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Abstract

As far as entanglement is concerned, two density matrices of n particles are
completely equivalent if one can be transformed into the other by local uni-
tary transformations. We present two methods of finding whether or not two
generic density matrices of arbitrary numbers of spin-1/2 particles are equi-
valent. Both methods describe density matrices in terms of a finite number

of invariant parameters.
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Non-locality is a fundamental characteristic of quantum mechanics. Its importance lies
not only in philosophical considerations of the nature of quantum theory, but also in ap-
plications where it has emerged recently that non-locality is the key ingredient in quantum
computation [1] and communication [2] and plays an important role in cryptography [3,4]. It
has become clear that entanglement is a resource which may be manipulated (for example by
concentration [5], dilution or purification [6-8]) and transformed from one form into another.

From the point of view of non-locality, two states are completely equivalent if one can
be transformed into the other by means of local unitary transformations. How to determine
whether or not two states are locally equivalent is still an open question. In this letter we
solve this problem for systems containing arbitrary numbers of spin-1/2 particles in generic
mixed states.

As discussed in [9], the space of pure states of n spin-1/2 particles isC*" =C?* ® ... C?;
however not all the 2" complex parameters have non-local significance: the group of local
transformations, U(2)™ acts on the space of states and two states which may be reached from
each other by local actions are equivalent as far as their non-local properties are concerned.
Each equivalence class of locally equivalent density matrices is an orbit of this group. For
many purposes, only parameters describing non-local properties are significant; an example
is that any good measure of entanglement must be invariant under local transformations
[6,10-13], and thus it should be a function of non-local parameters only (here and henceforth
we will refer to parameters which are invariant under local transformations as invariants);
invariants are also relevant in discussions of Bell inequalities {14,15] and teleportation etc
[16]. A key question is to identify the invariants.

In this paper we will focus on density matrices and show that for n > 2, of the 22" — 1
real parameters describing density matrices of n spin-1/2 particles 22* —3n — 1 are invariant
under local transformations, U(2)". This generalises to an arbitrary set of n particles as
[1.d2-3", d2+n—1 where d, is the dimension of the state space of the rth particle. For n
spin—% particles we also show how to characterise generic orbits, both by giving an explicit
parametrisation of the orbits and by finding a finite set of polynomial invariants which
separate the orbits. Thus given two density matrices we can compute explicitly whether
they are on the same orbit or not. Other authors have also discussed the use of invariants
in discussing entanglement [17,18] and applied invariant theory to quantum codes [19].

In order to calculate the number of functionally independent invariants it will be conve-
nient to find the dimension of the orbit of a generic density matrix under the group of local
transformations. The dimension of the orbit is the number of parameters describing the
location of a density matrix on the orbit. The total number of parameters (22" — 1 real para-
meters) describing the space of density matrices minus the number of parameters describing
a generic orbit (the dimension of the orbit) gives the number of parameters describing the
location of the orbit in the space of orbits, i.e. the number of parameters describing the
non-local properties of the density matrices.

To fix notation, it will be convenient to consider the case of a one-particle density matrix
first. The space of pure states of a single spin-1/2 particle is C* and thus a density matrix is
a 2 x 2 complex matrix which is hermitian, positive and with trace -one, and may therefore
be described by three real parameters. A particularly convenient representation of such a
matrix is



p= =1+ a;0;, (1)

where ¢;, i =1, 2,3 are real and

a=(1o) »=(19) »=(5) »=(1) o
We note that
0i0; = 1€;jk0k + 0ij. (3)
Under a local transformation by a unitary matrix U, p is transformed as
p s UpUT. (4)

Every unitary matrix may be written as a product of an element of SU(2) and a phase
transformation, represented by a unitary matrix e1,. This latter element clearly leaves
any density matrix invariant under the transformation (4) so that when considering the
action (4) we may restrict attention to elements of SU(2). In order to find the number of
invariants it will be more convenient to find the dimension of a generic orbit under the action
of SU(2). To do so one may work infinitesimally. Thus, associated to the action of the Lie
algebra of the group of local transformations acting on the space of density matrices there is
a vector field: if we take an element T of a basis for the Lie algebra, the action of the group
element &k = expiel € K on an element p induces an action on functions from p to C; and
the vector field, X7, associated to the Lie algebra element 7T is found by differentiating:

of O : 0
X (0)E 5 £ (@ Pleco = 5 (P +6p) 0. (5)

The linear span of vector fields at the point p associated with the whole Lie algebra forms
the tangent space to the orbit at the point p and so the number of linearly independent
vector fields at this point gives the dimension of the orbit.

A general element of the Lie algebra in the spin-1/2 representation is given by

T =mno; (6)
and its action on the density matrix is to give an infinitesimal transformation

8p = i[T, p] (7)

where [,] is the matrix commutator.

We may therefore calculate the three vector fields X;, X5 and X3 associated to the Lie
algebra elements oy, 02 and o3 as

0 0 0 0 0 0
X1 =09 — — 37—, X2:a3——a1—, X3=O£1———012—-. (8)
Oas day [o% o

We note that at generic values of oy, ay, 3 only two of these vector fields are linearly
independent since



a1X1 + C!2X2 + 03X3 =0. (9)

Thus the dimension of the generic orbit is two and therefore of the three parameters descri-
bing a generic density matrix, two are non-invariant leaving only one invariant parameter,
as one expects since only the single independent eigenvalue of p is invariant under local
transformations.

We note that the effect of the transformations (4) is to act on the vector e by rotation
by an orthogonal matrix, i.e. an element of SO(3) - this follows from the fact that o;o;
is the representative of a Lie algebra element and the conjugation action (4) is the adjoint
action of the group on its Lie algebra. We may thus find a way of exhibiting the invariant
under local transformations:

I= aiajd,-j = |Ol|2 (10)

where we have used the fact that SO(3) has an invariant tensor 6. We note that this
invariant may also be expressed as

I=Te() - 3. (11)

We now turn to the case of two-particle density matrices. Such a density matrix has 15 real
parameters, and the maximum dimension that a generic orbit could have is 6 (corresponding
to two copies of SU(2)) if all the vector fields corresponding to a basis of the Lie algebra
were independent. We will show that the vector fields do indeed span 6 dimensions, and
thus that there are 9 non-local parameters.

We may write a density matrix as

1
p=le@12+0!idi®12+,3¢12®0’1;+R4'j0'1;®0'j. (12)

The action of a Lie algebra element of the subgroup SU(2) acting on the first component of
the tensor product is

§Wp = i[mkor ® 1, ]
= 0 NmEmkiCi @ 12 + RijNmemrioi ® 0, (13)

and that corresponding to a Lie algebra element of the subgroup SU(2) acting on the second
component of the tensor product,

6@ p = i[n1s ® 0%, pl
= /Bknmfmkila ®o; + Rik'r]m(:'mij'i ® o;. (14)

The vector fields corresponding to the six basis elements 0; ® 19, 1, ® o; are

0 0
Xk = €kim (aiaa +Rij6Rm_),
m J
0 a
Yi = €kim ('61_8,3— + Rjiﬁ‘) (15)
m jm
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Consider the set X first: one can see that these three are linearly independent at generic
points by considering the coefficients of 9/8a;, since a linear relation would have to be of the
form oy Xy = 0, but one can see that this relation will not hold for non-zero o’s by looking
at the coefficients of the partial derivatives with respect to R;;. Similarly by considering the
coefficients of the partial derivatives with respect to (31, 8s, O3, one sees that Y7,Y5,Y; are
linearly independent. Finally, we note that the coefficients of the partial derivatives with
respect to (i, G2, s are zero for X, X5, X3 and the coefficients of the partial derivatives
with respect to ay,a, a3 are zero for Y7, Y2, Y3 so that there can be no linear relation at
all between the six vector fields X, X5, X3, Y1, Y5, Y3. Thus the dimension of the orbit of a
generic density matrix is 6 and thus the number of non-local parameters, 15 — 6 = 9.

In general, we can consider a system of n particles with individual state spaces of di-

mensions dj,...,d,. The density matrix is a hermitian D X D matrix with trace 1, where
D =dyds...d,, and therefore requires D? — 1 real parameters which can be taken to be the
coefficients oV, ..., a(™, ..., R in an expansion

1

n
1@ lg+ Y 1@ @IV ® @1+ + Ry, TV ®--@T (16)

r=1

PZE

where T,-(TT) (i = 1,...,d2—1) are a basis set of traceless hermitian d, xd, matrices (generators
of 'SU(d,)). The action of an infinitesimal generator of SU(d,) acting on the rth factor of
the tensor product is

=@M e 9T @ ®1+-)  (Lik=1,..,d-1) (17)

where cg,)c are the structure constants of SU(d,). Thus the infinitesimal action of local

transformations is given by a set of vector fields

@ _ (.m0 ]
X7 = i (0‘5' m+"'+&-1...j...- T m— ) (18)

k

Similar considerations to those used above for the case of two spin-% particles show that
these vector fields are generically all independent. Thus the generic orbit has dimension
d3 +---d2 —n. Since the space of density matrices has dimension d?. .. d2, there are a total

of
[[#-> d+n-1 (19)

non-local invariants.

Let us now return to the case of n > 2 spin-1/2 particles and explicitly identify a set of
invariant parameters which characterise generic orbits. To be explicit, consider the case of
three spin-1/2 particles with density matrix which may be written as

1
p= §12®12®12+04i0'1'®12®12+ﬂi12®0'i®12+’)’i12®12®0'i
+Rijo; ®0; @ 13+ S54j0; ® 1 @ 0 + Tij12 @ 0; ® 0
+ Qijro: ® 05 ® 0y (20)
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The action by a local unitary transformation on the first component in the tensor product
induces the following transformations on the components of p

a; — Lijaj;  Rij > LigRyj;  Sij v LSy Qijk > LimQmys (21)

where L;; is an orthogonal matrix, and the other components of p do not change. Similarly
actions by a local transformations on the second and third components of the tensor product
induce

Bi— M;iBi;  Rij — MjRi; Ty — MiTkj;  Qijr = MimQims (22)
and
¥+ Nivis Sij = NjgSies  Tij = NpTie;  Qijr = NemQijm (23)

respectively, where M;; and N;; are orthogonal matrices independent of L.
We max fix a canonical point on a generic orbit as follows: firstly let us define

X = QijxQijk; Yy = QujnQijks  Zrw = QijnQijwr (24)

and perform unitary transformations on particles 1, 2 and 3 so as to move to a point on the
orbit in which X, Y and Z are diagonal; generically the diagonal entries are distinct and we
can arrange them in decreasing order (X, Y and Z are hermitian, positive matrices). The
only remaining transformations which leave X, ¥ and Z in these forms are local unitary
transformations which induce orthogonal transformations in which L;;, M;; and N;; are one
of the matrices

10 0 ~10 0 -1 00
0-10 010 0 —10 (25)
00 —1 0 0-1 0 01

We may specify a canonical point on the generic orbit uniquely by specifying that all the
components of & have the same sign, and similarly for 3 and 7. This method works as long
as X, Y and Z have distinct eigenvalues and the components of o, 8 and -y are not zero
at the canonical point on the orbit. The parameters which describe the generic orbits are
the components of o, 3,v, R, S,T and @ at the canonical point on the orbit. We note that
the number of parameters describing the canonical point are the 26 — 1 = 63 components
of o, 8,7, R,S, T and @ minus the 3 x 3 = 9 constraints that the non-diagonal elements of
X, Y and Z are zero; thus the number of non-local parameters is 54 as given by the general
formula.

We note that the fact that the canonical point, as constructed, is unique means that
all points on the same orbit will have the same canonical representative: conversely, if two
density matrices p; and p, have the same canonical form, then

UlplUit = Pcanonical = U2P2U§ (26)
for some U; and Us, so that

p2 = (U0 pr (UTH)' (27)
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and thus p; and p, are on the same orbit.

We now describe a finite set of polynomial invariants which separate generic orbits by
finding a set which allows one to calculate the components of «, 8,7, R, S,T and @ at this
canonical point. The complete infinite set of polynomial invariants is found by contracting
the indices of a, 3,7, R, S,T and @ with the invariant tensors d;; and €;;;. However we
may find a finite set of invariants which separates generic orbits. Firstly we note that
tr(X), tr(X?) and tr(X3) determine the diagonal elements A2, A3 and A2 of X, and similarly
for Y and Z. Now consider the three invariants Az, = o7 X" ', n = 1,2,3. We may write
these three invariants in the following way:

1 11 CL% A2
PYIPYIDY: o | =1 A4 ], (28)
NY'UAW: Ag

where a;, a, and a3 are the components of o at the canonical point on the orbit. The
Vandermonde matrix

111
A= A2 X2 A2 (29)
AL A2 A

has determinant (A2 — A2)(A2 — A\2)(\3 — A\%), and we may solve for a?, a2 and a? as long as
det A is non-zero. Also if the invariant

Ag = eijka,:(Xa)j(Xza)k = Of.(XO!) A (XZOA) = Q10203 det A (30)

is non-zero, then we may determine the sign of the components of «; recall that, by definition,
all the components of o have the same sign at the canonical point. The analogous expressions
By, Cy determine the values of 3 and  at the canonical point. The values of the components
of R at the canonical point may be calculated from the following nine invariants:

_ I = (Xr—la)i(ys#lﬂ)jRij' (31)
These nine equations may be put together into a matrix form
I=((AF)® (MG))R, (32)

where I and R are column vectors with nine components and the matrices A, F, M and G
are i

1 11 a1 0 O 1 11 bp 0 0
A= X AMX]);, F=|0a 0}; M=yl G=|015bo0
DYDY IDY 0 0 a3 Ut oy ph 0 0 by

(33)

where p?, p2 and p? are the diagonal elements of Y. We note that det(AF) = Ay and
det(MG) = By, so since we are assuming that these are non-zero we may invert the matrix
equation to find the components R;;. The components of S and 7' may be found in a similar
way. Finally we may use the 27 invariants



L5y = (Xr_la)i(Ys_lﬂ)j(zt-l’Y)injk- (34)

to find the components of @) at the canonical point on the orbit in terms of the I, ,; (there
will, of course, be some relations between these components due the constraints that X, Y
and Z are diagonal).

Thus, by showing that the following set of polynomial invariants is sufficient to calculate
the components of a generic density matrix at the canonical point we have demonstrated
that they characterise generic orbits:

trX", trY", +trZ"
aTX’r—la, IBTY'I‘—IIB’ ,YTZ’!'—l,)G
a.(Xa) A (X%a), B(YB)A(Y?B), 7.(Z7)A(Z%)
(X" ta)i(Y*'8);Ry,  (Y"'B)i(Z°719) Ty (X°710)i(Z771)5Su53
(X a)i(Y*18); (25 )i Qijrs (35)

the indices r, s,? range over the values 1, 2, 3.

If two density matrices have different values of any of these invariants they are not on
the same orbit; if they have same value of all of these invariants, and if Ag, By and Cy are
non-zero, then the density matrices are locally equivalent.

We note that the number of independent components of a generic density matrix at the
canonical point is equal to the number of functionally independent parameters calculated
at the beginning of this letter. However, the number of polynomial invariants needed to
characterise the generic orbit is greater than this; this is related to the fact that the ring of
invariants is non-polynomial, i.e. that the geometry of the space of orbits is non-trivial.

The procedure given above can be used for all n > 2: use the tensors of highest rank
and rank one in the expression for p to fix a canonical point on the orbit; the polynomials
which separate the generic orbits are the analogues of those used in the case n = 3.

In the case of n = 2 this method can be used but there is some redundancy in the
description we have given: the matrices X;» = R;;jRy; and Y = R;;R;;» (using the notation
of (12)) have the same eigenvalues and the matrix R;; is diagonal at the canonical point.
In this case there are nine functionally independent invariants which specify the squares of
the non-zero components of « , # and R at the canonical point on a generic orbit: trX",
o’ X™ 'a and BTYP"!3, where n,m,p take the values 1,2,3. Additional invariants are
needed to specify the signs of the non-zero components. The five invariants a.(X a) A (X2a),
B.(YBA(Y?2B) and X" RS, 7 =1,2,3, are sufficient to determine these signs for generic
orbits and hence separate these orbits. In fact, using slightly different arguments, one can
show that, in this case, one can reduce the number of polynomial invariants to ten, namely
trX, trX?, detR, aT X" o, o" X" 'RB, r = 1,2,3 and Ay, which are subject to a single
relation expressing A3 as a function of the other invariants.

The general idea of investigating canonical points on orbits in the way we have descri-
bed is also appropriate for higher spins, but the situation is somewhat more complicated.
Consider the example of two particles of spin one in which case the unitary group under
which p transforms is SU(3). p may be written as

1
P:a18®18+aiTi®18+ﬂi18®ﬂ+Rijﬂ®T}i (36)



where T;, ¢ = 1...8 are representatives of a basis for the Lie algebra of SU(3) in the adjoint
representation and 1g is the 8 x 8 identity matrix. However, the adjoint representation of
SU(3) is equivalent not to SO(8) but to an eight dimensional subgroup of it; this means
that we cannot transform p so that RRT and RTR are diagonal so the canonical form is
rather more complicated than in the case of spin-1/2 particles.

In summary we have shown how to calculate the number of functionally independent
parameters needed to determine whether or not two density matrices are locally equivalent.
We have also shown how to characterise the generic classes of locally equivalent density
matrices of n spin-1/2 particles by two methods: (a) by finding an explicit set of non-
polynomial invariants (the components of the density matrices at the canonical points on
the orbits) and (b) by finding an explicit finite set of polynomial invariants. These methods
work for generic density matrices; in a future publication we intend to give a systematic
method for characterising classes of locally equivalent non-generic density matrices. In
particular this will give a basis for the ring of invariants. We note that the canonical point
on certain types of non-generic orbit has non-trivial stability group; this is a signature that
density matrices on this orbit have special types of entanglement [9].
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