Arithmetic of diagonal quartic surfaces, II
R.G.E.Pinch and Sir Peter Swinnerton-Dyer

1. Introduction. In this paper we shall be concerned with the solubility or
insolubility in Q of equations of the form

ang + (11.)({1 + azX{,l + ang =0 (1)

where the a; are nonzero elements of Z and agajasas is a square. When
we refer to a point of (1), we shall normally assume that the X; are integers
with highest common factor 1. We shall always assume that (1) is everywhere
locally soluble, since otherwise insolubility is trivial; as well as 2, 00 and the
primes which divide apa;aqas it is only necessary to check local solubility at
5. To avoid certain special cases, we shall from time to time also assume that
none of the —a;a; is a square. Though our main results do not follow from
those of [3], this paper can be regarded as an illustration in down-to-earth
terms of the general theory expounded there.

The reason why we confine ourselves to the special case when aga;aqas is
a square is because it is more tractable than the general one, for the following
reason. Let V' C P? be the surface defined by (1) and let W be the quadric

aoYoz + GinZ + a2Y22 + asz =0. (2)

Setting Y; = X? for each i gives a map V — W; so W is everywhere locally
soluble since V is, and hence W is soluble in Q by Hasse’s theorem. If
apa102a3 is a square, this implies that each of the two families of lines on W
is parametrised over Q by P!. The pull-back of a general line of either family
to V is a curve-of genus 1 defined over Q(P'); and it turns out that these
curves are 2-coverings of elliptic curves all of whose 2-division points are also
defined over Q(P!). As in [3], our methods really address the question which
fibres contain rational points. We cannot simply apply the main theorem of
[3], because one of its hypotheses is not satisfied, but we can apply the same
ideas; the result of doing so is Theorem 2 in §3.

The conclusion of Theorem 2 is conditional on two major unproved con-
jectures: the finiteness of the Tate-Shafarevich group of an elliptic curve, and
Schinzel’s Hypothesis. The former is used to prove Lemma 4. The way in
which we shall use the latter is given in Lemma 1 below; for a discussion of
Schinzel’s Hypothesis and the (straightforward) proof of the Lemma, see [6],

§2.



To state Lemma. 1, we need some definitions. Let S be a finite set of places
of Q which includes oo, and let Y be the set of ordered pairs of coprime non-
zero integers 7 X (. For each v in § let U, be any open subset of Q; x Q} in
the usual topology such that U, contains c®y X c?z for all ¢ in Q} whenever
it contains y X z. We shall define the S-topology on Y to be the topology
for which the [J U, form a base of open sets. The reason for choosing this
somewhat exotic topology is that it makes the functions L introduced in §3
continuous, whereas they would not be continuous functions of n/{ in the
standard topology. If §; D S then the S-topology on Y is coarser than
the S;-topology. It should be emphasized that although the curves (7) with
which we work depend only on y/z, the continuity statements which follow
(17) would not be true if we used a topology which only depends on 7/(.

Lemma 1 Let Q1(y, 2), . . ., Qn(y, 2) be homogeneous irreducible non-constant
polynomials in Zly, z] and let Sy be a finite set of primes containing co and
all finitep < > degQ,. Assume Schinzel’s Hypothesis. Then given any non-
empty set U in Y, open in the topology induced by Sy, we can find nx ¢ in U
and primes p, outside Sy such that each Q,(n, () is a uniformizing parameter
at p, and a unit at all other primes outside Sy. aJ

A computer search reveals that there are exactly four surfaces (1) with
apaiazas square and all ja;] < 16 which are everywhere locally soluble but
which have no integer solutions with |X;| < 300. The corresponding sets
(ag, a1, ag, a3) are

(4,9,-8,-8), (2,9,—6,—-12), } (3)

(2,8,-13,—13),  (7,8,-9,—14).

We discuss the first, second and fourth of these surfaces in §6 and the third
in §8. We shall show that the first two are insoluble in Q and that the
obstruction to solubility in each case is Brauer-Manin. We use the machinery
of this paper to exhibit a rational point on the fourth surface — something
which is probably beyond the scope of a straightforward search. A similar
process yields the point (995,1227,71,1115) on the third surface (3). This
surface is much more susceptible to generalization, and in §8 we discuss the

surface
X3 +4X} = d(X; + X3) (4)

where without loss of generality we can assume that d is fourth-power free and
not divisible by 4. Local solubility now requires that d > 0, that d =1,2,5
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or 10 mod 16 and that d is not divisible by any prime p = 3 mod 4. The
third surface (3) corresponds to d = 26.

Theorem 1 Suppose that d is such that (4) is everywhere locally soluble. It
is still insoluble in Q if d = 2 mod 16, no prime p = 5 mod 8 divides d to an
.odd power, and r = 3 or 5 mod 8 where d = 72+ s2. Assuming that the Tate-
Shafarevich groups of elliptic curves are finite and that Schinzel’s Hypothesis
holds, it is soluble in all other cases except perhaps when d = 1 mod 16 and d
is not divisible to an odd power by any prime p = 5 mod 8. In this last case,
write d = £2 — 2€2; then (4) has no solutions with X, odd, 2|| X5 if |&| =1
or 3 mod 8, and no solutions with X, odd, 4|X; if |€2) =5 or 7 mod 8.

All but the last sentence of this theorem corresponds to the assertions of
Theorem 2 restricted to the special case (4). For the last sentence (which
does not use any unproved hypothesis) we have to carry out a second descent,
using the ideas of Cassels[1]; it asserts a failure of weak approximation, but
one which appears to us not to arise from a Brauer-Manin obstruction. We
can transform this last sentence in a number of ways, of which the following
seems the most interesting:

Corollary Suppose that
XA +4Xi =W2 - 2W? (5)

for integers Xy, X1, Wy, Wy such that no prime p = 7 mod 8 divides both Wy
and Wy. Then |Wy| £ 5 or 7 mod 8.

Because of the automorphism
(Xo, X1, Wo, W1) — (2X3, Xo, 2Wy, 2W1)

it is enough to study solutions of (5) with X, odd and therefore W, odd and
Xy, Wy even. Now the conclusion of the Corollary becomes |Ws| = 1 or 3 mod
8. We can regard (5) as a pencil of conics, with Xo/X; as parameter; but the
conclusion is not a Brauer-Manin obstruction to weak approximation, and
the requirement that Wy, W should have no common prime factor congruent
to 7 mod 8 is essential. We are indebted to Kevin Buzzard for showing us
that the result, in the stronger form |X,| = 1 or 3 mod 16, can be proved by
classical class field theory.



2. The associated pencils. As was explained in the introduction, the assump-
tion that aga;aza;s is a square implies that (2) can be written (non-uniquely)
in the form

A(Y)D(Y) = B(Y)C(Y) (6)

where
A(Y) = aoYQ + G’1Y1 + Olez + a3Y3

and so on. Of the two pencils of curves of genus 1 which are the liftings of
the families of lines on (2), one is given in an obvious notation by

yA(X?) = 2B(X?), yC(X?)=2D(X?) (7)
and the other by
yA(X?) = 20(X?), yB(X?)=2D(X?). (8)

We shall often denote the curve (7) or (8) by I'?. For the time being, we work
with (7). Eliminating each of the variables in turn, we obtain four equations
of the same shape, only two of which are linearly independent. Each equation
has the form

where i, j, k, £ is any permutation of 0,1,2,3 and d;; is the value of the de-
terminant formed by columns i and j of the matrix

( ooy — Poz ony — Pz ooy — Pz aszy — Pz )
Yoy — 00z MY — 01z Yy —0:z Y3y — 032

Provided we interchange (7) and (8) if necessary, the effect on the d;; of
altering the formulation (6) is simply to make a linear transformation on
¥,z and to multiply all the d;; by the same constant. By means of bilinear
transformations on y, 2, we can arrange that all the d;; have nonzero leading
coefficients. The Jacobian of the curve (7) has the form

Y2 = (X —-c)(X —c2)(X —c3) (10)

where
c1 — ¢ = dgsdy, ca — 3 = dpidse, c3 — c1 = dpadas. (11)

A map from the curve (7) to its Jacobian (10) is given by
Y = d12d23d31X1X2X3/Xg, X —C = d,Jdk,Xf/on
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where 1, 7, k is any permutation of 1,2,3. A useful identity implicit in (11) is
that
do1d23 + do2d31 + dozdi2 = 0. (12)

Up to this point, the formulae hold for any K3 surface which can be
written in the form (6). For the special K3 surfaces of the form (1), we have
the unexpected result that each dy, is a constant multiple of d;;, where 4, j, k, £
is any permutation of 0,1,2,3. (It is because of this that we cannot simply
apply the main theorem of [3].) The simplest way to prove this property is
to make the decomposition (6) explicit. It follows from the solubility of (2)
and the fact that aga;asa;z is square that —a; is represented by a; Y3 + a3Y3
over Q. In other words, there exist integers r,, 73,73 and 8 such that

a1r? + agr: +azrs =0, 6% = aga10za;. (13)
In (6) to (8) we can now take

A = agr7Y(0ra X2 /asas + rs XE — r1 X3),
B = ayr{}(0rsXE/araz — 12 XE — 11 X3),
C = r[ (0rs X3/ar1as — ro X7 + 11 X3),

D= —7‘1_1(91"2X§/a1a3 + 7‘3X12 + ’I"1X§);

and the d;; are given by

doz = azy? + ax22, do1 = (6/azas3)d2s,
d31 = 1 (asr2y® — 2a3T3yz — az722%), doz = (6/a301)ds1,
diz = r7 (a3rsy® + 2a2rayz — aarsz?), dos = (6/a102)dsa.

Changing the values of the r; can be compensated by a linear transformation
on ¥y, z; changing the sign of @ gives the pencil (8) instead of (7). In the
numerical examples later in the paper, we shall allow ourselves to adopt
somewhat different notations for the sake of integrality. In general the pencils
(7) and (8) are not isomorphic. For suppose for example that ag and a; are
positive. Then the forms dg; and dp3, which are both definite, have the same
sign for one pencil but opposite signs for the other. However, there is a
natural one-one correspondence between the two P! associated with the two
fibrations. The Jacobians of fibres at corresponding points are twists of each
other by —1, and corresponding triples m°, as defined in (23) below, are
equal.

It follows that the three dy; are coprime in pairs as elements of Q[y, zj
and that, after suitable scaling if necessary, the discriminant of d;; is equal
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to —a;a;; this in particular tells us that d;; has no repeated linear factor and
that it is a product of two linear factors over Q if and only if —a;a; is in Q*2.
We have already noted that if 4, j, k is a cyclic permutation of 1,2, 3 then

dOi/djk = —aoa,-/B = —9/a,-ak. (14)
Different ratios are connected by equations like
dijdir/djedre = —a;/ay. (15)

With the same scaling as before, the resultant of d;; and dy;, is —4afajak; this
is relevent to the remark following (18). The pencil (7) has six singular fibres,
given by the roots of dydy2dps = 0; and for each pair ¢, j the roots of dy; = 0
harmonically separate the roots of dy; = 0. It follows easily from (9) that
each singular fibre consists of four lines, which form a skew quadrilateral.
Thus each of the 48 lines on (1) is part of a singular fibre of either (7) or (8).
We possess a dictionary which gives the Néron-Severi group of each surface
(1); some of this information can be found in Table 2 of [4]. In particular, the
rank of the Néron-Severi group is at least 2 whenever aga;aqa3 is a square; it
exceeds 2 if and only if there is a relation of the form a; = 4a; or a; = —a; or
a;ia; = axae up to fourth powers. Because the Néron-Severi group of (1) over
C is spanned by the classes of the 48 lines, it is not hard to verify that the
Mordell-Weil group of (10) over C(y, z) is generated by the three 4-division
points, a typical one of which is given by

X —c1 = diadisv/—ao/a1, Y = dizd138"*{d12\/—a0/as + diz\/a0/as} /a1
Here the signs are so chosen that
V—ao/a1./—ao/az.\/ap/az = —a3/b.

jFrom this result it is straightforward to read off the Mordell-Weil group of
(10) for any intermediate field.

3. The main theorem. We must now introduce some notation. Let f(y, z),
g(y, z) be homogeneous polynomials in Z[y, z] such that fg has no non-
constant squared factor, and let S be a finite set of places of Q contain-
ing 2, oo and all the odd primes which divide the discriminant of fg. Let
L = L(S; f, g) be the function

A e TT GO ), 900 )
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defined for all pairs of coprime integers A, p such that f(X,pu)g(), p) is
nonzero; here the outer bracket is the Hilbert symbol, defined by

1 if az?® + by? = 1 is soluble in Q,,
(a,0)0 = { —1 otherwise (16)
and the product is taken over all p not in & which divide g(\, u). By the
condition imposed on S, this implies that p does not divide f(A, p). Clearly
L is multiplicative in each of f and g, and satisfies L(f — gh,g) = L(f,g)
and
L(S; £,9)L(S; 9, F) = [ (FOu 1), 900 1) (17)
vin S
for any f, g these facts are enough to enable one to express L(S; f,g) as a
multiple of L(S;y, z)%&f-4%€9. Hence provided that at least one of f, g has
even degree, L(\, ) is continuous in the topology induced by S and there is
an explicit description of L which makes the continuity evident. If the degrees
of f and g are both odd, then the same holds for L(f, g; A, u)L(y, z; A, p).
However, in the construction used to prove Lemma 1 we can always ensure
that L(y, z;1,¢) = 1; for the proofs of all these assertions, see [6], Lemma 3
and [6], §6. If S is replaced by S; O S the effect on L corresponds to deleting
the factors associated with the p in $;\S.
In what follows we shall repeatedly have to evaluate expressions of the
form L(B; f1, fa; 1, ¢) where f; = a;y*+ Biyz+~.2% for i = 1,2 and B contains
2,00 and the odd primes which divide .

R = (172 — aom1)? — BuBalonye + com) + c1miBi + caaf3s,

the resultant of f; and f». Suppose that n X ¢ and p X o are in Y. Using the
algorithm in [6], we find

L(B; f1, f2;m, ¢) L(B; f1, f2; 0, o) = Hv in B{(g/(‘”l —p¢), R)y (18)
(f2(p, @), £2(1,C))v (9, F2(1,0))u (=9, fa(p, 7))}

where

g = f(m, Q) falp, o) — fi(p, o) f2(n, C)-

In various previous papers the non-classical part of L(n, {) has been defined
as the part which depends continuously on # and ¢, but not on n/¢ alone.
In this case we see that the non-classical part is just [[(g/(on — (), R)s-



Now let U; be the surface fibred by the pencil of conics (9). Because of
the projection maps V — U, and the basic hypothesis that V is everywhere
locally soluble, each U, is everywhere locally soluble; and a necessary con-
dition for V' to be soluble in Q is that each U; should be so. If we fix y, 2
then a similar result holds for the curve (7) and the curves given by (9). But
there is a computable obstruction to weak approximation on U, which is in
fact equivalent to the Brauer-Manin obstruction but which for our purpose
is more conveniently put in the following form. Let By, the set of genuinely
bad places for (1), consist of 2, co and the odd primes which divide aga;a2a;.
Let B;, which may depend on the decomposition (6), be a large enough fixed
finite set of places; we shall require B; to contain By and the primes which
divide the discriminants of all the expressions like dgydgadps- For i =1,2,3
let coir (y, z) run through the nonconstant irreducible factors of dy; in Z[y, z];
let & = &oir satisfy coir(€,1) = 0 and write

Loir = Q(§) = Q(V—a0a;). (19)

Taking for example ¢« = 3, there are two such cp3, if —a,a2 is a square and
one otherwise. Recall that cg3, is also an irreducible factor of dy5; thus for
(9) to be soluble in Q with y = A,z = p and A, 4 coprime integers, it is
necessary that A, 4 should satisfy

(—di3das, Cosr)p = (—do2ds2, Cosr)p =1 (20)

for each prime p not in B; which divides the value of cg3- to an odd power.
If p divides the value of cy3, to a positive even power then it does not divide
the value of —di3da3 or —dpadsz; so (20) holds automatically. In the notation
above, local solubility everywhere therefore requires all the conditions like

L(Bl; —dy3da3, Cosr; A, #) = L(Bl; —dpadsz, Co3r; /\M) =1 (21)

We denote by B the union of the B; corresponding to the various functions
like L(B;; —d13dss, cosr) together with 3 or 5 if either of these divides the
value of dy;dgadys for all pairs A, u. The reason for including 3 or 5 is to be
able to apply Lemma 1; the third surface (3) is one for which we do have
to adjoin 5. For the solubility of (1) it is therefore necessary that the set
X C Y of pairs A, p which satisfy all the conditions like (21), and for which
(7) is locally soluble at all places in B, should not be empty; and in looking
for solutions by means of the fibring (7) we can confine ourselves to pairs
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y,z in X. We actually go further; we choose a pair Ag X pp in X' and confine
ourselves to pairs A x g such that A X g is.in X and close to Ag X pp in the
topology induced by B.

Now let G* be the set of triples m = (m;, m3, m3) where the m;(y, z) are
homogeneous squarefree polynomials in Z[y, z] subject to the conditions

(i) mymaoms is a square in Zly, 2];

(ii) m, divides doados in Q[y, 2] and so on;

(i) no m; is divisible in Z[y, 2] by any prime outside B.

Let G be the subset of G* which satisfies the additional condition
(iv) all the m; have even degree.

Both G* and G have a natural structure of abelian groups, the law of compos-
ition being to multiply triples elementwise and then remove squared factors.
To each element of G we can associate a 2-covering of (10) given by

miZ2 =X —¢; for i=1,2,3; (22)

the particular 2-covering given by the four equations (9) corresponds to

my = —dnds1, My = —dizdsz, My = —diadas, (23)

where we have written Z? = X?/X2. By (15), the 2-covering corresponding
to the 2-division point (¢, 0), for example, is given by

my = —Qo@1, Mg = dozdz1, m3 = doads1, (24)

again after removal of squared factors. For any triple m in G*, let 8p3.(m)
denote the class of mz(£osr, 1) in

Lis,/ < Lg2., m3(€osr, 1), doa/ds1, dor /ds2 >;

here one of the last two expressions is redundant in view of (15), but both
have been included to preserve the symmetry. We define 6o;-(m) and pa-(m)
similarly. The following condition is the analogue for our problem of the
condition introduced in [5] and refined in [3]:

Condition D. The kernel of ®dy;r acting on G* lies in the group generated
by m® and the image of the Mordell-Weil group of (10) over Q(y, z).
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Using the results of [5], §3 or of Lemma 5 below, it is easy to check that
the triples m in the kernel of @®dy;r are precisely those with the follewing
property: for any n X ( in )Y and any p not in B, if the 2-covering associated
with m? is soluble in Q, so is the 2-covering associated with m. At the end
of §5 we show how to replace Condition D by a weaker but computationally
less convenient one.

Lemma 2 Suppose that no —a;a; is a square. Then for any m in the kernel
of ®0,ir either m or mm® is independent of y and z; and the kernel has order
8 if and only if apa;azas s not a fourth power and no a;a; is a square. In
this case Condition D holds.

Proof. We have G = G*, and for m in G the possible values of mg, for
example, are generated by

—1,2,dy;, dg2 and the odd primes in B.
Let &3 satisfy do3(£e3,1) = 0; in the notation of §2 we have
o3 = (—agrs £ 714/ —aya2)/asrs.

Thus dg2(&o3,1) = :I:d01(§03, 1)4/—az/a; and norm dp; (&3, 1) is —agay times
a square. But for m to be in the kernel of dp3 it is necessary that

norm mg (o3, 1) is in < Q*2, norm mJ (&3, 1) >,

and it follows that m3; must contain both or neither of dy; and dy, as factors.
Applying a similar argument to m; and ms, we deduce that if m is to be in
the kernel of ®dy; then either m or mm?® is independent of y /z. It is enough
to consider the former case; now as elements of Q*/Q*?,

my is in {1, —Qqas, 0000.3, —90,00.2},
me is in {1, —aas, 90,00,1, —anas},
mg is in {1, —ayas, 8apas, —0aga, }.

In general the condition that m;mym; is a square allows us only four choices,
which correspond to the origin and the three 2-division points. Additional
possibilities happen only when one of

8, 0agay, fagaz, Bagas, a0z, azas, azay
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is in +Q*2. But if faga; is in £Q*? then all we obtain is a new way of
describing triples m which are already known to be in the kernel; so these
cases can be ignored.. The others give the exceptions listed. ([l

If for example asas is a square then (1, —ajas, —aja2) is an additional
element of the kernel. Again, if 6 is in —Q*? then (a1as, @102, azas3) is in the
kernel, whereas if 8 is in Q*2 then (a;as, azas, asa;) is in the kernel. If some
a;a; is a square, then in general the rank of the Néron-Severi group remains
2 but the recipe of Lemma 11 below can be used to generate elements of
order 2 in the Brauer-Manin group additional to those listed in §7; one such
element is that called Fj; in §6. But if aga;aza;3 is a fourth power then in
general the rank of the Néron-Severi group remains 2 and there is no obvious
implication for the Brauer-Manin group.

We can now state the main result of this paper:

Theorem 2 Assume that the Tate-Shafarevich groups of elliptic curves are
finite and that Schinzel’s Hypothesis holds. Let

a0 Xy + a1 X +ax X5 +a3X5 =0 (25)

be a nonsingular surface defined over Q, everywhere locally soluble and such
that agaiazas is square. If X is not empty and Condition D holds, then (25)
contains rational points.

We do in fact obtain a stronger conclusion: that if U is any non-empty
open subset of A then we can find A X g in X such that (7) is soluble for
y = A,z = u. This statement is analogous to weak approximation, but we
are unable to obtain any conclusion about weak approximation in the strict
sense because we have no result for weak approximation analogous to Lemma
4 below.

4. The symmetry property. For the reader’s convenience we describe here
the symmetry property which is an essential tool for the methods used in
[3] and in the proof of Theorem 2 of this paper. For a fuller account, with
proofs, see [3], §1.2 or [6], §5, where the results are stated and proved for an
arbitrary number field.

An elliptic curve all of whose 2-division points are rational can be written

in the form
E:Y’=(X- c1)(X — ) (X —c3) (26)

where without loss of generality we can assume that the ¢; are integers. We
shall denote by & = S(E) a fixed finite set of places of Q which contains 2,
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oo and the odd primes of bad reduction for E. To any triple (my, m2, m3) of
elements of Q* with mymsomgs = 1 we associate the 2-covering given by

miZi =X —¢; for i=1,2,3

and Y = Z,7,7Z3; in this way we obtain an isomorphism between (Q*/Q*?)?
and the Fa-vector space of all 2-coverings of E. The 2-coverings soluble in
Q, for every p outside S can be identified with the elements of (0%/0%)?,
where 0% consists of the elements of Q which are units outside S. Write

Xs=o03/08, Y,=ki/k?, Ys=@sY,;

then as Fs-vector spaces Xs has dimension n and Ys has dimension 2n, where
n is the order of S. Moreover Xs — Y5 is injective.

Now write V,, = Y, x Y, and Vs = @sV, = Ys X Ys; and let Us be
the image of Xg X Xs in V5. Thus dimUs = %dim Vs. We can define a
non-degenerate alternating bilinear form e, on V,, by

ev((a’v b)s (C, d)) = (a’: d)v(bv C),, (27)

where the factors on the right are the Hilbert symbols. This induces a
non-degenerate alternating bilinear form es = [[se, on Vs. By the Hil-
bert product formula Us is isotropic in Vs, and comparison of dimensions
shows that it is maximal isotropic.

Let T, be the image of (0%/0:2)? in V,, where o, is the ring of integers of
Q., and let W, be the image of E(Q,) in V, under the Kummer map

8: P=(X,Y) = (X —c1, X — c3) (28)

It is known that W, is a maximal isotropic subspace of V,, for the alternating
form e,, and W, =T, if v is not in S. (An explicit description of the W, can
be found in [5], §3; this is useful for computational purposes.) A 2-covering
of E is soluble in Q, for v in § if and only if the corresponding point m; x m,
of (Q*/Q*?)? is in W,. We have already remarked that a 2-covering of E
is soluble in Q, for all v not in & if and only if the corresponding point of
(Q*/Q*?)? is in Us. Thus if we write Ws for the subset ®sW, of Vs, the
2-Selmer group of E can be identified with Us N Ws. Thus it is both the left
and the right kernel of the bilinear map Us x Ws — {£1} induced by es.
It can be shown that there exist maximal isotropic subspaces K, C V,
for all v in S such that Vs = Us & Ks where Ks = ®sK,; and if v is not 2
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or oo we can take K, = T,. Let ts : Vs — Ug be the projection along Kg
and write

Us=UsN(Ws+Ks), Wg=Ws/(WsNKs)=dsW,
where W) = W, /(W,, N K,). The map ts induces an isomorphism
75 Wg — Ug;
and the bilinear function eg induces a bilinear function
es: Ug x Wg — {£1}.
The symmetry property which we need is as follows:

Lemma 3 The bilinear functions Ug x Ug — {1} and Wg x Wg — {£1}
defined respectively by

uy X up > e:g(u'l,fgl(u'z)) and w] X wh > eg(Tswy, wh)

are symmetric and their kernels are isomorphic to the 2-Selmer group of E.

5. Proof of Theorem . At the beginning of §2 we showed how to fibre V' by
2-coverings of elliptic curves E whose equations have the form (26). To prove
Theorem 2 we have to show that we can choose a fibre which contains rational
points; clearly y and 2z must be in Q and the fibre must be everywhere locally
soluble, so that it must lie in the 2-Selmer group of E. The question which
elements of the 2-Selmer group contain points defined over Q, or equivalently
come from points of £(Q), has been vexatious since the time of Fermat and
remains unsolved; but the following partial answer will meet our needs.

Lemma 4 Suppose that the Tate-Shafarevich group of E is finite and the
image of the Mordell-Weil group of E in the 2-Selmer group of E is at least
half the latter. Then every element of the 2-Selmer group is represented by
curves containing points defined over Q.

Proof. The elements of the 2-Selmer group which lie in the image of the
Mordell-Weil group certainly contain points defined over Q, so the 2-torsion
of the Tate-Shafarevich group of F has order at most 2. But if the order of
the Tate-Shafarevich group is finite, then it follows from the existence of the
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Cassels alternating form that the order of the 2-torsion is a square. Hence
it must be 1, whence every element of the 2-Selmer group contains a point
defined over Q. O

Our strategy for proving Theorem 2 will be as follows. For i = 1,2,3
and each irreducible nonconstant factor cgi; of dg; we shall construct a finite
set Goir of primes p, these sets being disjoint from B and from each other,
such that there exist integers 7, {, with p||coir (7p, (p); When cg;, is linear we
further require that 7,, (, are not both divisible by p. It will be convenient
to require also that no p in Gp;, divides the leading coefficient of cg;,, so that
each (, is prime to p. (Recall that we have already arranged for all these
leading coefficients to be nonzero.) Choose neighbourhoods N, of 7, X ¢, in
Q, x Qp so small that pl|ceir(n,¢) and n — n,, { — {, are both divisible by p
for each 1 x ¢ in N,,; since p is not in B, for 7 x ¢ in A}, no other cyj,(n, {) is
divisible by p. The sets Gy;> will be chosen to have the additional properties
(i) and (iv) below. Let Sy be the union of B and the Gy, and choose 7 X ¢
in X according to the recipe in Lemma 1 for the cp;-(y, z), and with the
additional property that L(B;y,z;1,{) = 1. Denote by pgi, the additional
prime which divides cgi- (7, {); then each coi- (7, ¢) is a unit outside the set S
obtained by adjoining to Sy all the pg;r, and it is divisible to precisely the
first power by poir and by each of the primes in Gg;-. We shall take the set
S just defined to be the appropriate S for the notation of §4.

We now apply the ideas above to the curve I'’ given by (7) or (8) with
y = 1,z = ¢ and to its Jacobian E, which we already know has the form
(26). We need to ensure that

(i) the curve I'? is soluble in Q, for every p in UGg;,;

by requiring that n x ¢ is in X we have already ensured the corresponding
result for every v in B. From this we shall need to deduce

(ii) the curve I'? is soluble in Q, for each p = py;-.

Thus (i) and (ii) prove that the class of I'° is in the 2-Selmer group of E.
The choice of the Gy;; does not determine the pg;r; but this is unimportant
because we can prove

(iii) the bilinear form e§ : W5 x Wg — {£1} defined in Lemma 3 is ef-
fectively independent of the choice of  x { and hence of the pg;-. In
particular, the order of the 2-Selmer group only depends on the Gy;..
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The other condition which we shall impose on the choice of the Gg;,, which
is only meaningful once we have proved (iii), is that

(iv) the kernel of ef is generated by the images of m® and of the elements
of the Mordell-Weil group of E over Q(y, z).

It is in the proof of (iv) that we use Condition D. Once we have (iv), it follows
from Lemma 4 that I'° has rational solutions for y = 7, z = ¢ and therefore
(25) has rational solutions. The Lemmas which follow correspond to these
four claims. It is however convenient to state Lemma 5 in a form applicable
to any 2-covering of E and to give the application to I'° as a Corollary. We
again employ the notation of (19).

Lemma 5 Suppose that p is a prime not in By. Let 1, j, k be any permutation
of 1,2,3. There exists n X ¢ in Y with plcoi-(n,C) if and only if p splits in
Lyir. If so, the 2-covering corresponding to m is soluble in Q, if and only if
one of the two following conditions holds:

(i) plm; and both m; and dy;/dy; are in Q2.
(ii) pfm; and at least one of m; and (doj/dix)m; is in Q2.

Proof. Recall that by convention m; is square-free. The Lemma follows
immediately from the results for Case I in [6], §3. It is also straightforward
to prove it directly. O
Corollary Suppose that p is a prime not in By. There exists nx { in Y with
pl|coir(n, €) if and only if p splits in Lo;r. If so, let p = (p,m — €C) where
coir(€,1) = 0; thus p is a first degree prime factor of p in Lo;. Let i,j,k
be any permutation of 1,2, 3; then I'° is soluble in Q, if and only if p splits
completely in

Loir (y/m2(€, 1), {/doj /). (29)

Proof. The first two assertions are standard, and since p||m(n, ¢) it follows
from the Lemma that I'? is soluble in Q, if and only if m?(n, ¢) and do;/d;x are
in Q;Z. But we can embed £ in Z, with p|(£{—7), and from this the Corollary
follows. The apparent asymmetry in the criteria in both the Lemma and the
Corollary disappears when one takes account of Lg;r = Q(1/—aga;) and (15).
O

To ensure (i), we need only require that each p in each Gp;, satisfies the
conditions of the Corollary. Henceforth we assume that this is so.
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Lemma 6 IfI' is locally soluble at p for each p in Go;, then I'® is also locally
soluble at py;r.

Proof. To fix ideas, we set ¢ = 3. The condition

L(B; —dy3das, Co3r; M, () =1

is equivalent to the statement that the number of p in Gos, U {pos-} at which
the equation (9) with £ = 3 is locally insoluble is even. But by hypothesis
this equation is locally soluble at each p in Ggs,; so it is locally soluble at

Doz~ The same argument works for each equation (9), so that m$ = —dyadas
and —dgedss are posr-adic squares. Hence the same is true of dyg/d3;. Now
the Lemma follows from Lemma 5(i). O

For the next stage of the argument we shall need to construct partitions
of Uz and W§ which are compatible and which separate the effects of B,
the primes in UGy, and the primes pg;;. For each p in & \ B denote by P,
the generator of the one-dimensional space W; here F, is the class of (1,p),
(p,1) or (p,p) according as 1 = 1,2 or 3. Let Z; C W{ be the Fy-vector
space generated by the P, with p in UGy;,. Write Qoir = D P, where the
sum is taken over all p in Goir U {poir}, and let Z, C W be the Fy-vector
space generated by the Qp;-. Then

Ws=Wp 21827, Us=Up®75Z1 ® 152

and 7s induces the isomorphism 75 : W — Ug. Moreover 75Qqi, is of the
form

(€0irs €0irCoir)s (€0irCoirs €0ir) OF (€girCoir, €ir Coir)
according as ¢ = 1,2 or 3; here the arguments of cy;, are 1, ¢ and €, , eg;, are
in 0}. A similar but stronger statement holds for the 75P,. By continuity
the €., €p; do not depend on 7,¢.

If G* is as in §3, so that each element of G* defines a 2-covering, then
there are two subgroups of G* (depending on the choice of the A/, but not on
n % {) each of which has some claim to be described as a geometric 2-Selmer
group. The first and larger is

(Im(G* — Us)) N (Ws @ (©s\8V5)); (30)

it consists of those 2-coverings induced by elements of G* which are locally
soluble for each v in B. There is a natural injection of (30) into Uy & 7575,
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and the second and smaller candidate for being called a geometric 2-Selmer
group consists of those elements of the image which are orthogonal to Z;
under el; when the Gy;r are empty these are the elements of (30) which are
also locally soluble at each potential pg;r. It is natural to identify each of
these groups with its inverse image in G*; each of them contains the elements
corresponding to the 2-division points and to m®. The smaller of the two
groups will appear again as G5 in Condition E below.

Lemma 7 The values taken by the bilinear form e§ : W x Wg — {£1} do
not depend on the choice of n,{ or on the py;r.

Proof. Here it is of course implicit that if we change the values of 7, ¢, and
thereby also the values of the pg;;, we make use of the natural isomorphism
between the old S and the new one. We need to exhibit rules for evaluating
e% which do not depend on %, ¢ or on the py;,; and for later purposes we shall
need to know how they depend on the p in UGp;r. In (Wi & Z3) x Wy the
value of e} is a product of Hilbert symbols at places of B, whose arguments
are either fixed elements of Z or of the form fo;-(7,(); by continuity such
a value is constant. At a point of Z; x Qoir the value is a product of ex-
pressions L(B; cyjo, Coir; 7, {), Where cqj, is distinct from co;,, and expressions
L(B; €, coir; 1, ¢) where € is in o, and we noted in §2 that these are constant
even if cpjo and coir both have odd degrees. Now suppose that p is in Goir
for some ¢ and 7, and let 3 be an element of W§ @ Zj; then 7583 corresponds
to a triple (m;, ma, m3) in G*. By considering each value of ¢ separately, and
remembering that m;mams is a square, we obtain

es(8, Bp) = (mi(n, ), p)p- (31)

If we define p as in Lemma 5, then arguments similar to those in the proof
of that Lemma show that the value of (31) is 1 if and only if p splits in
Loir(1/mi(€,1)). In particular, this criterion does not depend on the values
of n,¢. Finally, the values of e% on Z] x Z; are clearly independent of the
choices of n, (; it is not difficult to give explicit formulae for these values, but
we shall not need them. O

It remains to show that, provided Condition D holds, we can choose the
Goir 50 as to satisfy (iv). Here we shall be motivated by the following result
from linear algebra.

Lemma 8 Let ¥ be a symmetric bilinear form on a vector space H & H'
over a field F. Let Hy C H be the kernel of the restriction of ¥ to a bilinear
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form on H. Suppose that the pairing between Hy and H' given by ¥ is non-
degenerate (that is, defines an isomorphism between H' and the dual Hj of
H,). Then ¥ is non-degenerate.

Proof. Let Hy C H be the left kernel of the restriction of ¥ to H x H'; thus
H = Hy ® H, and H, is orthogonal to Hy & H'. The restriction of ¥ to H;
is non-degenerate; and the same is true of the restriction of ¥ to Hy @ H'
because ¥ identifies H' with Hj and the restriction of ¥ to Hy is zero. [

Lemma 9 We can choose the Gy;, so that the conditions of Lemma 5 hold
for every p in UGy, and the kernel of e is generated by the images of m°®
and of the Mordell-Weil group of E over Q(y, 2).

Proof. Recall that Us N Ws has been identified with the 2-Selmer group.
Using the notation immediately before the statement of Condition D in §3,
denote by Gy the subgroup of G generated by m® and the image of the
Mordell-Weil group of E over Q(y, z), and by U] its image under the map
Go = Us N Ws — Ug; clearly Uy C Ug @ 7sZ3. In the notation of Lemma 8
we shall take H = (W§ & Z3)/75'Us and H' = Z]; and ¥ will be the bilinear
form induced by e%. Thus Hj is the image of the smaller geometric 2-Selmer
group. We choose the primes p in UGy;, one by one. Suppose that we have
already chosen py, ..., p,. If the left kernel of the restriction of ¥ to

Hoyx (W, &...0W,) (32)

is trivial, then we are done. If not, we choose a non-trivial element 8 of the
left kernel and lift it back via 75 to an element m of G*. This is possible,
because the image of the injection G* — Ugs obtained by evaluating m;, my
at 17x ¢ is precisely Ugs® 752}, so we obtain an isomorphism Ug @157 — G*.
By Condition D, we can choose z,7 so that m is not in the kernel of dg;;.
To fix ideas, let ¢ = 3; then the field Lo;-(1/m:(€,1)) is not contained in the
field (29), and we can choose a p,4; which splits in the second of these fields
but not in the first. The underlying p,.,; satisfies the constraints on Gg;,
imposed after the proof of Lemma 5; but ¥(hg, P,,,,) = —1 as in the proof
of Lemma 7. Thus every time we increase r by 1, we halve the order of the
left kernel of the restriction of ¥ to (32). Let H' = Z] be the direct sum of
the W, obtained in this way; then the conditions of Lemma 8 are satisfied
and Lemma 9 follows. O

It will be seen that we are far from having used the full force of Condition
D; indeed we have only used it for those elements of G* which are not in Gy
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but lie in the pull-back of the kernel of the restriction of e to Wi @ Z;. Let
G be the image of

Wé@ZéNUé@TsZé‘—}UBEBT,sZéNG*

where the second isomorphism is that exhibited in the proof of Lemma 9.
There is a symmetric bilinear form on G; induced by e3; an important part
of the proof of Lemma 7 is to show that this form is independent of the Gy,
and the choice of 1, { within a small enough open set, and can be evaluated
directly. Let G4, which can be identified with the smaller geometric 2-Selmer
group, be its kernel; then Condition D in the statement and proof of Theorem
2 can be replaced by

Condition E. The kernel of ©dy;r acting on G2 lies in the group generated
by m® and the image of the Mordell-Weil group of E over Q(y, 2).

In view of the remark after the statement of Condition D, the kernel of
@b, consists of those triples m such that, for any 7 x ¢ in a small enough
open set, the 2-covering induced by m lies in the 2-Selmer group of (10)
whenever that induced by m® does. Note however that G5 does depend on
1 X ¢, although it is locally constant. A particularly favourable case is when
@, itself is generated by m® and the image of the Mordell-Weil group, so
that this condition is trivial; in this case, provided we assume Schinzel’s
Hypothesis and the finiteness of the Tate-Shafarevich group, a necessary and
sufficient condition for the existence of A X p arbitrarily close to Ag X g at
which (7) is soluble for y = A, 2 = p is that Ag X o isin X. .

Theorem 2 was proved by carrying out a first descent on elements of the
pencil (10) so chosen that we have good control over the prime factors of the
cij(A, u). Cassels [1] has shown how to perform a second descent for elliptic
curves (10) — or more precisely how to determine which elements of the
2-Selmer group survive the second descent. For this purpose he defines a
skew-symmetric bilinear form < .,. > on the 2-Selmer group, whose kernel
consists of those elements which survive the second descent. Assume that
the ¢; in (10) are in Z and let S consist of 2,00 and the odd primes of bad
reduction for (10). Let m! and m’ be two triples which generate elements of
the 2-Selmer group; thus we can assume that the components of m! and m’
are square-free integers all of whose prime factors lie in S. Now let ¢, 5,k be
any cyclic permutation of 1,2,3 and denote by Cf the conic

2 2
mg-Zj —mh Z% = (e — ¢;) Z2.
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Cf is an image of the 2-covering associated with m* and is soluble everywhere
locally and therefore globally; let P! be a rational point on Cf and let L; be
a linear form in the Z; such that L; = 0 is the tangent to Cf at Pi“. For any
v in S let Q¥ be a v-adic point on the affine 2-covering induced by m!, which
is given by (22); we fix a coordinate representation of Q! and, by abuse of
language, denote by L}(Q!) the elementof Q, obtained by substituting that
coordinate representation into L!. Then Cassels defines

<mf,m*>=[] T[.(ZH@}),m}). (33)

where the product is taken over all v. However, we can require each L? to
have coeflicients integral outside S and with no common factor outside S,
and if p is not in S we can then choose Q}’, and its representation so that each

Lg(Q}’,) is a p-adic unit and therefore the corresponding Hilbert symbols are
trivial. It is certainly sometimes possible to implement this algorithm while
treating y and z as parameters; see for example §8.2. But we have not been
able to do this systematically.

6. Ewvaluation of the obstructions. For any particular surface of the kind we
are considering, the application of the ideas of §§3-5 begins in the same way.
By writing the surface in the form (6), we fibre it by a suitable pencil of curves
(7). For each place in By we identify the local conditions on y/z for (7) to be
locally soluble. The simplest way to do this is by first identifying the relevent
W, in the sense of §4 and then seeing which elements of W, are possible, given
the expressions for the mJ as polynomials in y, 2. Alternatively, we can fall
back on the calculations in [5]. Denote the resulting set of y x z by Xp. We
shall confine ourselves to surfaces for which none of the —a;a; is a square,
so that for each i, j there is just one c;j, which we shall denote by c;;. To
identify X, it is enough to evaluate the functions

Fyj(, 1) = L(By; —dyjdej, ciji A, 1)

on Xp, where i, j, k, £ is any permutation of 0,1,2,3. In view of (18), the
non-classical part of F;; has the form [], ;, 5 (¢, a:a;), where ¢;; is a linear
form in y,z. Thus, as noted after the proof of Lemma 2, the condition
Fy; =1 is classical if and only if apa; is a square. Because c;; = ¢z, certain
combinations of the F;; are in general easier to evaluate than the individual
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F;;; for example, if 4, j, k is a cyclic permutation of 1,2, 3 then

FoiFjr = L(By; dijdok, coi) = L(B1; —aoar /8, coi) = H (—aoar/8, coi)v
v in By
(34)
where the second equality follows from (14) and the last one from the Hilbert
product formula. Similarly

FijFyFy = H {(djk, Bre)v(dre, dej)v(dej, dir)w}- (35)

v in By

We shall show that each condition Fy;Fjr =1 and Fj; Fip Fyy = 1 is a Brauer-
Manin condition, as is Fj; = 1 when a;a; is a square.

Lemma 10 F;; = Fj; for each pair i,j and for all A X p in Y.
Proof. By (15) we have

FijFj; = L(By; dirdjediedji, ¢ij) = H(—aiaj, Cij)p (36)

where the product is taken over all primes p outside B; which divide ¢;;(A, u).
Such p must split in the splitting field of ¢;;(y, z), which is Q(y/—aia;); so
—a;a; is in Q}? and each factor on the right of (36) is equal to 1. O

Examination of special cases suggests that on X} all the F;; Fy, are equal,
as are all the Fj;Fy, Fi,. These two statements are equivalent. In Lemma 12
below we shall prove the stronger statement that the elements of Br(V')/Br(Q)
corresponding to any of the F;;Fy, coming from either pencil are equal. At
points at which all the F;;Fy, = 1, it is almost inevitable that the F;; F;; Fj,
coming from the two pencils should take the same value, but at points at
which Fj;Fy, = —1 there appears to be no relation between the values of the
F;jFip Fy for the two pencils.

Ideally we would like to be able to write down all the elements of order
2 in the Brauer group of the surface V given by (1), or, which is equivalent,
all quaternion Azumaya algebras on V. But since we do not know how to
do this, we fall back on the less ambitious objective of listing those elements
which it is easy to write down. For this purpose we have two obvious tools.
The first is the following general geometric lemma, which we shall use only
in the special case when k£ = Q and V is given by (1).
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Lemma 11 Let k be an algebraic number field and V any complete nonsin-
gular surface defined over k having points in every completion of k. Let
K = k(a'/?) be a quadratic extension of k. For any nonzero function f in
k(V) let A be the quaternion algebra whose norm form is

Z:—aZ? - fZ% +afZ2. (37)

Then A is Azumaya if and only if (f) = o' + 0" where ¥’ is a divisor on V
defined over K and 0" is its conjugate over k. Moreover, the class of A is in
Br(k) if and only if o' can be chosen to be principal. O

In practice, one starts by choosing 9’ so that ?' + 9” is principal. This
determines f up to multiplication by a constant, and for calculating the
Brauer-Manin obstruction the constant is unimportant because it corres-
ponds to varying the algebra whose norm form is (37) by a constant algebra.
Note also that if we replace 0’ by a divisor d) linearly equivalent to it, so
that 9, — o' is the divisor of g, + a'/2g3 where g, and g3 are in k(V'), then
fi = (¢2—ag?)f defines the same quaternion algebra and has divisor 9} + 7.
Thus it is actually only the class of ' which matters.

To apply the Lemma, we need to know the Néron-Severi group of V over Q
and over quadratic extensions. In what follows, we consider the applications
of Lemma 11 when aga;azas is a square; the case when this condition does
not hold is considered in §9. If there are no other relevent relations between
the a;, as is the case in particular for the first, second and fourth surfaces (3),
then we are in case 23 of Table 2 of [4]. If we denote by a or a® the divisor
of a typical curve of the family (7) or (8) respectively, and by 7 the divisor
of a plane section of V, then a + o® ~ 27 and in case 23 the classes of a
and 7« form a base for the Néron-Severi group. The circumstances in which
the Néron-Severi group has more than two generators are cases 1-22 of that
table; the third surface (3) is in case 21, the relevent additional condition
being a; = 4ag. For convenience, we shall continue to assume that none of
the —apa; are squares, which as we have already seen is equivalent to saying
that the dy; are irreducible over Q. Now take 82 = agajazas3 as in (13) and
assume that @ = apa;/6 is not a square in Q; then the Néron-Severi group
of V over K = Q(al/ 2) is strictly greater than it is over Q, an extra element
being the class of the divisor ¢, which is the union of the four lines

Xo=c*X,, Xs;=a'%/*X, (38)
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where ¢ = —ay/ag. If the Néron-Severi group over Q has only two generators,
quadratic extensions like K/Q are the only ones which give rise to an increase
in the Néron-Severi group. The four lines (38) and their. conjugates over
Q (which are obtained by inserting a minus sign into the second equation
(38)) belong to singular fibres of (7); changing the sign of 6 would give
us components of singular fibres of (8). Thus ¢} consists of a pair of non-
intersecting lines from each of two of the degenerate fibres (7).

Denote the divisor A = B = 0 by asp and so on. In the language of
Lemma 11 we can now take ' = ¢, — app, which gives f = cga(D, C)/D?.
Call the resulting algebra Ajy; then Ay has good reduction outside By, so that
the Brauer-Manin obstruction reduces to

> inv,(Ag) =0.

v in By

Replacing sums by products transforms the left hand side here into FgaFis
by (34); so we can interpret each condition F;;Fy, = 1 as a Brauer-Manin
obstruction. Permuting the subscripts apparently gives us six norm forms
(37), and we obtain another six by changing the sign of 8; but actually they
all come from the same algebra. For let ¢; be the union of the four lines

Xo=d*X;, X, =a?d'*X; (39)

where d = —a3/ay. Each of the lines (39) meets each of the lines (38); so
¢, + ¢ is the intersection of V' with a quadric, the latter being given by
X, X3 = a2 Xy X;. It follows easily that we can replace ?' by 0}, = acp — c}.
If we again use b to denote objects associated with the fibration (8) then we
can take fi = y*2/c3(v", 2*). Hence FyoFi3 = FyyFY,. Using symmetry, it
follows, as claimed above, that at any adelic point of V' the values of all the
F;jFy coming from either pencil are equal.

The second tool depends on the concept of the vertical part of the Brauer
group of a fibred surface 7 : V — P! defined over k. This was introduced in
[3]; it is defined as

Bryers(V) = Br(V) N 7*(Br(k(P1))).

These are the algebras which are constant on each irreducible fibre. For a
given fibration, Bryey is computable, and it is killed by 2 when V is given
by (1). For the time being, we suppose merely that V is fibred by curves of
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genus 1 and the singular fibres have no multiple components, and we take
t to be the parameter on P!. Without loss of generality, we can assume
that the fibre at ¢ = oo is non-singular. Let ¢y,...,¢. be a maximal set of
elements of Q such that no two ¢; are conjugate over Q and the fibre at t = ¢;
is reducible; let the W;; denote the absolutely irreducible components of the
fibre at t = t; and let K;; D Q(%;) be the least field of definition of W;;. In
the notation of [3] any element of order 2 in Brye(V)/Br(Q) can be written
as

ZiniCoresQ(t,. yQlos,t —t;) (40)

where each n; is 0 or 1 and o; is in Q(&)*/Q(¢;)*2. We can always force
n; = 1 by taking a; = 1 if necessary. For (40) to have good reduction at
t = t; and its conjugates, for each 7 with n; # 0 there must be elements
Coi, C1s of Q(¢;)(V) which do not vanish identically on any W;; but are such
that (& — 0;¢} vanishes identically on the fibre at ¢ = ¢;. If each W;; contains
a point defined over Kj;;, this is equivalent to requiring o; to be a square
in each K;;. For (40) to be an Azumaya algebra, it must also have good
reduction on the fibre at infinity; the condition for this is that

H_Normq(t‘.)/q(a?‘) is in Q*2. (41)
2

Now let f;, g; be homogeneous polynomials in Q[y, z] with f; irreducible and
deg g; even, such that

filt, 1) =0, a; = gi(t;, 1).

If B is the set of bad primes, in a sense which we leave the reader to supply,
then it follows from Lemma 7.2.1 of [2] that the Brauer-Manin condition
associated with the Azumaya algebra (40) is

Hi(L(B; fi,9:))" =1. (42)

This is the machinery which, as we shall see below, identifies the obstructions
FijFyy = 1 and FjFy Fyp = 1 with Brauer-Manin obstructions.

Lemma 12 Suppose that V is given by (1) with apaaza3 square and that
none of the —a;a; is a square. Then the group Brye(V)/Br(Q) for either
pencil (7) or (8) is non-cyclic of order 4. The intersection of the two groups
corresponding to (7) and (8) has order 2 and its nontrivial element is the
class of the Aqy defined above.
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Proof. Suppose initially that the fibration V — P! is that associated with the
pencil (7). In the notation of §2 we can now take ¢ = y/z; and we number
the t; so that dy;i(¢;,1) = 0. For fixed ¢ there are four W;;, each of which
is a straight line; and the four fields K;; are all equal and are biquadratic
extensions of Q(¢;). Explicitly, if we write u; = (—aga;)~%/2 then

t1 =, Ki; = Q(u1, vVa1asb, \/a1u1);
ty = (r — azuz) /a5, Ky = Q(uz, vVaqa19, \/azuz);
ts = (—a15 + Ous)/agarr, Ksj = Q(us, vazaz0, \/asus).

Thus for example ¢; in (40) must have the value 1,a1a36, a1u; or azu,0. It
only remains to satisfy the condition (41). This is satisfied by any one of the
three elements

Coresqq)/q(aiarf, t — t;) (43)

where 1, 7, k is a cyclic permutation of 1,2,3. By (42) and (34), the corres-
ponding Brauer-Manin condition is Fp; Fj; = 1. In looking for the remaining
elements of a base for Brye: we can restrict each «; to take the value 1 or
a;u;, with not all o; being 1. Now we always obtain the additional possibility

Z_CoresQ(t,.)/Q (aiui, t — t;); (44)
T
and if for example apa, is a square we also have

Coresqq,)/q(a1u1,t — t1) (45)

But the value of —dgzdy2 at (#1,1) is 4(apru; + 8)%aju; and therefore the
Brauer-Manin condition associated with (45) is Fo3 = 1. Similarly the con-
dition associated with (44) is Fy3F31F13 = 1. Thus the Brauer-Manin con-
ditions arising from the elements of Brye are just the obstructions already
obtained at the beginning of this section.

We have already seen that .4y belongs to Bryet, and by comparing the
induced obstructions we see that Ay must be equal to (43) with i = 2.
But permutation of subscripts and replacing the pencil (7) by the pencil
(8) are both operations which leave the class of Ay unchanged; so the three
algebras (43) and the corresponding algebras associated with (8) all lie in
the same class in Br(V)/Br(Q). It only remains to show that in general the
algebra corresponding to (44) for (8) is not in the Bryy associated with (7).
But if it were, this would still be true if ag, a;,a2 and @ were independent
transcendentals over Q and we worked over K = Q(ao, a1, az, ) instead of
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over Q. If this algebra was in the class of the algebra corresponding to (44)
for (7), then for any ag, ay, az, 0 in Q* the values of the Fi3Fy3F3; associated
with the pencils (7) and (8) would be equal, and we shall see below that this
is untrue for (49). If instead the classes of the algebras corresponding to (44)
for (7) and (8) are different then they must differ by the class of Ay, and for
any ag, a1, az, 8 in Q* the values of F5Fy3F3, for one pencil and of Fy; Foz Fy3
for the other would be equal. This fails for (52). O

It may appear surprising, particularly in view of the terminology, that
there can be a non-constant algebra which belongs to Brye for more than
one fibration. Indeed, the fact that the two systems of fibres cross creates a
large subset of V on which A, is constant; but this subset need not be the
whole of V. For example, on the surface (52) the 3-adic points of a fibre of
either system lie either all in 3|X, or all in 3|Xj;.

7. The special surfaces (3). In this section, we apply the methodology
outlined at the beginning of the previous section to the first, second and
fourth of the surfaces (3). For each of these surfaces, we are able to choose
the pencil (7) so that B; = By. Because of its special features, we postpone
consideration of the third surface (3) to §8.

The first of the surfaces (3) is

4X) +9X; = 8X5 +8X; (46)

and we have By = {2,3,00}. It is easy to see that all primitive solutions
must satisfy 4| X, and 2|| X}, with X5, X3 odd. Similarly, none of X, X> and
X3 can be divisible by 3. We can take the formulation (6) to be

A(XG + X3F + X3)(X§ — X3 — X3)
= —(3X2 — 2X2 + 2X2)(3X2 + 2X2 — 2X2);

thus the pencil (7) can be taken in the form

2y(XZ + X2+ X2) + 2(3X2 — 2X2 + 2X2) =0, } (47)

y(3X2 +2X2 —2X2)—22(X2 - X2 -X2)=0.
Now the d;; are given by
dor = 6(y* + 2%), dos = —8(y® + 2?),
doz = 4(y? + 2yz — 2?), ds1 = 6(y® + 2yz — 2?),
dos = —4(y? — 2yz — 2%),  dia = —6(y% — 2yz — 22).
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In R we have c; > ¢; > c3, so (47) is soluble in R. if and only if mJ > 0 in
the notation of (23); this is equivalent to

v+ 2yz — 22 = (y+2)? — 222 <. (48)

For solubility in Q, the statements above for the X; imply that ¥y = z mod 4,
whence W, is generated by the classes of the three triples like (24), together
with the class of (5,7,3). But m{ is in Q32, so that for (47) to be soluble in
Q; is equivalent to mJ being in Q%2, and therefore to 4||(y — z). Similarly W,
is generated by the classes of the three triples like (24). But m3 and mJ are
both divisible by odd powers of 3, so m{ is in —Q%? and m3 is in 3Q}? and
hence 3|z. Now all the F;; Fy, = 1 on &g, but all the Fj; Fj; Fi; = —1 there; so
(46) is insoluble. We could have used the pencil (8) instead of (7); but the
effect of this would simply be to interchange the roles of X, and X3, and the
subsequent argument would be essentially the same.
The second surface (3) is

2X¢ +9X;] = 6X; +12X;, (49)

for which again By = {2, 3, c0}. All primitive solutions must have Xjp, X5, X3
odd and 2||X;; and 3|X, but X3, X3 are prime to 3. We can take the formu-
lation (6) to be

2(X2 — X2 -2X2)(X2+ X2 +2X3)
= —(3X? — 2X2 + 2X3)(3X2 + 2X? — 2X3);

thus the pencil (7) can be taken in the form

2y(X3E — X2 -2X2)+ 2(3X2 —2X2 +2X2) =0, } (50)

y(8X? +2X2 - 2X3) — 2(X2+ X2 +2X2) =0.
Now the d;; are given by
d01 = 3(2y2 + 22), d23 = 6(2y2 + 22),
doz = 2(2y? — 2yz — 2?), ds; = —6(2y% — 2yz — 2?),
dos = —2(2y% +4yz — 2%),  di2 = 3(2y% + 4yz — 2?).

Arguments similar to those which we used for (47) show that (50) is soluble
in R if and only if m3 > 0, which is to say

20 +4yz — 22 =2(y+2)* — 322 > 0.
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For solubility in Q. the statements above for the X; imply that y + z =
0 mod 4; and a full analysis shows that this condition is sufficient -as well
as necessary. The analysis of solubility in Q3 is more tedious. Wj is again
generated by the classes of the three triples like (24); this is the same as
saying that m; is in Q32 or 3Q3}2 and m; is in Q}? or 6Q3%. But

md = —18{3y* — (y + 2)®}{2(y + 2)* — 32%}, (51)
so 3/(y + z) and consideration of mJ shows that
2y% + 2? is in Q3?2 or 6Q37;

this incidentally implies that 3 fz. Now all the F;;Fy, = —1 on &p, and all
the Fi;jFixFyy = —1 there; so (49) is insoluble.
We could instead have used the pencil (8), which it is convenient to write
in the form
—2y(X3% + X2 +2X2)+2(3X2 — 2X2 +2X32) =0,
y(3XZ+2XZ —2X2)+2(X¢ - X2 -2X32)=0.

Now the d;; are given by

dor = —3(2y% + 2?), dos = 6(2y% + 2%),
doa = —2(20° — 2yz — 2%),  dm = —6(2% — 2yz — 2?),
dos = 2(2¢° + 4yz — 22), diz = 3(2y% + dyz — 22),

the difference from the values derived from (50) being that the signs-of the
do; have been reversed. Solubility in R now requires

2 —2yz— 22 =3 — (y+2)° <0

and solubility in Q, requires 2y + z = 0 mod 8. The condition that m should
be in Wj is that m; should be in Q32 or 6Q%2 and m; should be in Q42 or 3Q%2;
since (51) still holds, we again have 3 f(y + z), but this time consideration of
m3 shows that
2y% + 2% is in Q32 or 3Q32
whence again 3 /z. Again all the F;;Fy, = —1 on A}, but this time all the
FjFypFy = 1.
The fourth surface (3) is

X5+ 8X{ =9X; +14X; (52)
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for which By = {2, 3,7,00}. All primitive solutions have Xp, X2, X3 odd and
X, even; and either 3| Xy, 9|(X2+2X2) or 3| X3, 9|(XZ+2X2). We can take
the formulation (6) to be

(TX2 + 4X2 + 9X2)(TX2 + 4X2 — 9X2)
= —14(X2 — 2X2 + 3X2)(X2 — 2X? — 3X32);

thus the pencil (7) can be taken in the form

y(TXE+4X2 +9X3) + T2(XZ — 2X?2 +3X2) =0, }

2y(X2 — 2X2? — 3X2) — 2(7X2 + 4X? — 9X2) = 0. (53)

Now the d;; are given by

dor = —18(2y” + 72%), das = —27(2y° + 72?),
d02 = —9(2y2 — 14y2 - 722), d31 = 12(2.7!2 - 14y2 - 722)7
dos = —21(2¢°% + dyz — 72%),  dip = 18(2y® -+ dyz — 722).

In R we have c3 > ¢; > c3, so (53) is soluble in R if and only if m9 > 0 in
the notation of (23); this is equivalent to

20 + dyz — 722 =2(y + 2)2 — 922 < 0.

For solubility in Q. the statements above for the X; imply that 2||z. Hence
25||mg, 2%||m3, 2%||m3 and comparison with W, implies that m? is in 2Q3?
and mj in 10Q32 or m? is in 6Q3? and m3 in 2Q32. Consideration of d;; and.
do3 shows that only the first case is possible, and that 2y = z mod 8. Again,
the statements above for the X; imply that if 3| X, then 9|(z — 2y), whereas
if 3| X3 then 9|(y + 2); and m in W is equivalent to m; in Qf? or 3Q}? and
my in Q32 or 6Q32. Now if 9|(z — 2y) then 2y® + 4yz — 72? is in Q32 and
2y% + 72% in 3Q}2, and hence 2y? — 14yz — 72% must be in 2Q3? or 6Q}Z; but
if 9|(y + z) then 2y% + 4yz — 72% is in 2Q3? and 2y® — 14yz — 7z% in Q3?, and
hence 2y? + 722 must be in Q32 or 6Q32. Finally, m in Wy is equivalent to
m? in Q}? and hence to 7|y. Now all the F};Fy, are equal to 1 if 9|(z — 2y)
and to —1 if 9|(y + z); and in either case all the Fj;FixF; = 1. Thus we
have a failure of weak approximation, in that (52) has no primitive solutions
with 3|X5. On the other hand, Theorem 2 shows that it does have primitive
solutions with 3|X,. To find one, we can proceed as follows. On the part of
Xp on which 9|(z — 2y) we have

Fon = (=2,9)2(7,2)7,  Fos = (=2, 4)2(~1, 2)co- (54)
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Thus Fy; = Fy3 = 1 is an additional condition on X. It follows from Lemma 2
that Condition D holds. The larger geometric 2-Selmer group has order 2°; its
quotient by the subgroup generated by m° and the triples like (24) consists of
the classes generated by (1,1,1), (1, —7do, —7do1), (—42do2, 1, —42dp2) and
(42dy3,42dg3, 1). The simplest way to proceed is to require that each dy; is
(up to sign) the product of a prime py; and powers of primes from B;, and
that none of these last three triples lies in Gy. For (1, —7dp;, —7dp;) not to
lie in G, for example, is equivalent to —7dy; being a quadratic non-residue
modpgy or modpys. The six conditions arising in this way are equivalent on
X and each of them reduces to (2,y)2 = 1. Combining this with (54) and
reversing the signs of y, z if necessary, we find that we need

y=1mod8, zin Q, z>0.

An easy search program yields pairs (y, z) which satisfy all these conditions;
there are just three such pairs with |y| and |z| less than 500, and they are

(—7,58), (161,394) and (—175,442).

In each of these cases, standard conjectures imply that (53) is soluble in
Z, that the Mordell-Weil group of its Jacobian has rank 1 and that a non-
trivial point on the Jacobian is given by Heegner’s recipe. This recipe is
constructive, but the calculations involved are excessively lengthy. However,
the Jacobian of the curve derived from the first of these pairs can be handled
by one of the standard packages for elliptic curves. In this way we obtain the

solution
(5145, 18832, 11843, 15623)

of (52).
We could instead have used the pencil (8), which it is convenient to write
in the form
Y(TX2 + AX2 + 9X2) + T2(X2 — 2X? — 3X2) = 0,
2(XZ — 2X? + 3X2) — 2(TX2 + 4X? — 9X2) = 0.

Now the d;; are given by

do1 = —18(2¢% + 722), dys = 272y + 72%),
do2 = —9(2y? — 14yz — 72%), ds; = —12(2y% — 14yz — 722),
dos = 21(2y° + dyz — 72%), dia = 18(2y° + 4yz — 72%),
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the difference from the values derived from (53) being that the signs of the
d;3 have been reversed. Solubility in R now requires

% —14yz — 722 =9 —T(y+2)* <0

and solubility in Qs requires 4||z. This time, if 3| X, then 9|(y — 2z) whereas
if 3| X3 then 9|(y + 2); and m in W; is equivalent to m; in Q3* or 6Q3* and
mgy in Q32 or 3Q%2. If 9|(y — 22) then 2y® + 4yz — 722 is in Q42 and 2y® + 722
in 6Q32, and hence 2y? — 14yz — 722 is in 2Q%? or 3Q3?; but if 9|(y + z) then
2y? + 4yz — 722 is in 2Q}? and 2y® — 14yz — 722 in Q}?, and hence 2y + 722
is in Q3% or 3Q4%. Finally, direct calculation shows that solubility in Qg
requires 7|y or 7|(y + 2z). By considering W7 we see that if 7|y then m is in

32, whence m{ is divisible by an even power of 7 and so 2y® + 4yz — 72% is
divisible by an-odd power of 7; but if 7|(y + 2z) then m] is in —Q}?, whence
mY is divisible by an odd power of 7 and so is 2y + 4yz — 7z%. Now all
the Fj;Fy, are equal to 1 if 9{(y — 22) and to —1 if 9|(y + z); and all the
FijFiFyy = 1.

8. The case a; = 4ay. This is one of the simplest cases in which the Néron-
Severi group has rank greater than 2, and we treat it in greater depth. For
the reader’s convenience, a brief introduction is followed by three subsections.
The first of these applies the ideas of §§3-5 to prove all but the last sentence
of Theorem 1. The second proves the last sentence of Theorem 1, and its
Corollary, using the second descent algorithm of Cassels as described at the
end of §5. The third is primarily concerned with the geometry.

The most general surface (1) with apajazas square and a; = 4ag can be
written in the form

X4+ 4X} = du* X3 + duw® X} (55)

where d is fourth-power-free and u, w are square-free, positive and coprime.
In accordance with our standard requirement that no —a;a; is a square, we
shall assume that d is not a square. We shall also assume that neither duw
nor uw is in 2Q*2, since otherwise the rank of the Néron-Severi group of (55)
would exceed 3. The set By consists of 2, co and the odd primes which divide
duw. Write d = r2 + s where r, s are not divisible by any odd prime factor
of d; then we can take the formulation (6) to be

(X2 +urX2+ wsX2) (X2 — urX? — wsX2)
= —(2X2 + usX? — wrX2)(2X? — usX? + wrX?).
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The pencil (7) now takes the form

y(X2 + urX? + wsX?) + 2(2X2 + usX? —wrX2) =0, (56)
y(2X}? — usXZ + wrX?) — 2(XE — urX2 —wsX?) =0.

As in §6, we shall write 7 for the class of a plane section of (55), and a for
the class of a curve (56); and we shall write by = m — af. The pencil (8) can
be obtained from (56) by interchanging r and s, v and w, and X, and Xj,
and the class of any curve in this pencil is 7 + b;. The d;; for (56) are given
by

do1 = 2(y? + 22), das = duw(y? + 22),
do2 = —u(sy? — 2ryz — s22),  ds; = 2w(sy® — 2ryz — s2?),
dos = w(ry? + 2syz — rz%), diz = —2u(ry® + 2syz — r2?).

For convenience we shall write
Co1 = y2 + 22, o = sy2 — 2ryz — 522, co3 = 'ryz + 2syz — r22.

Here B; is the same as By. To obtain B we have to adjoin p = 3 if 3|rs and
p = 5 if 5|rs; for in each of these cases p will divide the value of one of the
co; whatever the values of 7, s.

We note the curious fact that F33 = 1 identically; for the identity

cozcos = 4yz(sy — r2)? + (y° + 2%)(rsy® — 2dyz + rsz?)

implies
F23 = L(—d03d13, 001) = L(2yz,y2 + 22) =1.
Thus the additional Brauer-Manin condition associated with aga; being a
square is now trivial.
To avoid an intolerable profusion of cases, we shall henceforth assume
that u=w =1.

8.1 The first descent. After a change of variables if necessary, we can assume
that 4 /d. Local solubility requires that d > 0, that d = 1,2,5 or 10 mod 16
and that d is not divisible by any prime p = 3 mod 4. In R we have ¢z >
1 > ¢z, 80 (56) is soluble in R if and only if m3 > 0 in the notation of (23);
this is equivalent to

cos = ry* + 2syz — r2% < 0. (57)
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The conditions for solubility in Q; are obtained in the same way as in the
examples in §7, though one has to consider separately the possible classes for
d in Q*/Q*. The results are given in the following table, in which d is an
element of Q*/Q** and the m? are elements of Q*/Q*2:

d rules for 7, s m) md mJ
1 4r,8(s—1)  1,2,7,14 2 1,2,7,14
571014 1,236 14
5 2||r, 8[(s — 1) 2,14 10 3,5
10,14 5,7 6
2,18 4|(r —1),8|(r — 3) 1 1 1
10,26 8|(r — 1),8|(s — 5) 5 7 3

Here the first and third rows correspond to X» odd and 4|(y + z), the second
and fourth to X3 odd and 2|y, the fifth to 4|(y + 2) and the sixth to 4|(y — z).

Now let p = 1 mod 4 be an odd prime which divides d, and define v by
p’||d. If Xo,X; are not divisible by p then it follows from (55) that

(rXz — 2sX2)(rX2 + 2sX?) = 0 mod p*;
and (56) implies that
y(rX2 - 2sX? +dX2) + 2(s X3 +2r X} — dX3) = 0.

If p*|(r X3 +2sX2) then also p*|(sXZ—2rX?) and so p*|(ry+sz). If conversely
p|(ry + s2) then it follows from the first equation (56) that p|(sXg — 2rX?);
so p*|(rXZ — 2sX?) implies p{(ry + sz) and therefore p*|(ry — sz). If Xy, X3
are divisible by p, which can only happen if p = 1 mod 8, then similarly

p*|(rX2 — sX2) implies p*|(ry + sz) where p = min(2,v); on the other
hand, p*~*|(r X2 + sX2) implies p* /(ry + sz) where A = max(1,v —1). But

rsm? = —4{dy® — (ry + s2)*H{(ry + s2)* — d2*}

and we have just shown that the two terms inside either curly bracket cannot
be divisible by the same power of p. Since also 2rs = (r+s)? mod p, it follows
that m{ is in 2Q*2 If p= 5 mod 8 then W, is generated by the three triples
like (24) and it follows that one of mj and m§ is in dQ}? and the other is
in 2dQ ; but if p = 1 mod 8 it can be shown that solublhty in Q, yields no
further 1nformat10n about m3 and mJ.
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The obstructions imposed by Fp1Fo3 = 1 and Fyy FooFps = 1 can be
calculated by means of (34) and (35). In the first condition, the contribution
from v = oo is 1, while the contribution from v = 2 is 1 if 8|(y+ z) or4|y and
—1 otherwise. If p is an odd prime which divides d, then the contribution
fromv =pis1ifp =1 mod 8 orif p = 5 mod 8 and (y2+22) is divisible by an
even power of p, and —1 otherwise. It can now be verified that the only case
in which Fy, Fo3 = —1 for all allowable y, 2z is when d = 2 mod 16, no prime
p = 5 mod 8 divides d to an odd power and r = 5 mod 8. The smallest such
example is when d = 34. There is in general more than one way of writing
d as r2 + s%; but let d = 2]] ¢, where the g, are prime powers coprime to
each other and g, = 72 + s2 with r,, s, prime to g,. Then 7 = 5 mod 8 if and
only if the number of g, with r, + s, = 5 mod 8 is odd. As to the second
condition, the contribution to (35) from v = oo is 1 and that from v =21is 1
if d=1 or 2mod 16 and —1 otherwise. The contribution from v = p with p
odd is —1 if p = 5 mod 8 and p”||d with v odd; and it is 1 in all other cases.
Hence Fy FyaFy3 = 1 always. Using (18) we can obtain, with a slight abuse
of notation

Fop = L(=2dr,9)[[ . {(ry+sz,d)y (v, —1)u (~2y(ry + s2), sce2)s}-

v in B
It follows that (in the topology induced by B) it does not depend continuously
on y/z alone. Hence it cannot provide a decisive obstruction to solubility. As
for Condition D or E, an argument like that in the proof of Lemma 2 shows
that if d is not in +Q*? or +:2Q*? then the kernel of @dy;; has just one extra
generator, which can be taken to be (2,2, 1). The corresponding 2-covering is
insoluble at some place in B if and only if d is even or d is divisible to an odd
power by some prime p = 5 mod 8; in this case Condition E holds, though
Condition D does not. This proves all but the last sentence of Theorem 1.

8.2 The second descent. If the 2-covering corresponding to (2,2,1) is soluble
at every place of B, then we can draw no conclusion from a first descent;
however, we can use the ideas of Cassels [1], as outlined at the end of §5, to
perform a second descent. Here we have d = 1 mod 16 and d is not divisible
to an odd power by any p = 5 mod 8; and we wish to prove, under some
additional conditions, that I" is insoluble.

It follows from

X5 +4X{ = (XZ +2Xo X, + 2X3)(XE — 2Xo X, +2X3),
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where each factor on the right must be congruent to 1 mod 8 because it
divides X3 + X3, that 4]|X;. It is clearly enough to look for solutions with
X3 even. Now elementary algebra shows that. -

8/(y+2), co=2mod16, co3=—2mod 16;

moreover if 2| X3 then 4||r and ¢y = —8 mod 64, whereas if 4|X; then 8|r
and 25%|cga.

Let n x ¢ be any element of Y satisfying the conditions of the Corollary
to Lemma 5. If we take m* to be (2,2,1), we can choose the P,-rl as follows:

P} has Z=&(n* +(?), Zs = 26s(n* + (?) where & —2£ =d,
P! has Z3;=0,2, = sn? — 2rn¢ — sC2,
P! has Z; =0,2, =rn® + 2sn( — r(>.

The eventual value of <m#, m® > will not depend on the choice of &, &. The
corresponding L! can be taken to be

L} = 26,2, — 2325 — 2d(n® + ?),

Ik = 7, — (sn? — 2rn¢ — 5C?),

LY = Z, — (ri? + 2sm¢ — 7C2).
We now take m” = m® and evaluate <m!, m’ > by means of (33). For the
rest of this paragraph and the whole of the next one, the arguments of the
co; and m{ will be either y, z or 7, according to context. The conditions

which we shall impose on the points Q¥, and the resulting contributions to
the product (33), are as follows.

Quz = ng = (—co2(n, C),dl/ZCol(n, C),O),

the contribution from v = 0o is (&3, ¢p2)0e and the contribution from v = 2 is
(—2(d"2&; — d),m)2 (2c03(d"*cor — cos), mY)2 (58)

where d'/2 can take either value in Q,. Changing the value of d'/2 reverses
the sign of each factor in (58); if we take d/2 = 1 mod 8 then the second
factor reduces to (3,m3)2. If p|d and p = 1 mod 8 then we can take each
p?Z; to be a p-adic unit and the contribution to the product is 1. If p|d and
p = 5 mod 8 then p?||d. Now we can take

Zy = =&en(m,€),  Zs = 2&sco1(m, €)
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because p|és and we can deduce from
che + cg3 = dcgy (59)

and the known properties of the m{ that cy; is divisible by at least as high a
power of p as cgz or cg3. Hence the contribution to the product from such p
is 1.

For odd primes p which do not divide d, we take

Zy = —&acq1(n,€), Zs = —2&sc1(n, ) if pleor(n, C),

and since by Lemma 5 solubility of I' in Q,, implies that either cp; is divisible
by an even power of p or 2 is in Q;z, the contribution to the product (33) is
1. Finally

Q! = (—co2(m,¢),d"%cor(n, €),0) if pl(coa(m: ¢)cos(n, ¢))-

This last choice is allowable because (59) shows that d'/? is in Q, for such
primes. It will be convenient to take ¢, j to be 2,3 in some order, determined
by the condition that p|ce;(n, (). It now follows from Lemma 5 that for the
2-covering corresponding to m® to be soluble in Q, requires that if cp;(7, ) is
divisible by an odd power of p then 2 is in Q32 if p|coz and —2 is in Q;? if plegs.
Now let S be the union of B and the odd primes which divide £3; the reason
for introducing S is that, for example, the resultant of &scos + dcgr and coz is
—8d2¢2 which is a unit outside S. If also p is in S\ B, the contribution to the
product (33) from p reduces to (—2, co2)p if 4 = 2 and pf(2€scos + dcer), and
1 in all other cases. If p is not in S then the contribution is (&dY/2 — d, cg:),
where we choose that value of d*/2 which is congruent to —co;/co1 mod p; and
this is equal to

(—Co1 (77, C)(szoJ' (777 C) + dcoy (77, C)), COi(ﬂ, C))p-

The product of the contributions from the primes not in & is therefore
L(S; —co1, cozco3) L(S; €203 + degr, coz) L(S; €202 + deor, co3)  (60)
Now write

fi=&cos +deor, fo=cor, p=n—C(, 0=n+¢
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in (18); the factors coming from the primes in S \ B are trivial, and using
the fact that the right hand side of (35) is equal to 1 we obtain

L(S; &2¢03 + deoy, co2) L(S; &acoz + deopr, co3)
= ]._.[v in s{( co1, —2)v (Co2, Co3)v (deor(€2cor + coz2 + Co3), Co2€03)w }-

If p is in &\ B the corresponding factor on the right is equal to the product of
the factor from L(S; —co1, co2cos) and the additional factor (—2, co2), when
plcoz and pf(€2co3+dcor); so we can transfer these factors to L(S; —cor, coz2co3),
thereby turning it into L(B; —co1, co2¢g3). Thus the contribution to (33) from
primes outside B reduces to

Hv o B{(—Con —2)y (o2, c03)v (—d(&2cor + co2 + Co3), Co2C03) o }-

Bearing in mind the fact that p = 5 mod 8 implies p|¢,, it can be shown that
the factor corresponding to an odd prime p is 1. The factor corresponding to
v =00 is —(—&2, —€p2) oo (—1, C02) o0, and the product of this with the earlier
factor (&2, co2)o0 18 (—1,&2)00- Similarly we multiply the factor corresponding
to v = 2 by (58). The resulting expression reduces to €(£2, —2); where e = 1
if 2°|cy2 and € = —1 otherwise. Hence there are no solutions with 2||X; if
|€&2| = 1 or 3 mod 8, and no solutions with 4|Xj if |€2| = 5 or 7 mod 8. This
is just what is claimed in the last sentence of Theorem 1.

We can transform this last statement in an interesting way; for the equa-
tion (4) with d = &2 — 2¢2 can be written

X3 +4X} = WZ — 2W}
where
Wo = &(X3 + X2) + 26 X2 X3, Wi =8&(X2 +X3) + &Xa X3

and the assertion becomes that, under constraints corresponding to the pre-
vious ones, there are no solutions with {Wy| = 5 or 7 mod 8. All these con-
straints can be dropped other than the condition that no prime p = 7 mod 8
divides both Wy and W;. This easily translates into the same condition on
Xo and X3, and this proves the Corollary to Theorem 1.

8.3 Geometric aspects. The Néron-Severi group of (55) has an extra gener-
ator, the class of which we shall denote by a' — bs; it is given by the union
of the four lines

Xo=01-9X1, X;==(w/u)2X,
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and

Xo= 140Xy, X;=+(—iw/u)/?X,.
This union consists of a pair of intersecting lines from each of two degenerate
fibres of the pencil (56). Subject to the hypotheses already made, any divisor

class on (55) defined over Q has the form-r = zom + 21b1 + z2b2 for some
integers xg, 1, Z2; it has degree 4z and self-intersection number

(- 1) = 4(z§ — 21 — 23).

In particular, the class r is effective and represents a pencil of curves of genus
1 if and only if

9>0, z2—22—22=0, (z0,21,22)=1
where the last bracket denotes the highest common factor. In particular, we
have four such pencils of degree 4, given by 7 £ b; and 7 &+ by; the first two
of these we have already considered.
The general curve of the pencil 7 + by has the form

G(XZ — 2X2 + ruX? + swX?) + 2(2Xo X1 — suXZ +rwX3) =0,
9(—2Xo Xy — suX? +rwX2) + 2(XZ — 2X? — ruX? - swX3)=0.

(61)

In contrast with what happens for 7 & by, the two pencils 7 &+ b, are iso-

morphic, each being taken into the other by the involution of (55) which:
changes the sign of X;,. In what follows, we shall for convenience write

G =rij* — 2592 — 3%, H = s> + 2rijz — s3°,
and note that G? + H? = d(¢* + 2%)?. The Jacobian of (61) is
Y? = X(X? - 2uwGHX + «*w*(G? + 2H?)(2G? + H?)) (62)
where we have written
X =u}(G? +2HY)X2/XZ, Y =4 + 2*)(G* + 2H?) Xo(XE + 2X7)/ X3.

The second factor on the right in (62) splits in the field Q(~/—2), which
does not depend on the value of §/2; so it would be possible to investigate
this pencil by methods rather like those of this paper, but we see no benefit
in doing so. Two of the singular fibres of (61) are given by 4 + 22 = 0;
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and this holds automatically because G2+ H? is a multiple of §?+22. Similar
remarks apply when 7 = 3.
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each of them is a skew quadrilateral, each of whose lines is defined over
Q(i, v2uw). Of the eight other singular fibres, four are given by 2G>+ H? = 0
or equivalently

g(s—rv=-2)+2(r+svV-2++v-d)=0 (63)
and the other four by G? + 2H? = 0 or equivalently
G(r—sv-2)=2%(s+rv-24++v—-d)=0. (64)

Each of these eight consists of a pair of conics having two points in common,;
the least field of definition of each conic is Q(v/—2, v/ —d).

As we did for (10), we can now deduce the Mordell-Weil group of (62) over
C(9, 2) from the fact that the Néron-Severi group of (1) over C is spanned
by the classes of the 48 lines. Any line for which X5/Xj or X3/X, is.constant
meets each curve of the pencil (61) once and therefore defines a section. It
turns out that the Mordell-Weil group of (62) has rank 4, and its torsion
subgroup is generated by the 2-division points. The values of X listed below
give 4 independent points:

X = GH++/—d(§ + %) (G + H),

X = (G+ (@ +2)W-d)(H + (i + 22)vV—d),
X = i(2G?* + H?),

X = i(G*+2H?).

The first two points in this table are defined over Q(v/—d, v2uw) and the
last two are defined over Q(%,v/2uw).

We can use the methods of §6 to find the group Bry. associated with the
pencil (61). Write ¢ = §j/Z, and let 2,3 be the values of ¢ coming from (63),
(64) respectively. Then Brye is generated by the two elements

Coresq(y)/q(V—d,t —t;) (65)

for i = 2,3. At (t2,1) we have G = (9% + 2%)v/—d and there is a similar
identity at (¢3, 1); thus in the notation of (42) we can take

f2('g, 2) = 2G2 + Hz) .92(:0,2 = C;'(:lj2 + 22),
f3(§,2) = G? + 2H?, g4(7,2) = H(§ + 7).

Thus the obstruction associated with (65) for i = 2 has the form
L(B;2G* + H*, * + %) =1,
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