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1 Introduction

This paper is concerned with the following question: Which Diophantine equa-
tions

k13
> aXP=0 (ai€ Z\{0}) (1)
i=1
have non-zero integer solutions? For large values of n the issue may be settled
by the Hardy-Littlewood circle method. Thus for n > 9 the methods of Hardy
and Littlewood [11] suffice to show that solutions necessarily exist. Indeed their
techniques permit one to establish an asymptotic formula for the number of
solutions in a large cube | X;| < P, the main term taking the form cP™~3 with a
positive constant c. When n = 8 the existence of solutions follows immediately
from the method of Davenport [7], as was first remarked by Davenport and Lewis
[8]. The proof of the corresponding asymptotic formula is distinctly harder
however, and is due to Vaughan [20]. The existence problem for n = 7 was
solved by Baker [1] using methods of Vaughan [20]. However the asymptotic
formula in this case remains to be established. None the less it seems likely
that ideas of Vaughan [21] would lead to a lower bound of the correct order of
magnitude. Moreover Hooley [12] has given a conditional approach, requiring
the analytic continuation and Riemann hypothesis for Hasse-Weil L-functions
of certain cubic 3-folds, which would yield the expected asymptotic formula.
For smaller values of n there are few unconditional existence results of sub-
stance. It should be stresssed that for n > 7 the equation (1) always has non-zero
solutions in every p-adic field, by a result of Lewis [13]. However, even for n = 6
this is no longer true, as one sees from the example

(@1 — ka3) + p(af — kzf) +p*(ad - kz§) = 0,

where p = 1(mod 6) is a prime, and & is a cubic non-residue of p. Thus for
n < 6 one may ask whether there is a Hasse Principle; that is to say, whether
(1) has non-zero integer solutions whenever it has such solutions in every p-adic



field. This is indeed conjectured to be the case when n =5 or 6, but for n = 3
and 4 there are well known counterexamples, including the equations

3z3 + 423 + 523 =0

and
5z3 + 9z3 + 10z3 + 1223 =0

of Selmer [17], and Cassels and Guy [5], respectively. All known examples of
this type are explained by the Manin obstruction. For our particular problem,
in the case n = 4, the reader is referred to the comprehensive treatment of
the Manin obstruction given by Colliot-Théléne, Kanevsky and Sansuc [6]. Of
special relevence to us will be the corollary to Proposition 2 of [6], which states
that, for equation (1) with n = 4 and cube-free coefficients a;, the Manin ob-
struction is empty unless every prime factor of a;aza3a4 divides at least two of
the coefficients a;. In particular the Manin obstruction is empty when a;asazaq
is square-free.

For n = 3 the curve (1) has genus 1, and the theory of elliptic curves can be
brought to bear on the problem. None the less there are very few unconditional
results predicting the existence of solutions. A notable example is Proposi-
tion 3.3 of Satgé [15], which shows that

X34+ 2X3 +pX3=0

has non-zero integer solutions for every prime p = 2(mod 9). Conditionally
however the situation for n = 3 is well understood. In particular Manin [14] has
shown that the Manin obstruction is the only obstruction to the Hasse principle,
providing that the Tate-Shafarevich group is finite.

The aim of this paper is to make some modest progress with the cases n =4
and n = 5. In order to describe our results we introduce a little nomeclature.
We shall make use of properties of the rational elliptic curves

E(4): X3+Y =4

We shall denote the arithmetic rank of this curve by r(A), and its analytic
rank by R{A). The latter is the order of vanishing of the associated L-function,
Lg(a)(s), at the point s = 1. This L-function is essentially a Hecke L-function
with Grossencharacters. Specifically we have

1 A a —s
Lpay(s - 5) = L(s;4) = aezz:[w](g)3wN(a) )

where w is a primitive cube root of 1, and X* indicates that « is restricted to
the congruence class 1 (mod 3). We shall also use the ‘Selmer rank’ s(A), which
will be described more fully in §2. It will be convenient to record the following
relations between these ranks. We have

r(4) < s(4) (2)



as the descent process shows, and

R(A) = s(4) (mod 2) (3)
as was shown in this particular case by Stephens [18]. We also have

r(4) > 1 if R(4)=1, (4)

by the result of Gross and Zagier [10], since E(A) is modular.
Our first result depends on the following well-known conjecture.

Hypothesis 1 (Selmer Conjecture.) We have r(A) = s(A) (mod 2).

According to (3) this is equivalent to the assertion that r(A) = R(A) (mod 2).
It is known (Cassels [4]) that the Selmer Conjecture holds providing that the
Tate-Shafarevich group is finite.

We may now state our first result.

Theorem 1 Let p1,p2, 3,4 = 2 (mod 3) be primes. Then

4
Y pX}=0
i=1

has non-zero integral solutions, providing that the Selmer Conjecture holds.

There are a variety of weakenings of the Selmer Conjecture that would suf-
fice, for example one need only require that r(A) = 1 whenever s(4) = 1.
Moreover there are various rather different conditions under which.the conclu-
sion of Theorem 1 holds. Thus, for example, we have the following.

Hypothesis 2 (Triple Zeros Conjecture.) For a fized integer A the number
of primes p < N for which R(Ap) > 3 is o(N/logN) as N — co.

(It should be observed that this is a conjecture whose plausibility is not univer-
sally accepted!)

Theorem 2 Let p1,p2,p3,P4 = 2(mod 3) be primes. Then

4
> omXi=0
i=1

has non-zero integral solutions, providing that the Triple Zeros Conjecture holds.

It is easy to verify that the equations in Theorems 1 and 2 are everywhere locally
solvable, and as remarked above, there is no Manin obstruction.

Turning to equations in 5 variables, we are able to establish the existence of
solutions, for appropriate sets of coefficients, subject to a suitable form of the



Riemann Hypothesis. In addition to using the Hecke L-functions L(s; A) we
shall need the L-functions

L(s, Q) = Y "x(«)N(a)~,

aEZ[w]

where x(a) is a multiplicative character for Q[w]. We now introduce the follow-
ing hypothesis.

Hypothesis 3 (Riemann Hypothesis.) For every A, all non-trivial zeros of
L(s; A), and all non-trivial zeros of L(s, x, Q[w]), lie on the critical line R(s) =
1

5-

This enables us to state our next result.

Theorem 3 Let p:,p2,p3,P4,p5 = 8 (mod 9) be primes. Then

5
Y pXi=0 (5)
i=1

has non-zero integral solutions, providing thot the Riemann Hypothesis, in the
form given by Hypothesis 8, holds.

In fact we come very close to handling the case n» = 4 under the Riemann
Hypothesis, as will be apparent from the analysis of §3. We should point out
that the necessary local conditions are automatically satisfied in Theorem 3, as
is easily verified.

It is disappointing that the above results should require such restrictive con-
ditions on the coefficients. In fact the above statements should be regarded
as representative samples. Other variants may be proved, although the tech-
niques of the present paper require severe restrictions of the prime factors of
the coefficents a; in (1). Our basic method, as described in §2, involves the use
of ‘first descents’ only. It is conceivable that an approach which used second
descents might radically reduce the constraints which have to be imposed on the
coefficients. However we shall see, in §2, that one cannot hope to extend The-
orem 1, for example, to all surfaces (1) for which one expects there to be rational
points. Even for 5 variables we are unable to prove the Hasse Principle under
any reasonable set of hypotheses. However with relatively mild conditions we
can establish a worthwhile result by introducing the following restricted version
of Schinzel’s Hypothesis [16].

Hypothesis 4 (Schinzel’s Hypothesis.) Let F(X,Y) € Z[X,Y] be an ir-
reducible binary cubic form. Suppose that @)1 and Q2 are positive integers, and
that zg,yo € Z are such that Q1|F(zo,y0). Suppose moreover that for every
prime p there exist integers %p,yp with p| G(2p,yp), where

G(X,Y) = Q7' F(zo + Q1Q2X,y0 + Q1Q2Y).

Then G(m,n) takes infinitely many (positive) prime values for m,n € Z.



It is easy to see that the only primes p for which the condition might fail are
those dividing 2Q1 @2, and those for which F/(X,Y) vanishes modulo p.

‘We can now state our conditional version of the Hasse Principle for diagonal
cubic 3-folds.

Theorem 4 Suppose that a1, as,as,a4,a5 are integers coprime to 3, and as-
sume that none of them is divisible by the square of any prime p = 2 (mod 3).

Then if
5
> aX?=0
i=1

has non-zero p-adic solutions for every prime p, it will have non-zero integral
solutions, providing that both the Selmer Conjecture and Schinzel’s Hypothesis,
in the form given by Hypothesis 4, hold.

Although the prime 3 causes some problems, it is principally difficulties connec-
ted with the primes p = 2 (mod 3) which currently prevent us from proving a
version of Theorem 4 applicable to all diagonal cubic 3-folds.

The idea of using the Selmer Conjecture in questions of this type is not
new, but comes from the work of Swinnerton-Dyer [19] on intersections of two
quadrics. However it would appear that Theorems 1-3 are the first results of this
type in which an appeal to Schinzel’s Hypothesis has been avoided. In fact it
is necessary to use information on the representation of primes by polynomials,
but fortunately only linear polynomials occur! The underlying idea for the
proof of Theorem 1 is rather similar to that commonly used to handle the Hasse
Principle for diagonal quadratic forms in 4 variables. Thus we shall establish
a solubility criterion for the case n = 3 and choose a prime p such that both
equations

1 X} + X3 =p, psX3+pXi=p

have rational solutions. The existence of a suitable p will follow from Dirichlet’s
theorem on primes in arithmetic progressions, for ZZ[w].

2 The Proofs of Theorems 1 and 2

Excellent descriptions of the first descent on E(A), via multiplication by +/—3,
may be found in Selmer [17] and Cassels [1], and we shall content ourselves with
an abstraction of the key results. Following Cassels we shall work over Q[w]. It
will be convenient to write £ = Q[w] and

G = KX/ (k).

In what follows we shall assume that A € Z \ {-1,0,1} is cube-free. For any
coset aG we write C(a, A) for the set of projective curves 8X2 + g=1Y3 = A,
with 8 € a@, and we observe that if any of these curves has &-rational points,



then they all will. We shall then merely say that C(a, A) has k-rational points.
A similar convention will apply to points in a completion k,. We may now quote
the necessary results on the first descent as follows.

Lemma 1 Let C(A) be the set of cosets aG for which Cla, A) has k-rational
points, and let S(A) be the set of oG for which C(a, A) has kr-rational points
for every prime m of k. Then C({A) and S(A) are groups, with C(4) < S(4).
Moreover #C(A) = 3'17(4) gnd #5(A) = 31+s(4),

We should note that the final assertion is merely the definition of s(A), and that
(2) is an immediate consequence of the lemma. We should also point out that
the cosets of 1,4 and A~1 are trivially in C(4).

The observation which is the key to our results is that if s(4) = 1 then,
according to (2) and the Selmer Conjecture, we must have r(A) = 1, and hence
C(A) = S(A). This provides a local-to-global principle for the curves C(a, 4).
Our task is thus to construct examples with s(4) = 1.

We may immediately note that C(a, A) automatically has points in &, for
any prime 7 ) 3A. Moreover if o € Z[w] is a cube-free integer, divisible by
any prime 7 | A, then C(a, A) does not have points in k,. We may therefore
restrict attention to integers o composed entirely of primes dividing A. Since
(A) € S(A) it will suffice to test coset representatives of G/{A) for membership
of S(A). We may do this by selecting a prime factor 7y of A and considering
only those o not divisible by mg. A further useful general observation is that,
if A =4 or 7(mod 9), then, for integers & € Z[w] coprime to 3, the equations
C(a, A) have no points over k ,—3 unless a = %1 (mod 3). Since we are only
concerned with values of @ modulo cubes, we may then assume that we have
o = 1(mod 3).

In order to prove Theorem 1 we take A = p;pop where p1,p2,p € IN are
primes, with p; = p» = 2(mod 3) and p = 1(mod 3). We shall choose p so
that A = 4 or 7(mod 9) and we factor p in Z[w] as 77 with 7 = 1 (mod 3).
Providing that we have . .

( S ( p2)3 #1
it is then easy to check that S(A) is generated by the cosets of A and p;p;?.
Thus s(A) =1, as required. If we also have r(A4) = 1 we then deduce, as above,
that S(A4) = C(4), so that

1Py X3 + popr Y3 = pipep

has a k-rational point. Since this curve is defined over ®, and & is a quadratic
extension of @, there is a Q-rational point (z,y), say. We then deduce that
z

3
=p
pz) )

Y \3
1(— +
P(l) Pz(

which leads to the following result.



Lemma 2 Let pi,ps, €N be primes, with p1 = ps = 2 (mod 3). Suppose that
7w € Z[w] is a prime with 7 = 1(mod 3) and that A # 1(mod 9), where A =
p1paN(m). Assume further that

m T
(D)= (), #1
Then s(A) = 1, and there are Q-rational points on

piX? +pY?® = N(n),
providing that r(A) is also 1.

Certainly the Selmer Conjecture is enough to ensure that r(4) = 1, so it
suffices for the proof of Theorem 1 to choose 7 = 1 (mod 3) so that

p1p2N(m) Z 1 (mod 9), (6)
p3pa N (m) £ 1 (mwod 9), (7

and m ™ m o
(p—1)3 = (p—2)3 = (p—3)3 = (;;)3 # 1. (8)

We therefore choose B = 1,4 or 7 so that
p1p2B #1(mod 9) and p3psB # 1 (mod 9),

whence (6) and (7) will hold if N(r) = B (mod 9). We arrrange this by taking
7 =1,—-2 or 1+ 3w (mod 9) respectively. The conditions (8) may be satisfied
by taking 7 to belong to a suitable congruence class (mod pipapsps). It follows
from the Chinese Remainder Theorem that there exists an invertible residue
class 3 (mod 9p1p2psps) for which the equations

X3 +pY? = N(m), psU®+psV? = N(m),

have non-trivial rational solutions whenever # = §(mod 9p:1papsps). Such
primes 7 necessarily exist, by Dirichlet’s theorem for Z[w], and Theorem 1
follows.

The above argument only needs a few modifications in order to establish
Theorem 2. The Prime Number Theorem for arithmetic progressions, in Z[w],
shows that there are at least ¢N/log N primes m = [ (mod 9p;p2psps) in the
range N (w) < N, if ¢ = ¢(p1p2p3p4) is a suitable positive constant and IV is large
enough. According to the Triple Zeros Conjecture o(IN/log N) of these can have
R(p1paN(m)) > 3, and similarly for R(pspsN(w)). If N is suffciently large it
follows that we can find a prime 7 = S (mod 9p1p2psps) for which R(p;paN (7))
and R(p3psN (7)) are both at most 2. Since s(p1p2N (7)) = s(pspaN(m)) =1
we deduce from (3) that R(pip2N(m)) and R(pspaN(m)) are both odd, and



hence that they must both be 1. The Gross-Zagier result (4) now shows that
r(p1p2 N (7)) and r(pspaN(x)) are both positive, and finally the bound (2) im-
plies that r(p1p2N(n)) = r(pspaN (7)) = 1. We can now complete the proof of
Theorem 2 in exactly the same way as for Theorem 1.

We conclude this section by drawing attention to two clear limitations to
the method developed here. For any cube free integer A with exactly m distinct
rational prime factors ¢ = 2 (mod 3), we write

m, 3|4,
m_la 32”‘41
m—1 A=zx4dor £ 7(mod 9),
m— 2 A = =+1(mod 9).

so(4) =

One can then show that
s(4) = so(4), (9)

and that s(4) = so(A) (mod 2). Now, for the approach used in the proof of
Theorem 1 to work for the general case n = 4 of (1), we will need to find an
integer A for which

s(aiazh) = s(azash) =1,
possibly having re-numbered the coefficients. Evidently, this is doomed to failure
if the a; have too many prime factors ¢ = 2 (mod 3).

By using some other type of descent argument one might hope to avoid this
problem, by replacing s(A) by a smaller ‘Selmer Rank’, s'(4), say. One would
then re-number the coefficients of (1), taking n» = 4, and try to find a cube-free
integer A such that

X3 +ax X3 =h and a3X3+aXi=h (10)

are both soluble in every completion k,, and such that s'(aiazh) and s'(azash)
are both equal to 1. Since we should have s'(4) = R(A) = 5(4) (mod 2) in
general, as in (3), this latter condition would entail s(a1a2h) and s(azash) being
odd. Hence so(aiazh) and sp(aszash) would also have to be odd. In general,
and in particular for the example

X3 +3x3+7x3+67X2 =0,

this cannot be achieved. This surface does indeed have rational points, such as
(2,1,2,—1). Suppose however that we label the coefficients with a; = 3, and
assume that both curves (10) have points in k 3. Then we readily find that
either 3||h or h = *as or tas (mod 9). I & has exactly m distinct rational
prime factors ¢ = 2 (mod 3), we then find that

so(a1azh) =m —1, so(asash) =m,

for 3||h and
so(ala;_;h) =m, splazash)=m—1,



for h = *as or +a4 (mod 9). It therefore follows that we cannot arrange for
both values to be odd, and the method fails.

3 Proof of Theorem 3

To establish Theorem 3 we shall find a prime 7 € Z[w] such that 7 = 4 (mod 9),
so that N{m) = 7 (mod 9), and for which

(p_1)3 = (p_2)3 = (p_3)3 = (p_4)3 = (p_5)3 # 1

If Q = 9pipepapaps and p is appropriately chosen, with (p, @) = 1, then = will
fulfill the above conditions whenever it lies in the congruence class p (mod Q).
Then, providing that there are 4 distinct indices i, 7, k, I such that

R(pip; N(r)) = R(pxp N (7)) =1 (11)
we shall be able to mimic the proof of Theorem 2 to obtain solutions of
pi X3 +p;Y? = p U3 + pV? = N(n). (12)

This clearly provides a solution of the original equation (5), with one of the

variables being zero.
‘We shall establish the following result.

Lemma 3 Assume the Riemann Hypothesis in the form given by Hypothesis 3.
Then for fized Q, and a fized cube-free A €IN, we have

> RANm)<(2+0(1) > L (13)
N(m)<T N(m)<T
r=p(mod Q) r=p(mod Q)

as T — 0.

One may view this as a substitute for the Triple Zeros Conjecture. Unfortunately
it appears to be (just) insufficient to handle the case n = 4. For the latter
purpose it would suffice to have the factor 2 + o(1) on the right hand-side
replaced by 2 — 6 + o(1), for any constant § > 0.

We proceed to demonstrate how Theorem 3 follows from Lemma 3. As
before, the congruence conditions imposed on = show that s(p;p; N(7)) = 1
for ever pair i,j, and hence, by (3) that R(p;p;N(n)) must be odd. We now
consider the complete graph on 5 vertices, labeled 1,2, 3,4, 5, and mark those
edges {%,7} for which R(p;p;N(r)) = 1. If there are not two disjoint pairs 1, j
and k, ! for which (11) holds, then the marked edges must either form a triangle,
or must be concurrent. Thus there can be at most 4 such edges. Thus = will
provide a solution to (12), unless at most 4 pairs 4, j have R(p;p; N (7)) = 1. In



the remaining case all other pairs k,! will have R(pxpN (7)) > 3. We would
then have

> R(pip;N(m)) > 4+6 x 3=22.

i<j

If there is no suitable 7 in the range N(w) < T we therefore conclude that

> > RipiN(m) =22 ), 1,
N@m<T < N(m)<T
n=p(mod Q) r=p(mod Q)

whence there is some pair 1, j for which

22
>, REpNm)2L Y L
N(m)<T N(m)<T
r=p{mod Q) w=p(mod Q)

This contradicts Lemma 3 if T is large enough, thereby establishing Theorem
3.

We may observe at this point that the corresponding argument for n = 4
only fails if for ‘almost-all’ relevent primes =, and every partition of {1,2, 3,4}
into pairs {i,j} and {k,!}, one of the ranks R(p;p;N(n)), R(prpiN(m)) is 1
and the other is 3. In this case we will have equality in (13), which, as we
shall see, would require a remarkable configuration of the zeros of the functions
L(s; AN(x)).

Our treatment of Lemma 3 is based on the approach developed by Goldfeld
[9] and Brumer [2] for estimating the average analytic rank of elliptic curves. We
take as our starting point Proposition 2.9 of Brumer [2], which we state below
in a slightly more precise form. First we must introduce a little notation. Let
h be an even continuous function of compact support contained in [—1,1]. We
suppose further that h(zr) is bounded and has piecewise continuous derivative,
and we write o

h(z) = / e~ % h(u)du.
—00
Let E be a modular elliptic curve of conductor Ng, and write its non-trivial
zeros as 1 + 47, so that 7 is real if the appropriate Riemann Hypothesis holds.
If the Euler factors of Lg(s) are

(1-ap(B)p~® +p* %)t

for primes p) Ng we set

EY 1 ]
S(EX) = Y “"T’h(%;)logp, (=12

10



for any X > 2. We may then state Proposition 2.9 of Brumer [2] as follows.

Lemma 4 Suppose all non-trivial zeros of the L-function Lg(s) lie on the crit-
ical line R(s) = 1. Then

Zﬁ(f logX) = h(0) lffgl\)’f +R(0) = é(s1 (B; X) + S2(E; X))

+0((log Ng)/?(log X)™1),

with the order constant depending only on the function h. In the sum on the
left, zeros are counted according to multiplicity.

We shall take h(z) =1 — |z| for |z| < 1 and h(z) = 0 otherwise, so that

sin(u/2)

W = (575

)%

The curves E(A) are modular for cube-free A € IN, and have conductor 342,
where Ay €N is the conductor of the character

o~ wj(g)s, for o = w’ (mod 3).

Taking E = E(AN(r)) we therefore deduce that

+0.4((log N(x))*/ (log X) %),

where the non-trivial zeros of L(s; AN(m)) are 3 + iy, counted according to
multiplicity. In our context we have

)+ (o)

3
if pJf3A and p = N(v) with » = 1 (mod 3). Moreover a,(E(A)) = 0 for a ra-
tional prime pJ 3A with p = 2 (mod 3). We may therefore reverse the argument
given in (2.8) of Brumer [2], to give

ap(B(4)) = 7(%

3

5@ x) = "iegx
2 2, A log N (v)?
+ Y, Nw™W (=),h( og X )log N (v)
N(v)<vX
v)[3A
+0O(loglog A),

11



where v = 1 (mod 3) runs over primes of ZZ[w]. We therefore conclude that

- log N (7) 2
E h(ylogX) = — ‘X .
> (7 Og ) 2 logX IOgX (Tl (ﬂ-! ) + T2(7r! X))

+04((log N(m))"/*(log X)), (14)
for the non-trivial zeros 1 + iy of L(s; AN(r)), where
AN(7r)) (logN(y))1 N

Ti(mX)= Y, N

N(v)<X
v)3AN(x)
and
_5 o, AN(7), . log N(v)?
. — 2.2
T(mX)= Y, N@E) % —=),h( log X )log N(v).
NW)<vX
v)3AN(r)

Using the Riemann Hypothesis for the functions L(s, x, Q[w]) we shall es-
tablish the following estimate.

Lemma 5 Let v| Q be a prime of Z[w]. Then

N(m
> M) <o 05N,
7=p(mod Q)
N(r)=<T

For the proof, we begin by observing that

M) - &

v ‘38 v'3

( &), =wu08),

3
say, where 1; is a character to modulus N(v). Then

Y. i) ‘—Q Z P(p) Y. $(mu(n), (15)
w=p(mod Q) ${mod Q N(m)<T

N(x)<T

where ¢(Q) is the Euler function for Z[w], and 1 runs over all characters to
modulus Q. A standard argument shows that, under the Riemann Hypothesis
for L(s, x, Q[w]) with a non-trivial character ¥ to modulus 4, one has

3 x(m) < T*(log TN(8))>.
N(m)<T

12



We now get a bound O(T*/?(log TQN (v))?) for (15), since the characters ¥,
are all non-principal, and Lemma 5 follows.

We can now complete the proof of Lemma 3. We sum both sides of (14) over
primes m = p (mod Q), with N(n) < T. Lemma 5 yields

S n(mX) <o TY?(lgTX)* ) N(@)/?logN(v)
a=p(mod Q) N(v)<X
N(m)LT v [ 3AN(r)

<o (TX)Y%(logTX)?,
and

Y D(mX) <o TY?(legTX)* ). N 'logN()
r=p(mod Q) N <vX
N(m)<T v/ 3AN(x)

<o TY?(logTX)3.

It therefore follows that

5 _ log N ()
Z Zh(’ylogX) = 2 Z log X
a=p(mod Q) 7 n=p(mod Q)
N(m<T N(m)<T
T (logT)/?
1040 YBTV D) | 00((TX)/2(10g T X)),

logT logX

The main term is

logT T ;
2 -3
oeX 2 1+OaljresX)™),
r=p(mod Q)
N(m)<T

by the prime number theorem for arithmetic progressions, for ZZ[w]. We choose
X =T(logT)~, whence the error terms are O A,Q(ﬁ(logT)—lﬂ), and

logT
2 =
Tog X 2+ 0(

loglogT

logT )

This leads to the estimate

- _ T —-1/2
Y Yh(ylegx)=2 3 1+04(j5 7108 T) /2). (16)
r=p(mod Q) v n=p(mod Q)
N(m)<T N(m)<T

13



Since h(t) > 0 for all ¢, and A(0) = 1, we see that the left-hand side is at least

S R(AN(),

r=p(mod Q)
N(m)<T

and Lemma 3 follows.

We conclude by observing that if the average analytic rank estimated in
Lemma 3 is exactly 2, then all zeros other than v = 0 must make a negligible
contribution in (16). Thus, for ‘almost all’ 7, and ‘almost all’ ‘small’ zeros £ +iv
of L{s, AN(m)), we would find that

is ‘small’, whence <y is ‘close to’ an integer multiple of 27/ log N (7). (Here mg
is the minimal positive period of the sinz function!)

4 The Proof of Theorem 4

Our strategy in proving Theorem 4 will be to reduce (1), with » = 5, to an
equation in 3 variables which can be handled by an extension of the method
used for Theorem 1. We will begin by writing

5
Y axi=0 (17)
=1

as .
Zaiang + (G5X5)3 =0.
i=1

We may then remove any cube factors, and re-define the variables, so as to

produce a new equation
4

S uxi+x3=0 (18)
i=1
with cube-free b;. Thus, for every rational prime p = 2 (mod 3) we either have
vp(bi) # 2 for 1 <i < 4 (when p) as) or vp(b;) # 1 for 1 < i <4 (when plas).
‘We will then use Schinzel’s Hypothesis to find z1,...,z4 € Z for which the
prime factorizations of

B; = b1z% + byzd and By = b3z3 + ezl

14



are sufficiently well controlled that the methods of §2 may be used (subject to
the Selmer Conjecture) to produce solutions of

B\Y? + BY2 +Y{ =0. (19)

We shall see that, for primes p = 2 (mod 3), we can choose z1,z2 € Z so that
vp(B1) = 0 or 3. In particular this is possible even when p|b,b;. Since we may
do the same for By we see that p will be absent after we have removed cube
factors from the coefficients of (19). This is crucial, since we need s(B1Bz2) =1
for our method to work, and this implies, by (9), that By B; can contain at
most 2 primes p = 2 (mod 3), after eliminating cube factors. It is for this reason
that Theorem 4 requires our coefficients to be square-free with respect to such
primes. If v,(b1) = 1 and v, (b2) = 2, for example, we cannot have 3|v,(B1), so
that p would be contained in By B;.

In contrast to the above situation, for primes p = 1 (mod 3) it may hap-
pen that vp(B1) is never a multiple of 3. It is therefore necessary to consider
equations (19) in which the B; may contain many prime factors p = 1 (mod 3).

It is clear from the above discussion that we must begin by examining the
equation (18) in Q,, for the various prime factors p of 3[]b;, with a view to
producing suitable values of By, B;. We may suppose at the outset that the
coefficients a; in (17) are cube-free and have no common factor. It transpires
that we must give a special treatment for some prime p = 1 (mod 3) dividing
I1 as, if any such prime exists. We therefore choose one such prime py and use
it in converting (17) into the form (18). (This process is unnecessary if []a;
consists entirely of primes p = 2 (mod 3).) We shall show that one can arrange
{18) in such a way that there are integers x; = z;(pg) for 1 < ¢ < 4 for which

Vpo (B1), Vpo (B2) = O(mod 3), and vp,(b3bs') # 0 (mod 3). (20)

It will follow, in particular, that (19) has po-adic solutions.

To establish our claim we shall consider two cases. For convenience of nota-
tion we shall merely write v for the pg-adic valuation. Suppose firstly that there
are three (or more) indices for which v(a;) is the same. We shall re-number the
coefficients so that these are a3, a3 and as. Since the coeflicients have no com-
mon factor, and po| [] @i, not all the values of v(a;) can be equal, and we may
therefore take a4, say, to have v(as) # v(as). It follows that, in the equation
(18), we will have v(b1) = v(b3) = 0 and v(bsb;') # 0. If we take z; = 23 = 1
and 22 = z4 = 0 the conditions (20) will then be satisfied.

We turn now to the case in which no three values of v(a;) are equal. Then
we may re-number the coefficients a; so that v(a;1) = v(az) and v(a3) = v(as),
but v(as) # v(as). Since (17) is po-adically solvable it follows that one or other
of aj /as or az/as must be a py-adic cube, and we may suppose, after a further
re-numbering if necessary, that the former is a cube. Thus, if v = v(a;)+2v(as),
the congruence

p5 a1a2z® + py¥aza? = 0 (mod po)
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has an integer solution z Z 0 (mod po). By Hensel’s Lemma we can then solve

po " a1a3y® + py “azag = pg " (mod py° ).
The choice z; = y, 23 = 1 now yields 3|¢(By). Trivially the choicez3 = 1,24 =0
produces v(B;) = 0, and we have also ensured that »(b3b;") Z 0 (mod 3), as
required.

We turn next to the case p = 3. Here we shall show that there are integers
z1(3),...,24(3) so that

ByB; = +4or +7(mod 9). (21)

Since by, ..., bs are integers not divisible by 3, one readily checks that this may
be achieved by taking (z1(3),...,z4(3)) asone of (1,0,1,0), (0,1,1,0), (1,1,1,0)
or (1,—1,1,0). One should observe that (21) is sufficient to ensure that (19) is
3-adically solvable.

We proceed to consider the primes p = 2 (mod 3) dividing [] b;. It will be
convenient to include p = 2 in this discussion, whether or not it divides [] b;.
Here we assert that there exist z;(p), z2(p) € Z with

vp(B1),vp(B2) = 0 or 3. (22)

If p) by we merely take z1 (p) = 1, z2(p) = 0, and similarly if p | b. Now suppose
that v,(b1) = vp(b2) = v, say, where v =1 or 2. We set b; = b;p~” for i = 1,2,
and note that b, z* + b, = 0 (mod p) has an integral solution. If we then replace
z by z + pt, with a suitable choice of ¢ we can arrange that p3—*||b] (z + pt)3 +b).
We can then take z1(p) = £+ pt and z2(p) = 1. The argument for B, is similar.

Finally, for the primes p = 1 (mod 3), other than p = py, we show that there
exist integers z1 (p), z2(p), z3(p), z4(p) for which

By,Bs # 0, and (19) has a non-trivial solution in @Q,. (23)

We begin by proving that (18) has a p-adic solution in which z5, by 23 +baz3 and
b33 + baz? are all non-zero. It is clear that a non-zero p-adic solution z1, ..., zs
exists. Suppose that z;, say, is non-zero. Then

—1 § : 3
1<5<5
J#i

is a non-zero cube. (We have written b5 = 1 for convenience.) Thus, if we
replace z; by z’; with |¢; — z;(, sufficiently small, the value will still be a non-
zero cube. In this way we can firstly arrange that x5 is non-zero, and then
taking i = 5, that b1z3 + bez3 and b3z3 + bsz} are non-zero.

Having found a suitable p-adic solution to (18) we rescale the variables so
that they are all p-adic integers, and we put y; = :z:.ia:gl p” for 1 < i < 4, where
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v = vp(zs). On writing B} = b1y} + bzy3, and similarly for Bj, we see that
B! and Bj are non-zero, and that B} + B} = p® is a non-zero cube. Thus, if
we choose z;(p) € Z with |z;(p) — yi|p, sufficiently small we will find that B:
and By are non-zero, and B; + B; is a non-zero p-adic cube. This proves our
assertion.

When we finally choose B; and Bs we shall take

z; = i(p) (mod p*), (1< <4 pl6]0s). (24)

Here we choose the exponent k sufficiently large that the conditions (20), (21),
(22) and (23) still hold even though the B; are constructed from the variables x;
rather than from the z;(p). Moreover, if k is large enough, the values of v,(B:)
and v, (B,) will be independent of the choice of the various z;. We take k to be
larger than any of these values. It is covenient at this stage to remove from B;
and B,, all cube factors composed of primes dividing 6 [] b;, writing B; = C; D3
for ¢« = 1,2. Thus D, for example, will be the same for all solutions of (24). Let
P1,---,Pn be the primes which divide both 6 []b; and C1Cy. By construction
we have p; = 1 (mod 3). Moreover we note that pp is not one of these primes.
We shall set
€i = Vp; (C1), fi= VP.'(C2)'

In order to arrange that 5(C;Cs) = 1 we shall introduce some further prime
factors into C; and Cs2. Thus we shall take

Cr==+q HPS" (25)
i=1
and n n
Co =g HP;‘ HN(/-‘J‘), (26)
=1 =1

where ¢1,g2 = 2(mod 3) are rational primes, and x; = 1(mod 3) are primes
of Z[w]. In choosing these primes we must bear in mind not only that we
require s(C1C2) = 1, but that (19) must be everywhere locally solvable. Our
construction ensures that (19) has solutions in @, for p = p;, (1 < i < n), and
for p = 3, so it suffices to arrange that C; is a cubic residue modulo u; for each
j. .

We proceed to describe the choice of the primes ;. In order to do this
we shall choose, for each prime p;, a prime m; € Z|w] such that N(m;) = p;
and m; = 1(mod 3). We then choose the primes p; successively subject to the
following criteria.

() ui ¢ Z.
(ii) p; does not divide 6 [ b; and differs from either of y; and iz for 1 <1 < j.
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(iii) p; =1 (mod 9).
(iv) pj =1(mod N(u)) for 1 <l < j.
(v) (’7‘r=i)3=1for0§i§n.
(vi) (&), =1for1<i<n, i#j
(vit) (ﬁ—j)3 = w.
(viii) (%J)—)3 = w ™, where a = vy, (b3b; ) and B = vy, (b3b; ).
(ix) u; =1 (mod p) for every prime p for which p|bzbs but p & {p;}.

Conditions (iii)-(ix) may be satisfied by requiring p; to lie in an appropriate
residue class. Thus a suitable prime p; exists, by the generalization of Dirichlet’s
theorem on primes in arithmetic progressions.

From conditions (v) and (vi), the law of cubic reciprocity yields

B, = (1,0, = (4 (&), =1

M
B8 ppdpgts Tmt3m

for j # 4. Similarly conditions (v) and (vii) produce

Pj
—_ = W,
(uj )
while (v) and (viii) lead to
() = b,
pj3
In the same way, condition (ix) shows that
p
£y =21
(Mj s

for every prime p|bsbs other than the primes p;. We therefore see that bzbs is
coprime to u;, and that

2
b3b4) — w—azﬁwﬁ — 1,
Bi 3

since 3 @, by (20). If we now set N(u;) = r; it therefore follows that b3bs is
coprime to r; and that b3b? is a cube modulo r;. The congruence

b3£63 +bs=0 (mod ’I‘j)

is therefore solvable, so that bsz® +bs = r;k, for suitable integers z and k. Now,
if we set y = x + tr;, we find that

b3y3 +bs=ri(k+ 3b3t.’1)2) (mod 'I‘?)
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We shall choose t so that
k + 3bstz® = 1 (mod r;).
We now set z3(r;) = z+tr; and z4(r;) = 1, and impose the additional conditions
z; = zi(r;) (mod r?), (i=3,4, 1<j<n). (27)
These will then ensure that 7;|{C,, as required for (26), and also that
Co/r;
(Bl =1, (28)

We have also to arrange that

%)3 =1 (29)

Since r; J b1b2 we can solve
biz:(ry)® + baza(ry)® = 1 (mod r;).
Thus the conditions
z; = z4(r;) (mod r?), (i=1,2, 1<j<n). (30)

suffice.

In the case in which [] a; has no prime factors p = 2 (mod 3), there will be
no primes p;, and no primes p;. Thus we shall merely arrange that C; and Cs
take the form *¢; and ¢ respectively.

‘We are now ready to apply Schinzel’s Hypothesis. We combine the conditions
(24), (27) and (30), using the Chinese Remainder Theorem, into the congruences

z; = x,§°) (mod R), (1<i<4).

Then our construction gives C; = E;F; for i = 1,2, and all z; in the above
congruence classes, where
n
E, = pri

i=1

E; = Hpii H N (p5)-
i=1 j=1

Moreover we have ensured that D?E; divides R, for i = 1,2. We shall take
F(X,Y) = b X3+b:Y3. If this fails to be irreducible then (18) trivially has non-

zero solutions. We put zo = z§°) and yo = :z:go), and we take Q; = D3F;,Q; =

and
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RQ7'. By construction we see that Q' F(zo,yo) is coprime to 6 [] b;, whence
Schinzel’s Hypothesis will apply. Moreover, since 3|Q2, we see that the value
of G{m,n), as given in Schinzel’s Hypothesis, is constant modulo 3. Thus if
we have G(0,0) = +1 (mod 3), we may apply the hypothesis to FF(X,Y) and
obtain infinitely many primes FG(m,n) = g > 0, all of the form ¢ = 2 (mod 3).
In precisely the same way we may obtain infinitely many primes ¢ = 2 (mod 3)
for which By = £ D3Esg.

We have now obtained values By, By of the form given by (25) and (26),
such that (19) is everywhere locally solvable, the conditions for the primes ¢;
and gs being automatically satisfied. It remains to verify that s(C;Cs) = 1. We
therefore suppose that some projective curve

,BX3 + ﬁ—lys = (1 0s, : (31)

where § € Z[w] is cube-free, is everywhere locally solvable. As remarked in
§2, we may restrict attention to integers 3 composed solely of primes of ZZ[w]
which divide C;C>. Moreover, by (21) we have C1C; = 4 or +7 (mod 9), so
that, as also observed in §2, we may assume that 8 = 1 (mod 3). Since we hope
1o show that the Selmer group S(C1C3) consists only of the elements

H={G, G, C:C, C1C:G},

it will suffice to prove that the quotient S(C1C2)/H is trivial. We can choose
coset representatives GG for this quotient in which 3 is not divisible by ¢ or g».
By conditions (v), (vi) and (vii) we have

(X)) =1 for 0<i<n,
i3
s R . .
—). =1for 1<i<n, i#j,
pi"3
and o
) =w.
(Mj)3
Finally we note that o
Hj
By =1,
(w )
by the cubic reciprocity law. Thus (28) and (29) show that
M 3

Suppose now that 7; divides 3, where 1 < j < n. If u; | B, then (31) is not
wi-adically solvable, since 8 is not a cubic residue of p;. Equally, if p;||3, say,
we get a contradiction, because

(B/pi)(C1C2/u;)
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is not a cubic residue of x;. A similar argument applies when p.§||,3. It follows
that m; f . We can show that 7; ) § in the same way, by considering 7i;-adic
solvability.

We therefore see that 8 must be composed entirely of primes p; and their
conjugates. However, if ;|3 we see that (31) has no wj-adic solution, since 8
is then a cubic non-residue of m;. Similarly, if 7Z;|8 there is no 7;-adic solution.
It follows that 8 = 1, so that S(C;C2) = H, as required. This completes the
proof of Theorem 4.
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