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Introduction

Let k be a field of characteristic not equal to 2. We recall the notion of the
u-invariant u(k) of k:

u(k) = sup{dimension of (g) | ¢ an anisotropic quadratic form over k}

It is a longstanding question whether the finiteness of u(k) implies the finite-
ness of u(k(t)). This was open even in the case k is a p-adic field. Recently,
Hoffmann and Van Geel ([HV], 3.7) showed that if k is a non-dyadic p-adic
field, X an irreducible curve over k and k(X) its function field, then u(k(X))
is finite, more precisely u(k(X)) < 22. They used a theorem of Saltman
([S], 3.4, cf. [HV], 2.5), bounding the index of central simple algebras over
such fields by the square of the exponent. In this paper, we follow the tech-
niques of Saltman to prove that the u-invariant of k(X) is bounded by 10.
We remark that conjecturally u(k(X)) = 8. Recall that if F' is a finite field,
k = F((t)) and X is an irreducible curve over k, then u(k(X)) = 8.

The main step of the proof is to kill any element in H3(k(X), Z/2) in a
quadratic extension of k(X) (3.8). This is done by killing the ramification of
any element of H3(k(X), Z/2) on a regular proper model X of a quadratic
extension L of k(X) and using a theorem of Kato ([K], 5.2) that the unrami-
fied cohomology group H3.(L/X,Z/2) = 0. This shows that every element
a in H3(k(X), Z/2) is of the form (f) U 8, with (f) € HY(k(X), Z/2) =
k(X)*/k(X)*? and B € H*(k(X),Z/2). In view of a theorem of Saltman
(cf. 2.2), B and hence a, is a sum of two symbols. A subtler choice of a
biquadratic extension (2.1) which splits 8 € H2(k(X), Z/2) leads to the fact



that every element in H3(k(X),Z/2) is a symbol (f) U (g) U (k). In fact
we also prove (3.9) that given o; € H3(k(X), Z/2), 1 < i < n, there exist
[, g, hi € k(X)* such that o; = (f)U(g)U(h;). This is a local two-dimensional
analogue of a result of Tate for number fields ([T], 5.2).

Using methods of Hoffmann and Van Geel ([HV]) and the fact that every
element in H3(k(X), Z/2) is a symbol, one can deduce that u(k(X)) < 12
(4.2). One shows further that given a € H3(k(X), Z/2), a suitable choice of
a quadratic extension L = k(X)(y/f) which splits @ can be made so that f
is a value of a given binary quadratic form (4.4). This leads to u(k(X)) < 10
(4.5).

Let k be a p-adic field and C a smooth, projective, geometrically in-
tegral curve over k. Let # : X — C be an admissible quadric fibra-
tion (cf. [CTSk]) and CHy(X/C) the kernel of the induced homomorph-
ism m, : CHo(X) — CHy(C), where CHy denotes the group of zero-cycles
modulo rational equivalence. In ([CTSk]), Colliot-Théléne and Skorobogatov
posed the question whether CHy(X/C) is zero if dim(X) > 4. In ([HV], 4.2),
Hoffmann and Van Geel showed that if & is non-dyadic and dimX > 6 then
CHy(X/C) = 0. They further proved that if every element in H3(k(X), Z/2)
is a symbol and dim(X) > 4, then CHy(X/C) = 0 ([HV], 4.4). Thus, as a
consequence of our result, it follows that if dim(X) > 4, then CHy(X/C) =0
(5.2), answering the above question of Colliot-Théleéne and Skorobogatov in
the affirmative.

In ([Se], §8.3), Serre raised the question whether for a p-adic field k, every
element in H3(k(t), Z/2) is a symbol. Under the assumption that this is true,
he has the following explicit description of the set of isomorphism classes of
Cayley algebras over k(t) as the set

C(P)={f:P — Z/2 | Supp(f) finite and Y f(z) =0},

zEP

where P denotes the set of closed points of Pl. Using a result of Kato
([K]), we give a description (6.3), following Serre’s method, of the set of
isomorphism classes of Cayley algebras over k(X), where X is a smooth,
irreducible curve over a non-dyadic p-adic field, which reduces to that of
Serre in the case X = IP}.
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preparation of this paper. We thank S. Bloch, D. Hoffmann and Van Geel
for their keen interest in this work. We thank J.-P Serre for bringing to our
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notice the question discussed in §5. We thank the organisers of the “Arith-
metic Geometry” programme at the Isaac Newton Institute, University of
Cambridge, for inviting us to participate in the programme and acknowledge
with pleasure the local hospitality at the Isaac Newton Institute while this
paper was under preparation.

1. Some Preliminaries

We recall (cf. [Sc]) some basic definitions and facts about quadratic forms and
(cf. [CT]) various facts on Galois cohomology and unramified cohomology.
Let F be a field of characteristic not equal to 2. By a gquadratic form over
F we mean a pair (V,q), where V is a finite dimensional vector space, ¢ :
V — F is a map such that g(Av) = A%q(v), for A € F, v € V and the map
b, : V x V — F given by by(v,w) = q(v + w) — q(v) — g(w) is a non-singular
bilinear form. We shall abbreviate (V, ¢) by g. Let g be a quadratic form over
k. The rank of q, denoted by rk(q), is defined as the dimension of V' over
F. We say that a quadratic form g over F is isotropic if there exists v € V,
v # 0, such that g(v) = 0; otherwise g is called anisotropic. The u-invariant
of F, denoted by u(F), is defined as

u(F) = sup{rk(q) | ¢ an anisotropic quadratic form over F'}.

Let ¢ be a quadratic form over F. Since char(F) # 2, ¢ is isometric to a
diagonal form < a4, - -, a, >, for some a; € F*. A quadratic form is isotropic
if and only if g ~< 1,—1 >_1 ¢' for some quadratic form over F'. A quadratic
form is said to be hyperbolic if ¢ ~< 1,-1 >1 --- 1< 1,—1 >. Let W(F)
be the Witt group of quadratic forms over F. Note that every element in
W (F) is represented by an anisotropic quadratic form over F. A quadratic
form q represents 0 in W (F) if and only if ¢ is hyperbolic. Tensor product
of quadratic forms makes W (F') into a ring. Let I(F) be the ideal of W(F)
consisting of even rank forms. For n > 1, let I"(F) denote the n'® power
of I(F). The abelian group I"(F) is generated by quadratic forms of the
type < 1,41 > ®---® < l,a, >, with a; € F*. A quadratic form of the
type < 1,81 > ®---® < 1,a, > is called an n-fold Pfister form. Let P,(F')
denote the set of n-fold Pfister forms over F.

The rank induces an isomorphism rk : W(F)/I(F) ~ Z/2. For a quad-
ratic form over F, let d(g) be the discriminant of ¢ and ¢(g) the Clifford invari-
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ant of g. Then the discriminant induces an isomorphism d : I(F)/I*(F) —
F*/F*2. A celebrated theorem of Merkurjev ([M]) asserts that ¢ induces an
isomorphism

P(F)

B(F)
where for any n > 0, H™(F, Z/2) denotes the n* Galois cohomology group
H™(Gal(F,/F), Z/2), F, denoting the separable closure of F'. For a € F*,
let (a) denote the class in H(F, Z/2) = F*/F*?. For a;,--+,a, € F*, let
(@1)----- (a,) denote the element (a;)U---U(a,) € H*(F, Z/2). Let n > 1.
For a;,---,a, € F*, let

X HY(F, Z/2),

en: Po(F) > HY(F,Z/2)

be defined by e,(< 1,—a; > ®:-® < 1,—a, >) = (a1): -+ -(an) €
H™(F,Z/2). Then e; is the discriminant and e, is the Clifford invariant.
Suppose that the 2-cohomological dimension e¢dz(F') of F is at most 3. Then
by a theorem of Arason, Elman and Jacob ([AEJ], Corollary 4 and Theorem
2) I*(F) =0 and

es: I*(F) — H*(F, Z/2)
is an isomorphism.

Let R be a discrete valuation ring, F' its quotient field and & its residue
field. Assume that the characteristic of x is not equal to 2. For ¢ > 1, let

Or: HY(F,Z/2) — H" \(k, Z/2)

be the residue homomorphism defined with respect to R. If P is the maximal
ideal of R, then sometimes we denote Jg by 0p. For w; units in R, 1 < <
g—1 and 7 a parameter in R, we have Og((u1) -+ * (ug—1){m)) = (@) - (Tg-1),
where bar denotes the image in .

Let X be a regular integral scheme of dimension » and F' its function field.
For i > 0, let X* denote the set of points of X of codimension i. For any
t € X, let k(z) denote the residue field at z. Assume that the characteristic
of n(a:) is not equal to 2, for any z € X. For z € X', let Oy _ denote
the discrete valuation ring at = and 9, : HY(F, Z/2)—~H%" I(K,(iL‘) Z /2) the
residue homomorphism defined with respect to O Xz Let

HL(F/X, Z/2) = ker(HY(F, Z/2) =% @ H*'(x(z), Z/2)).
zEXl



An element a € HI(F, Z/2) is called unramified at a point z € X, if 8,(a) =
0; otherwise it is called ramified at z. We say that o € HY(F, Z/2) is un-
ramified on X if it is unramified at all points of X!, i.e., « € HL(F/X, Z/2).
We define the ramification divisor

ramya= )Y .
8z (a)#0

For f € F*, we denote Suppy(divy(f)) by Suppx(f)

Let k£ be a p-adic field, p # 2. Let X be a smooth, projective, integral
curve over k and K = k(X) the function field of X. Let Oy be the ring of
integers of k. For o; € HY(K,Z/2)and f; e K*,1<i<n,1<j<m,bya
result of Lipman on the resolution of singularities (cf. [S], Proof of 2.1), there
exists a regular, projective model & of X over O, and two regular curves
C and E on X with only normal crossings ( i.e., for every z € C N E, the
maximal ideal of the local ring Oy , is generated by local equations of C' and
E at z), such that

Ur<i<nSupp(ramx(o;)) U Ui<jcmSuppx(f;) C Supp(C + E).

We use this result throughout this paper without further reference.

Let F be a field of characteristic not equal to 2 and L a field extension
of F. For any a € HY(F,Z/2), the image of @ in HY(L, Z/2) under the
restriction map is denoted by oy. Let & be a scheme and x € X'. Let Ox
be the local ring at z. For any f € Ox,, the image of f in k(z) is denoted
by f(z). For any ring A, let A* denote the group of units in A. Let A C B
be local rings with maximal ideals m4 and mpg respectively. We say that
B dominates A if my C mp. In the rest of the paper, we assume that 2 is
invertible in all the rings concerned.

2. Cohomology in degree 2

Let k£ be a non-dyadic p-adic field and Oy the ring of integers in k. Let X
be a smooth, projective, irreducible curve over k£ and K = k(X) the function
field of X over k.



Proposition 2.1 Let k¥, X and K be as above. Let o; € H*(K,Z/2),
1 < i< n. Let & be a regular, projective model of X over O such that

> ramy(os) CC+E,

i=1

where C and E are regular curves on X having only normal crossings. Sup-
pose there exists f € K* such that

divx(f) =C+ E+F,

where F' is a divisor on X whose support does not contain any point of CH E
and no component of C or E is contained in F'. Let T be the finite set of
closed points consisting of CNE, CNF, ENF. Let B be the semi-loeal ring
at T. Let h € B, h # 0, be such that Suppgpeg)(h) C Supp(C + E) and h
is square free in B. Suppose x € C N E is a closed point. Let 7, and 4, be
local equations at z for C and E respectively. We write h = 7652w, and
f = mz0,w.,, where w,, w! are units at z and €;,e; € {0,1}. Suppose there
exists an element h; € B* such that for every z € T,

i) if h(z) # 0, then (hh;)(z) is not a square in x(z).
it) if h(z) = 0 and either z € CNF or z € EN F, then h; is a unit at z.
iii) if h(z) = 0 and £ € C N E, then (w,w.h)(z) is not a square in k(z).
Then the image of o; in H2(K (v/f, vRhy), p2) is zero, for 1 < i < n.

Proof. Let L = K(+/f,vhh1) and S be a discrete valuation ring, contain-
ing Oy, with quotient field L. Since X is projective over O, there exists
a point £ € X of codimension 1 or 2 such that S dominates the local ring
A= C’);c-,z. We show that, for 1 < ¢ < n, (a;)r is unramified at S. Fix i,
1<i<nandlet a=0q;.

Suppose that ¢ CUE. Then « is unramified on A and hence unramified
over S ([S], 1.4). Assume that z € CUE.

Suppose that dim(A) = 1. Then f is a parameter at z and hence S is
ramified over A. Therefore « is unramified on §.

Suppose that dim(A) = 2. Let mg be the maximal ideal of S and vg
denote the valuation of S. We show that ds(az) = 0.
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Suppose that z € C\ (EU F') (resp. z € E\ (CUF)). Then f is a local
equation for C (resp. E) at z and o can be ramified only at (f) in A. By
([S], 1.2), we have @ = o' + (u)-(f), where o’ is unramified on A and u € A*.
Since (u)-(f)r = (u)-(1) =0, o, = af is unramified at S.

Suppose that z € CNF. Then z ¢ E and hence, by ([S], 1.2), a = o/ +(u}
(mz), where o is unramified on A, u € A*. Suppose further that h(z) # 0.
Then (hh:)(z) is not a square in k(z). We have ds((u)-(m;)) = wsi),
bar denoting the image modulo mg. Since (hh;i(z)) is not a square in the
finite field k(z), u(z) is a square in k(z)(1/hhi(x)). Since k(z)(4/(hh1)(x)) C
S/mg, T is a square in S/mg and hence (u)-(7;) is unramified on S. Suppose
that h(z) = 0. Since h;(z) is a unit at z and Suppgpec(p)2 C Supp(C + E),
hh, is a local equation for C at  and @ = o' + (u)-(hhy). Since (u)-(hhi)r =
(u)-(1)r = 0, @ is unramified at S. Similarly, one proves that o is unramified
at S,ifr e ENF.

Suppose that x € CNE. Let 7, and 6§, be local equations for C' and E at
z given in the statement of the proposition. Then we have f = m,0,w], with
wh, € A*. We have ([S], 1.2) a = o' + o, where o' is unramified on A and
a" is a sum of symbols of the type (u)-(7z), (v)-(6z) and (7z)-(8z), u,v € A*.
For u € A*, we have

(u)-(8a)z = (w)- (62f)r = () (o)L (%),

(u)(ma)r = (v) (M2 f)r = (u)- (dow2)s (%),
(m2)-(0z) = (72 f)-(82)z = (awy)  (6z)1 = (—wy)-(62)1 (% % *).

Suppose further that h(z) # 0. Then hh;(z) is not a square in k(z). As
before (v)-(n;)r and (v)-(d.)L are unramified at S for any v € A*. Therefore
o is unramified at S. Suppose that h(z) = 0. Then either h = m,w, or
h = 6w, or h = w0, w;, where w, € A*. If h = m,w, or d,w,, then,
by (%), (¥), (x = x) it follows that ds(c¢”) = 0 and hence a is unramified

at S. Suppose h = m 0, w,. Since v/F,vhhy € L*, Vwiwzhy € L*. Since
(wlwghy)(z) is not a square in x(z), once again using ( * %) and arguing as
above it follows that o" and hence « is unramified at S.

Let k' be the field of constants in L. Let X’ be the smooth, projective,
irreducible curve over k' with L as its function field. Let X’ be a regular,
projective model of X' over Oy. For every ' € X of codimension 1, Oy 4
dominates Oy ,, where z € X is a point of codimension 1 or 2. We have oy
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unramified at z' for every z' € X"'. Since the Brauer group of &” is trivial
(cf. [L], Theorem 4 or [Gr], 2.15 and 3.1), it follows that az = 0. This
completes the proof of the proposition. O

Corollary 2.2 ([S], 3.4) Let D be a central division algebra over K of
exponent 2 in the Brauer group of K. Then the degree of D is at most 4. In
particular, every element in H?(K, Z/2) is a sum of two symbols.

Proof. Let o € H*(K,Z/2) denote the class of D. Let X, C and E be
as in (2.1) defined with respect to @. By a semi-local argument, due to
Colliot-Théléne (cf. [HV], Lemma 2.4), we choose f € K* such that

divy(f) = C + E +F,

where F is a divisor on X whose support does not contain any point of CNE
and any component of C or E. Let T and B be as in (2.1). Let h € B* be
such that for every z € T, h(z) is not a square in x(z) and Ay = 1. Then
h and h, satisfy the hypotheses of (2.1). Therefore by (2.1), the image of o
in H*(K(\/F,vh), Z/2) is zero. Hence D ® K(+/f,Vh) is a split algebra.
In particular, the degree of D is at most 4 and D is a tensor product of two
quaternion algebras ([A]). Hence « is a sum of two symbols. O

3. Cohomology in degree 3

Let k& be a non-dyadic p-adic field and Oy the ring of integers in k. Let X
be a smooth, projective, irreducible curve over k¥ and K = k(X) the function
field of X over k.
Let o € H3(K, Z/2). Let X be a regular, projective model of X over O,
such that
ramy(a) C C+ E,

where C' and E are regular curves on X having only normal crossings. Let
T = CNFE and B the semi-local ring at T'. Since X is regular, B is a regular.

semi-local and hence unique factorisation domain.
a



Lemma 3.1 Let F be a finite field of characteristic not equal to 2 and Y a
smooth, projective curve over F. Let 8 € H*(F(Y), Z/2) and Pi,---, P, be
the closed points where § is ramified. Let f € F(Y)* be such that at each
P, either f has odd valuation or f is a unit at P, and f(P;) is not a square
in k(P;). Then BQ F(Y)(v/f) =0.

Proof. By class field theory, it is enough to prove that 8 ® F(Y)(V/¥) is
unramified at each discrete valuation ring of F(Y)(+/f). Let S be a discrete
valuation ring with F'(Y)(y/f) as its quotient field. Let R be the discrete
valuation ring of F(Y) such that R C S. If § is unramified at R, then g is
unramified at S. Suppose that 8 is ramified at R and R = Oy p, for some
1. If f has odd valuation at P;, then S over R is ramified and hence S is
unramified at S. If f has even valuation at P;, then by the choice of f, f
is a unit at P; and not a square in x(P;). Therefore the residue field S of
.S is a quadratic extension of the residue field x(P;) at R. Since S over R
is unramified, 9s(ar) = Or(a) ®xp) S (cf. [S]. 1.3). Since S is a quadratic
extension of x(P;) and x(FP;) is a finite field, every element of x(P;) is a square
in S. Therefore 8 is unramified at S. 0.

Lemma 3.2 Let R be a discrete valuation ring, K its quotient field and
k its residue field. Let & be a parameter in R and u € R*. If (u)-(d) is
unramified at R, then (u)-(8) = (u)-(u') for some u' € R*.

Proof. Suppose that (u)-(é) is unramified at R. Since dg((u)-(8)) = (@),
where bar denotes the image in &, @ is a square in k. Therefore the quadratic
form < 1, —% > is isotropic over . Let a,b € R such that a2 — 5°% = 0 and
at least one of @, b is non-zero. We write a? — b?>u = vé" for some r > 1 and
v € R*. Suppose that r > 2. We have (a + 6)? — b’u = vé" + 6% + 246 =
d(v6™! + 4 + a). Since r > 2, if a is a unit in R, by replacing a by a + § we
assume that » = 1. Similarly, if b is a unit in R, then by replacing b by b+ 4,
we assume that r = 1. Therefore we have < 1,—u >~ vd < 1,—u >. We
have < 1, —u, —6,ud >~ vd < 1,—u >1< —4,ud >=v6 < 1,—u, —v,vu >
and vd is a value of < 1,—u,—4,ud >. Hence < 1,—u,—6,ud >~ vd <
1, —u,—0,ud >~< 1, —u, —v,uv > and (u)-(8) = (u)-(v). O



Proposition 3.3 Let A be a regular local ring of dimension 2, K its quo-
tient field and & its residue field. Let m be a prime element of A and x(r) the
residue field at 7. Assume that every element of H?(k(w), Z/2) is represented
by a symbol (a)-(b) for some a,b € x(n)*. Let o € H3(K, Z/2).

i) Suppose « is ramified only at 7 among the prime elements of A. Assume
that 7 is a regular parameter in A, i.e., A/(w) is regular. Then

a=a +(u)-(v)-(m)
for some o' € H3 (K /Spec(A), Z/2) and u,v € A*.

ii) Suppose a is ramified only at 7 and ¢ among the prime elements of A.
Further assume that 7 and § generate the maximal ideal m of A. Then

a=a1+a2,

where oy € H3 (K/Spec(A), Z/2) and a3 is a sum of symbols of the

type
(u)-(v)-(m), (u):(v)-(9), (u)-(6)(m),

u, v running over the units of A.

Proof. Let a and 7 be as in i). Since 7 is a regular parameter of A, there
exists a prime element ¢ in A such that the maximal ideal m of A is generated
by m and §. We have a complex ([K], Prop. 1.7)

H3(K,Z/2) > @ Hx(=z),Z/2)> H' (s, Z/2).
zESpec(A)t

By the assumption on (), there exist a,b € A such that 8,(a) = (a)-(b),
where for any element ¢ € A, ¢ denotes the image of ¢ in A/(w). Since
m is generated by 7 and &, A/(w) is a discrete valuation ring with & as
a parameter. Without loss of generality we assume that d,(a) is equal to
either (%)-(v) or (%@)-(vd) for some u,v € A*. Suppose 9;(a) = (a)-(V9).
Since o has residue only at w, 89(a) = 8((@)-(v8)) is the square class of the
image of u in s*. Since 88 = 0, u is a square modulo m. Thus (%@)- (74)
over k(m) is unramified at § and by (3.2) (@)-(v8) = (@)-(v') for some
v € A*. Let o = a— (u)-(v')- (7). Since 9;(a) = ) ((@)-(7')- (7)) and
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O ((u)-(v)-(7)) = O (a) = 0 for any prime element 7’ of A not equal to 7, we
have 8(a’) = 0. Hence o/ € H3 (K /Spec(A), Z/2) and o = o' + (u)-(v)-(7).

Now let o, m and § be as in ii). Since every element in H?(x(n), Z/2)
is represented by a symbol, one finds u,v € A*, such that J,(a) is equal
to (@)-(7) or (@W)-(Vd). Set oy = a — (u)-(v)-(x) if x(a) = (W) (v) and
oy = a — (u)-(v8)-(m) if 8;(a) = (@)-(vd). Since a is ramified only at 7 and
d, a; is unramified except possibly at §. Now we can apply i) to describe o;.
This completes the proof of the proposition. O

Remark 3.4 Suppose that in the above proposition K is a function field in
one variable over a non-dyadic local field. Then for every prime 7 € A, the
residue field k() at « is either a local field or a function field in one variable
‘over a finite field. Therefore every element in H?(k(r), Z/2) is represented
by a symbol. Thus A satisfies the hypothesis of (3.3).

Lemma 3.5 Let k, K and X be as above. Let z be a closed point of X
and A = Ox,. Let S be a discrete valuation ring which dominates A. Then
every symbol of the type (uv)(v)(w), with u,v € A* and 7 € K*, is unramified
at S.

Proof. Let u,v € A*. We have 9s((u)-(v)-()) = (g,7)*s(™, bar denoting
the image in the residue field of S and vs denoting the valuation of S. Since
u,v € A* and k(z) is a finite field, it follows that (@, 7) = 0. Hence (u)(v)-(7)
is unramified at S. a

Lemma 3.6 Let k, K, o € H3(K,Z/2), X, C and E be as above. Let
L be an extension of K and S a discrete valuation ring with quotient field
L. Suppose that there exists £ € C N E a closed point of X such that S
dominates Oy ,. Suppose one of the following conditions holds.

i) The residue field of S contains a quadratic extension of x(z).

ii) there exist local equations ., d, for C and E respectively at z such
that either m, or &, or 7,0, is of the form w#?, w € S* whose image in
the residue field of S has its square class coming from x(z)* and 6 € S.

Then ¢, is unramified at S.
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Proof. Let A = Oy,. By (3.3), a = ¢ + ", where o' is unramified on
A and o” is a sum of the symbols of the type (u)-(v)- (%), (u)- (v)-(6z),
(u)-(mg)-(6;), with u,v € A*. Let vg denote the discrete valuation of S, 95
denote the residue homomorphism at S and mg denote the maximal ideal of
S. For u,v € A*, by (3.5), (u)-(v)-(7z), (u)-(v)-(8;) are unramified at S
Suppose that the residue field of S contains a quadratic extension of x(z).

We have
0s((u)(7z) (62)) = (&) U 8s((ma)-(82)).

Since the unique quadratic extension of k(z) is contained in the residue field
of S, @ is a square in the residue field of S. Therefore ds(cz) = 0.

Suppose that 7, = wh? for some w € S* such that w = A2 with X €
k(z)*, and 6 € S. Then, we have ((u)-(7;)(6z)) = ((v)-(w)-(0z))r- We have
0s((u)-(m5)(8)) = ((@)-(@))"s) = ((@)-())*sC=). Since @, X € ()", as
above, it follows that (@)-(\) = 0. Similarly, one can prove that if §, = w6?,
with w, 8 as above, then ds((u)(r;)(d:)) = 0. Suppose that m,d, = wd?, with
w, 8 as above. Since (u)(7;)}(0z) = (u){—730;)(0z), we have ((u)(m;)(d:)) =
() (—w)- () and Bs((u)-(7z)-(62)1) = ((@)-(—w))¥s(™=) = 0. Therefore
« is unramified at S.

O

Lemma 3.7 Let k and K be as in (3.6). Let A be a regular local ring of
dimension 2 with K as its quotient field. and S a discrete valuation ring
containing A. Then the map H*(K, Z/2) —H3(L, Z/?2) restricts to a map

H3 (K /Spec(A), Z/2)—H}.(L/Spec(S), Z/2).

Proof. The lemma follows from the absolute purity theorem of Gabber for
two dimensional regular local rings. We give a proof here for the sake of
completeness.

Let W(A) denote the Witt group of A. Since A is a two-dimensional
regular local ring, one has the following exact sequence ([O], [CTS])

0—W(A)-W(E) > P W(k)).

z€Spec(A)L

For n > 0, let I,(A) := I"(K) N W(A). Since cd(K) < 3 and cd(x(z)) < 2,
in view of ([AEJ], Theorem 2), the homomorphisms e,, : I"(F)—H"(F, Z/2)
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exist and are surjective with kernel I"t1(F), for F = K or (z). Since the
following diagram is commutative (cf. [P]),

BE 3 P IPs(x)

z€Spec(A)L
les les
HYK,Z/2) 5 @ H* k=), Z/2)
z€Spec(A)!

with ez and e, isomorphisms, e; induces an isomorphism
es : I3(A)—~H3 (K/Spec(A), Z/2).

Let a € H3 (K /Spec(A), Z/2) and q € I3(A) with e3(g) = a. Then g1 €
I3(S) and oy is precisely the image of e3(qr) in H3(L,Z/2). Since the
following diagram commutes

L) % P(S/ms)
les le
HYL,Z/2) % H*(S/ms,Z/2)
we have 9s(es(qr)) = 9s(ar) so that ds(es(gr)) = 0.
Thus «ay, € HE.(L/Spec(S), Z/2).
O

Theorem 3.8 Let k be a non-dyadic p-adic field, X a smooth, projective,
irreducible curve over k. Let K = k(X) and o; € H¥(K,Z/2),1<i < n.
Then there exists f € K* such that o; ® K(v/f) =0for 1 <i < n.

Proof. Let X be a regular, projective model of X over O, with
Ui, Supp(ram yo;) C Supp(C + E),

where C and E regular curves on X with only normal crossings. Let f € K*
be such that
dive(f) =C + E + F,

where F' is a divisor on X whose support does not contain any point of
C N E and any component of C or E. Let L = K(1/f). Let k' be the field
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of constants in L. Let X’ be the smooth, projective, irreducible curve over
k' with function field L. Let X’ be a regular, projective model for X! over
Op. Fix i, 1 < i < n and let & = o;. We show that oy, € H3 (L/ X', Z/2).
Let y € X' be a point of codimension 1 and § = O X', be the discrete
valuation ring at y. Since X is proper over O, there ex1sts a point z € X of
codimension 1 or 2, such that the S dominates the local ring A = O Xz

Suppose dim(A) = 1. Then A is a discrete valuation ring. If z corresponds
to a component of C' or E, then f is a parameter at z and S over A is
ramified. Hence, o is unramified at S. Suppose that £ does not correspond
to a component of C or E. Since ramy(a) C C + E, a is unramified at R
and hence oy, is unramified at S.

Suppose dimA = 2. Suppose first that = does not belong to Supp(C) U
Supp(E). Then « is unramified on A and hence unramified at S (3.7).
Suppose z € Supp(C) \ Supp(E) or z € Supp(E) \ Supp(C), then by (3.3
and 3.5), a is unramified on A and hence by (3.7), ar is unramified at S.
Suppose that z € Supp(C) N Supp(E). Let 7, and §, be local equations
for C' and E at z respectively. Then we have f = 7,6, w for some w € A*.
Since f is a square in S, it follows from (3.6) that o is unramified at S.
Therefore o € H3(L/X', Z/2). Since H3(L/X',Z/2) = 0 (K], 5.2), we
have a, = 0.

(]

Theorem 3.9 Let k& be a non-dyadic p-adic field and K a function field
in one variable over k. Let o; € H3(K,Z/2), 1 < i < n. Then there exist
f,9,h; € K* such that a; = (f)-(g)-(h;), with h; € K*. In particular, every
element in H3(K, Z/2) is a symbol.

Proof. By (3.8), there exists h € K* such that o; ® K(vh) = 0, for
1 < ¢ < n. Therefore there exist ([Ar], 4.6) 3; € H?(K, Z/2) such that

= (h)UG;, for 1 <14 < n. Let X be a smooth, projective, irreducible curve
over k with k(X) = K. Let X be a regular, projective model of X over Oy
such that

Ui, Supp(ram y(8i)) U Supp(h) C Supp(C + E)
where C and F as above. Let f € K* be such that
divy(f)=C+E+F,
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where F is a divisor on X whose support does not contain any point of CNE
and any component of C or E. Let T be the finite set of closed points of X
consisting of CNE, CNF and EN F. Let B be the semi local ring at T'.
Since X is regular, B is a regular ring. For x € CN E, let 7, and 6§, be local
equations at z for C and F respectively. Let z € CNE. Then h = 7862w,
and f = w0, w!,, where w,, w), € B are units at = and €, €2 € {0,1}. Choose
w € B* such that w is a unit at one closed point of each component of C

and F and —w(z)w,(z)w,(x) is not a square in k(z). Replacing f by wf,

we assume that —w,w,(x) is not a square in x(z) for all z € C N E and

divy(f)=C+ E+F, with C, E and F as above. We claim that there exist
a; € K* such that o; = (h, f,a;), 1 < i < n. Since B is a unique factorisation
domain with K as its quotient field, without loss of generality, we assume
that h € B is square free with Suppgpec()(h) C Supp(C + E). For ¢ € T,

i) if h(z) # 0, let a;, b, € s(z) be such that h(z)(h(x)a2 — b2) is not a
square.

ii) if h(z) = 0 and eitherz e CNForz € NENF, let a, =0 and b, =1
in k(z).

iii) if A(z) =0 and z € CN E, let a, = 0 and b, =1 in k(x).

Let a,b € B be such that, a(z) = a, and b(z) = b, for all z € T. Let
hy = ha® — b?. Then it is easy to see that f, h, h, satisfies the conditions in
(2.1). Therefore, by (2.1), 8 ® K(v/f,vhh1) = 0, for 1 < i < n. Hence
there exist a;,b; € K* such that 8; = (f)-(a;) + (hhy)-(b;), for 1 < i< mn
(cf. [HV], 3.1). Since hhy = (ha)?— hb?, hh, is norm from K (+/h) and hence
(h)-(hh1) = 0. For 1 < ¢ < n, we have

Q; = hU,B,‘
= (h)-(f)-(a:) + (h)-(hh1)-(b:)
= (h)-(f)-(as)-

This completes the proof of the theorem. O

4. u-invariant

Let k& be a non-dyadic p-adic field and Oy the ring of integers in k. Let K
be a function field in one variable over k.
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Theorem 4.1 Let K be as above. Then every anisotropic quadratic form
over K representing an element of I3(K) is a 3-fold Pfister form. -

Proof. Let ¢ be an anisotropic quadratic form over K representing an ele-
ment of I3(K). Let o = e3(q). Then by (3.9), @ = (f)-(g9)-(h). Since
es : I3(K) — H3(K,Z/?) is an isomorphism ([AEJ], Theorem 2), ¢ =<
1,—f ><1,—g >< 1,—h >in I3(K). Since q is anisotropic, g < 1, — f ><
1,—g><1,—h>. QO

Corollary 4.2 Let K be as above. Then every quadratic form over K of
rank at least 13 is isotropic.

Proof. Let g be a quadratic form over g of rank 13. By the theorem
of Saltman (cf. 2.2), c(q) is a biquaternion algebra over K. Let g be a
quadratic form over K such that rk(gy) =5, d(g+ ) =1 and c(g+ go) =0
(cf. [HV], 3.2). Then q + go € I3(K) ([M]). By (4.1), we have g + gy =<
1,f >< 1,9 >< 1,h > for some f,g,h € K*. Since rk(g) = 13, ¢ ~<
1,f >< 1,9 >< 1,h >1 —qp. Since I*(K) = 0, every element in I3(K)
represents every element of K*. In particular < 1,f >< 1,9 >< 1,h >
represents a value of go. Therefore ¢ is isotropic. O

To prove that every quadratic form over K of rank at least 11 is isotropic,
we need a subtler choice of a quadratic extension which splits the given
element in H3(K, Z/2).

Let £ be a non-dyadic p-adic field and X a smooth, projective, integral
curve over k. Let K = k(X). Let o € H¥(K,Z/2). Let X be a regular,
projective model of X over O such that

ramya C C + E,

where C and FE are regular curves on X" such that C' and £ have only normal
crossings. Let T'= CNE and B the semi-local ring at T'. Since X is regular,
B is a regular semi-local ring and hence it is a unique factorisation domain.

Lemma 4.3 With the notation as above, let L be a quadratic extension of
K. Let S be a discrete valuation ring with L as its quotient field. Assume
that SN K = B(y), where 7 is a prime element in B giving a local equation
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for a component C; of C. f C;NE # 0, let C,NE = {z;1,---,z,} and &,
a local equation of E at z;, 1 < i < r. Suppose that either C;NE =0 or
L = K(/f) with f € B satisfying one of the following conditions:

i) f is a parameter in By,

ii) fisa unitin B(s) such that either vz (f) =1 or f(;) is not a square in
#(z;), 1 <4 < r, bar denoting the image modulo (7) and v; denoting
the discrete valuation of B/(w) at dg,.

Then oy, is unramified at S.

Proof. Let A= B(;). Then the residue field k() of A is the quotient field
of B/(w). Suppose that CiNE = @. Since ramya C C+ E and C, is regular
curve on X, it follows from the complex ([K], 1.7)

HYK,Z/2) > @ H(x(n),Z/2) > @ H(x(y),Z/2)
neX? yeX?

that O(r)(c) is possibly ramified only at the discrete valuations of x(7) cor-
responding to C; N E. Since Cy NE = @, it follows that Jx)(c) is unramified
at every discrete valuation ring of (7). Since x(w) is either a global field
or a local field, by class field theory, we have J¢r)(a) = 0 and hence oy is
unramified at S.

Suppose that C; N E # (). Suppose that f is a parameter in A. Then S
over R is ramified and hence as is unramified at .S. Assume that f is a unit
in A. Suppose that f is as in ii). Since v;, (f) = 1 or f(z;) is not a square
in k(z;), for 1 < ¢ < r, it follows that f is not a square in B/(n). Since
C and E have only normal crossings, B/(7) is a regular semi local ring and
is integrally closed. Hence f is not a square in the residue field x(7) of A.
Since H3(K, Z/2) is generated by symbols, using the explicit description of
the residue map on the symbols, one easily sees that if S over A is unramified,
then ds(ar) = da(a) ® n('zr)(ﬁ ). Suppose that x() is a p-adic field. Since
the residue field of S is the quadratic extension m(w)(ﬁ), it follows that
da(a) € H?*(xk(w), Z/2) is split over n('/r)(\/?) Since f is a unit in A, S
over R is unramified and hence ds(a) = da(a) ® n(w)(ﬁ) = 0 and oy is
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unramified at S. Suppose that x(7) is a function field in one variable over
a finite field. As above it follows that d4(e) is possibly ramified only at the
discrete valuation rings of k() given by the prime elements &, in B/(w),
1 < i < r. By the assumption on f, in view of (3.1), 4(a) ® s(7)(+/F) =0
and the lemma follows. a

Proposition 4.4 Let k, K be as above. Let o € H3(K,Z/2) and a,b €
K*. Then there exists an f € K* which is a value of the quadratic form
< a,b > such that a ® K(v/f) = 0.

Proof. Let X be a regular, projective model of X over O such that
Supp(a) U Supp(b) U Supp(ramxyca) C Supp(C + E),

where C and E are regular curves on X with only normal crossings. Let
T =CnNE. Let B be the semi-local ring at T. For z € T, let 7,6, € B
be local equations for C and E at z, respectively. Since B is a unique
factorisation domain with quotient field K, without loss of generality we
assume that a,b are square free in B and Suppgpe(p)(ab) C Supp(C + E).
Let ¢ € B be the greatest common divisor of a and b, so that a = ca’, b = c¥/,
with a',b € B. Since a and b are square free, c,a’,b’ are pairwise coprime.
For z € T, choose ug, v, € k(z) as follows:

i) Suppose c(z) = 0. Let m, denote the maximal ideal of B at z. Since
c,a', b are pairwise coprime and the only prime elements of B,, which
divide ca't’ are 7., d,, at least one of o’ and ¥’ is coprime to m, and d,,
and hence is a unit at z. Thus a'(z) # 0 or b'(z) # 0. Let uz, v, € k()
be such that a'(z)u2 + ¥'(z)v2 #£ 0.

ii) Suppose that ¢(z) # 0 and o'b'(z) = 0. Let u, = v, = 1.

iii) Suppose that ¢(z)a'(z)b'(z) # 0. Since x(z) is a finite field of char-
acteristic not equal to 2, every element of k(z) is represented by the
quadratic form < a'(z),b'(z) >. Let ug, v, € k() be such that

c(z)a'(2)b'(z)(a'(z)uz + V' (2)v]) & K(z)™.

Let u,v € B be such that u(z) = u, and v(z) = v, for all z € T. Let
f = ca't/(a'u® + b'v?). Clearly f is a value of ¢ < a’,b' >=< a,b >. We now
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show that a® K(v/f) = 0. Let L = K(1/f) and &' be the field of constants in
L. Let X' be a smooth, projective, irreducible curve over k' with ¥'(X') = L.
Let X’ be a regular proper model of X' over Oy and y € X' be a point of
codimension one. Let S = Ox», be the discrete valuation ring at y. As in
the proof of (3.9), it is enough to show that ay is unramified at S. Since X
is projective over Oy, there exists a point z € X of codimension 1 or 2, such
that S dominates the local ring A = Oy ,.

Suppose dim(A) = 1. Then A is a discrete valuation ring. Suppose that
z does not correspond to a component of C or E. Then « is unramified at A
and hence oy, is unramified at S. Assume that z corresponds to a component
of C or E. Let z correspond to a component C; of C.

Suppose that C; N E = (. Then by (4.3), oy is unramified at S.

Suppose that C; N E # (. Let 7 be a prime element of B corresponding
to the component C;. Since ¢, a’, b’ are pairwise coprime in B, it follows that
at most one of ¢,a’, b’ is divisible by 7.

Suppose 7 divides c. Then by i), a’u® + 'v? is a unit at every point of
C:NE. Since A is a localisation of Oy 4, for z € C; N E, a'u® +b'v? is a unit
in A. Further, since 7 divides ¢, both a’ and b’ are units in A. Therefore f
is a parameter in A and hence by (4.3), oz is unramified at S.

Suppose 7 does not divides ¢ and divides @' or &'. Let z € C;NE. If
c(z) = 0, then by i), a’u® + b'v? is a unit at = and hence it is a unit in A.
If ¢(z) # 0, then by ii), » and v are units at z and hence units in A. Since
only one of the a’,¥' is divisible by 7, a'u? + b'v? is a unit in A. Therefore,
as above f is a parameter in A and az is unramified at S.

Suppose that 7 does not divides ca't’. Let z € Ci1 N E. If ¢(z) = 0,
then by i), a’u® + b'v? is a unit at = and hence a unit in A. Suppose that
c(z) # 0. Since 7 does not divides a'b’, the only prime elements of B,,_
which divide a'd’ being 7 and &, either a'(z) # 0 or ¥'(z) # 0. Therefore if
a't'(z) = 0, then by ii), a'u? + b'v? is a unit at z and if a'b'(z) # 0, then by
iii), a'u? + b'v? is a unit at z. Therefore a'u? + b'v? is a unit in A and hence
vs, (f) = v5,(ca'¥), which is equal to 0 or 1. Further if v; (f) = 0, by iii),
f(z) is not a square in x(z). Therefore, by (4.3), oy, is unramified at S.

Suppose dim(A) = 2. Then z is closed point of X. If z ¢ C U E, then a
is unramified on A and hence unramified at S (3.7). Assume that z € CUE.
If z¢ CNE, then by (3.3 and 3.5), o is unramified at S. Further assume
that z € CN E. Then A = B,,, where m, is the maximal ideal of B at 2.
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Suppose that ¢(z) = 0. Then, as in i), at least one of &',V is a unit at
z and by the choice of u,v, a'u? + b'v? is a unit at z. Since the only prime
elements of A which divide ca'¥’ are 7, §,, it follows that f = ca't'(a’u®+b'v?)
is of the form wr, or wd, or wn,d,, with w € A*. Since f € L*2, by (3.6),
¢y, is unramified at S.

Suppose that c(z) # 0 and either a'(z) =0 or b'(z) = 0. If a’(z) # 0 or
b'(z) # 0, then as above, one shows that either 7, or §, or 7,9, is as in (3.6, ii)
and hence, by (3.6), ¢y, is unramified at S. Suppose that a'(z) = b'(z) = 0.
Since the only prime elements of A which divide a',b' are «,,d,, a',b' are
coprime and a',b are not units at z, we have o’ = wn, and b = w'd, or
o' = wd, and ¥ = w'm, for some w,w’ € A*. Consider the case where
o' = wr, and ¥ = w'§,, with w,w' € A* (the other case being similar). Let
vg denote the valuation at S. Since S dominates A, we have vg(a')> 1 and
vg(b') > 1. We assume without loss of generality that vs{a') < vg(b'). Then,
b'/a' € S and

PR (b—) )@,

Suppose that vs(a’) < vs(b). Then u? + Zv? € S*. Since ¥ = w'd,, w' €
A* ¢ € A* and f € L*?, it follows that §, is as in (3.6, ii) and ay is
unramified at S. Suppose that vs(a’) = vs(¥). If u? + Lv? € S*, then
vs(f) = vs(t') + 2vg(a’) = 3vs(b'). Since vg(f) is even, it follows that
vs(a') = vg(b') is even. In particular vg(nm,) = vs(4,) is even. By (3.3, iii),
we have o = o/ + ", where ¢ is unramified on A and o” is a sum of symbols
of the type (p)-(')-(m2), (1)-(')(82), (1) (72)-(62), with p, 4’ running over
A*. Since 7, and 4, have even valuations at S, clearly af is unramified at S.
By (3.7), o}, and hence oy, is unramified at S. Assume that u2+ Z—',vz is not
a unit in S. Let n = vg(a') = vs(b'). Let @ be a parameter in S and write
a' = w 0", b = wyb"™, with w,w; € S*. By (ii), u,v € A*. Since u? + 2—’,’02 is
not a unit in S, we have

u? v W3
72 a’ Wi
By (3.7, iii), we have @ = o + o, where o' is unramified on A and o” is a

sum of symbols of the type (u)-(1')-(m.), (1)-(1')-(82), (w)-(m2)-(éz), with
4, ¢’ running over A*. As in the proof of (3.6), (u)-(¢')-(7.) and (p)-(')-(8,)
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are unramified at S. Since o' = wn, = w0, b’ = w'd, = w,0", we have

(1) (72)-(82) = (1) (wwr6")- (w'wa6").
If n is even, then clearly (u)-(m;)-(d,) is unramified at S. Assume that n is
odd. Then, we have

() (m2)(82) = (1) (wwrf)- (w'waf) = () (wwrf)- (—wwrw'ws)

and
Os((w)- (m2)-(6:))2) = (B)- (—wwiw'ws).

Since w3 /Wy is a square in the residue field of .S, we have 9 ((u)(7,)-(4;)) =
(B)- (—ww'). Since p,w,w' € A* and k(2) is a finite field, it follows that
() (—ww') = 0. Hence oy, is unramified at S.

Suppose that c¢(z)a'(2)b/'(z) # 0. Then by the choice of u,v it follows
that f(z) & x(z)*2. Since f is a square in S, it follows from (3.6) that oy is
unramified at S. This completes the proof of the proposition. O

Theorem 4.5 Let k be a non-dyadic p-adic field and K be a function field
in one variable over k. Then every quadratic form over K of rank at least 11
is isotropic.

Proof. Let g be a quadratic form over K of rank 11. Then by the theorem
of Saltman (cf. 2.2) ¢(q) is a biquaternion algebra. Let gy be a quadratic form
over K with rk(q) = 5, d(g+qo) = 1 and c(g+go) = 0. Then g+¢qo € I*(K).
Therefore, by (4.1), there exists a 3-fold Pfister form ¢; over K such that
g = q1 — go- Since g is isotropic if and only if Ag is isotropic for any A € K*,
we assume that gy =< 1,a,b,c,d > for some a,b,c,d € K*. Let o = e3(q).
Then by (4.4), there exists f € K* which is a value of < —a, —b > such that
a1 ® K(v/f) = 0. Since ez is an isomorphism, ¢; ® K(+/f) is hyperbolic.
Therefore there exists g,h € K* such that ¢; =< 1,—f >< 1,9 >< 1,h >.
Since —f is a value of < a, b >, there exists f' € K* such that
<a,b>~<~—f f > We have
9 = 1—q
= <1l,-f><1l,9g><1,h>—-<1,—-f f,¢c,d>
= <1l,—-f><g,h,gh>—<f,e,d>.

Since rk(g) = 11 and the rank of < 1, f >< g,h,gh > — < f',c,d > is 9, it
follows that g is isotropic over K. O
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Theorem 4.6 Let K be as above and ¢ a quadratic form over K of rank
at least 9. Suppose that c(g) is of index at most 2. Then g is isotropic.

Proof. By (4.5), if the rank of g is at least 11, then g is isotropic. Assume
that rank of g is 9 or 10. Since ¢(g) is of index at most 2, there exist a,b € K*
such that ¢(¢) = (—a, —b). Suppose that the rank of ¢ is 9. By scaling, we
can assume that d(g) = 1. Let g9 =< a,b,ab >. Then d(g — ) = 1
and c(q — go) = 0. Therefore ¢ = go + ¢, for some ¢ € I3(K). As in
the proof of (4.5), there exists f € K* which is a value of < a,b > and
a1 ® K(v/—f) is hyperbolic. Therefore we have < a,b >=< f, f' > and
¢ =<1,f><1,9g ><1,h > for some f',g,h € K*. Since g = gy + q; and
I*(K) = 0, we have

(—ab)g = (—ab)g+a
= < —-b,—a,-1>4+q
= <—-f,—-f,-1>+<1,f>+<1,f ><g,h,gh >
= <—-f'>+<1,f ><g,h,gh>.

Therefore q is isotropic. Suppose that the rank of gis 10. Let ¢ = ¢ L < 1 >.
Then ¢(g) = c(g'). Since the rank of ¢' is 11, it is isotropic by (4.5). Write
¢’ =<1,—1 >_1 ¢". Then the rank of ¢" is 9 and ¢(¢") = ¢(gq). Therefore ¢"
is isotropic. Since ¢ = ¢" L < —1 >, q is isotropic. |

5. Zero-cycles on quadric fibrations

Let k be a p-adic field and C a smooth, projective, geometrically integral
curve over k. Let 7 : X — C be an admissible quadric fibration over C (cf.
[CTSK]). For a variety Y, let CHy(Y) denote the Chow group of zero-cycles
on Y. Let m, : CHy(X) — CHy(C) be the induced homomorphism and
CHy(X/C) = ker(my). If dim(X) = 2, then it was proved in ([G]) that the
group CHy(X/C) is finite. In ([CTSk]), Colliot-Théléne and Skorobogatov
proved that if dim(X) = 3, then CHy(X/C) is finite and raised the following
question:

If dim(X) > 4, is the group CHy(X/C) zero or at least finite?

In ([PS], 4.8), it was shown that the group C Hy(X/C) is finite, answering the
latter part of the above question. Recently Hoffmann and Van Geel ([HV],
4.2) proved that if k is non-dyadic and dim(X) > 6, then CHy(X/C) = 0.
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Using results proved in §4, we show that CHy(X/C) =0 if dim(X) > 4 and
k is a non-dyadic p-adic field.

We recall the identification of CHy(X/C) with a certain subquotient of
k(C)* given in ([CTSK]). Let k be a field of characteristic not equal to 2 and
C a smooth, projective, geometrically integral curve over k. Let 7 : X — C
be an admissible quadric fibration of relative dimension at least 1. Let g be
a quadratic form over k(C) defining the generic fibre of . Let Ny (k(C))
be the subgroup of k(C)* generated by elements of the type ab with a,b €
k(C)*, which are values of g over k(C). Let k(C)}, be the subgroup of £(C)*
consisting of functions, which, at each closed point P of C, can be written as
a product of a unit at P and an element of Ny(k(C)). We recall the following
result from ([CTSk]).

Proposition 5.1 There is an isomorphism CHy(X/C) = k(C)%./k* Ny (k(C)).

Theorem 5.2 Let k be a non-dyadic p-adic field and C a smooth, project-
ive, geometrically integral curve over k. Let 7 : X — C be an admissible
quadric fibration. If dim(X) > 4, then CHy(X/C) = 0.

Proof. Let g be a quadratic form over k(C) defining the generic fibre of
m. Since dim(X) > 4, rank of ¢ is at least 5. If ¢ is isotropic, then every
element in k(C)* is represented by ¢ over k(C) and hence N,(k(C)) = k(C)*.
Assume that ¢ is anisotropic over k(C). Let f € k(C)*. Since < 1,—f >
®qRk(C)(+v/f) is hyperbolic, ¢(¢® < 1,—f >)®k(C)(+/¥) is zero and hence
the index of ¢(¢® < 1, —f >) is at most 2. Therefore by (4.6), < 1,—f > ®q
is isotropic. That is, there exist v, w in the underlying vector space of g,
with at least one of them non-zero such that ¢(v) — fg(w) = 0. Since ¢ is
anisotropic g(v)g(w) # 0. Therefore f = g(v)g(w)™! € N,(k(C)) and hence
Ny (k(C)) = k(C)*. By (5.1), it follows that CHy(X/C) = 0. C

6. Cayley algebras

Let K be a field of characteristic not equal to 2. Let GG be a split simple
algebraic group of type Gs defined over K. We recall from ([Se], §8.3) the
following description of the set of isomorphism classes of Cayley algebras over
K.
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Theorem 6.1 There are canonical bijections between the following:
i) H(K,G),
ii) H3..(K)={a € H3)K,Z/2),a =aUbUc,a,b,c € K*},
iii) The set of isomorphism classes of K-forms of G,
iv) The set of isomorphism classes of Cayley algebras over K,

v) The set of isomorphism classes of 3-fold Pfister forms.

Let k be a p-adic field. Let P be the set of closed points of /P}, and

C(P)={f:P — Z/2 | supp(f) finite and ) _ f(z) = 0}.

zEP

The exact sequence
0— H3(k(t), Z/2) — ®oepH*(k(z), Z/2) — H*(k, Z/2) — 0

identifies H3(k(t), Z/2) with C(P), noting that H?(k(z), Z/2) = Z/2 for
every z € P and the map @®,cpH?%(k(z), Z/2) — H*(k,Z/2) is the ad-
dition. In ([Se], §8.3), Serre raises the question whether H!(k(¢),G) is in
bijection with C'(P). This is equivalent to the question whether H3  (k(t)) =
H3(k(t), Z/2). In view of (3.9), this is indeed true if k is non-dyadic.

Let k be a p-adic field, p # 2 and X a smooth, projective, integral curve
over k. Using a result of Kato ([K]) and following Serre, we give a description
of H'(k(X),G) as follows. Let X be a regular, proper model of X over 0.
Let Y = X Xgpec(0,) SPec(Fy) be the special fibre, where F, is the residue
field of k. Let 7 : ¥ — Y be the normalisation of Y. Let Y,ing denote the
set of singular points of Y and Q = 7r‘1(Ys,-ng). Let Y = U{f}, Y; denoting
the irreducible components of Y. Let

C(Q) ={f : Q — Z/2 | supp(f) finite, 3" f(z)=0,1<i<r}.

zeY;
For y € Y, let
o : H*(k(Y:), Z/2) — H'(k(y), Z/2)

24



be the residue homomorphism defined by 8¢ = 0 if 7~ '(y) NY; = 0 and
otherwise
= ¥
ger(y)nY;

where 87 denotes the residue map at 4. By a result of Kato ([K], 5.2), we
have an isomorphism

)

H3(5(X)/ X, Z/2) = ¥er(@:HX(K((¥):), Z/2) =5 @yeyrH' (k(y), Z/2)).

Lemma 6.2 We have an isomorphism

—()

ker(®; H2(k((Y):), Z/2) Dyevi H ' (k(y), Z/2)) ~ C(Q)

Proof. Let (o) € @;H2(k(Y;), Z/2) be such that 0((e;)) = 0. Then for
a closed point § € ¥;\ Q, 95(c;) = 0. For j € QNY;, let f(§) = 95(aw) €
HY(x(§), Z/2) = Z/2. Then, by class field theory for function fields in
one variable over finite fields, it follows that f € C(Q). Conversely, let
f € C(Q). Then by class field theory, there exist a; € H?(k(%:), Z/2) such
that for § € Q NY;, 8;(cs) = f(§) and if § € UY; \ Q, then 8;(c;) = 0 for all
i. Since f € C(Q), B(a,;) = 0. This proves the lemma. O

Let P be the set of closed points of X. Let

C(P)={f:P — Z/2 | supp(f) finite and > f(z) = 0}.

zEP

We have an exact sequence ([K], 5.2)
0— H3(k(X)/X,Z/2) — H*(k(X), Z/2) - ®cpH*(k(z), Z/2) — Z/2 — 0.
This sequence induces an exact sequence

0 — H3(k(X)/X, Z/2) - H*(k(X), Z/2) - C(P) - 0.

By (6.2), we have H2.(k(X)/X,Z/2) ~ C(Q). In view of (3.9), we have
H3. (k(X),Z/2)=H 3(k(X ), Z/2) and we have the following the following
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Theorem 6.3 Let k£ be a non-dyadic p-adic field and X a smooth, project-
ive, irreducible curve over k. The bijection H!(k(X), G) ~ HL, (k(X), Z/2) =
H3(k(X), Z/2) makes H'(k(X), G) a Z/2-vector space which fits into an ex-
act sequence

0— C(Q) = H'(k(X),G) — C(P) = 0.
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