ¢-function), so on avera.ge the -1'!,- are spaced out £ x m W The
coefficient k= 1’\“, could only resemble the mesh if k ~ W_) on average But the average order of ¢(n) is —;

(Merten’s formula) so T(ET is of smaller order than % in general. Hence, the statistics are not Poisson.

However, if we allow ¢ to vary then we do have an average Poisson behaviour:

Proposition 6.0.3 For any interval [-T,T)|, the average PCF of llexpitN. I2 is Poisson, i.e.

- £.1
sz N 2T/ Z M“_N_dt_o(l)

j/not=k

Proof: The integral equals
1 1;¢ sin(¢T 22K
N @Y e
N#Ol N P erdit P2 -k
;L sin(eThz)
mE iy xS
£#£0 m=10<[h|<N—|m|

where as above h = j — k,m = j + k. Using just that sinz << 1 this is

<<—Zf( )[Z > ﬁ

£#£0 m=10<|h|<N—|m|
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<< % ;f(%)% = O(@).
0

We do not know if the variance tends to zero in this case.
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