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Abstract. — Lichtenbaum’s complexes enable one to relate Galois cohomology
to £ -cohomology groups. In this paper, we consider the first terms of the Hochschild-
Serre spectral sequence for the cohomology of these complexes, which was devel-
opped by Kahn, in the case of quotients of “big” open sets in cellular varieties. In
the particular case of a faithful representation W of a finite group G over an alge-
braically closed field k, this yields that the group of negligible classes in the cohomol-
ogy group H3(G, Q/Z(2)) is canonically isomorphic to the second equivariant Chow
group of a point. It also implies that the unramified classes in the cohomology group
H3(k(W),(Q/Z)'(2)) come from the cohomology of G, which had been proved by
Saltman when k is the field of complex numbers.

Using the motivic complexes of Voevodsky, we then prove similar results in degrees

four and five.
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1. Introduction

The unramified cohomology groups were first developed by Colliot-Théléne and
Ojanguren as invariants for stable rationality which generalize the unramified Brauer
group. It has been used in [CTO] and [Pel] to give new examples of unirational
varieties which are not stably rational.

Unirational fields of special interest are given by Noether’s problem: if G is a
finite group and W a faithful representation of G over a field k, then the field of
invariant functions k(W)€ does not depend, up to stable equivalence, on W. The
problem is to determine for which fields k and groups G the field k(W) is stably
rational. The first counter-example over C was constructed by Saltman in [Sal]
using the unramified Brauer group. Bogomolov [Bo] gave a complete description of
the unramified Brauer group of the field C(W)€ in terms of the cohomology of the
group G.

The study of the higher unramified cohomology groups for these fields is made
more complicated by the existence of negligible classes in the cohomology of finite
groups which vanish when lifted to Galois groups. The first interesting results about
the third unramified cohomology group for such fields have been obtained by Saltman
in [Sa2].

More precisely, he proved that this cohomology group for k£ = C is contained in
the image of the restriction map

H%(G,Q/Z) — H*(x(W)®,Q/Z)

and that, if H3(G, Q/Z), is the kernel of this map and if G is a p-group, then there
is a natural isomorphism

H%(G,Q/2),/HY(G, Q/Z), + HY(G,Q/Z). = N*(G)
where
H3(G,Q/Z), = Ker(H*(G,Q/Z) - H*(G,C(W)*))
which may be computed in terms of the cohomology of G,

H3(G,Q/Z). = ) Cores§ H*(H,Q/Z)n,
HGG
and N3G is a kind of equivariant Chow group.
The connection between Chow groups of codimension 2 and restriction maps in
degree 3 appears also in [Pe2], [Pe3] and [Pe4], where we describe for any twisted
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generalized flag variety V' an exact sequence

HE((V, 2 2) 5 (PicVio ® k**)?
~ Ker(H*(4,Q/Z(2)) - H*(k(V), Q/Z(2))) — CH*(V)iors = 0

where k° is a separable closure of k, 4 = Gal(k®/k), and J¢; is the sheaf associ-
ated to the presheaf of Quillen’s K-groups U — K;(U). This exact sequence was
obtained using the work of Colliot-Théléne and Raskind on the ¥ -cohomology (see
[CTRY]) and a result of Bruno Kahn based on Lichtenbaum’s complexes (see [Lil],
[Li2], [Li3] and [Kahl]). This sequence was also considered by Merkur'ev who
proved in [Me] that the map j is injective.

More recently, Kahn gave in [Kah2] a direct proof of this exact sequence and
a description of the unramified cohomology group of degree three of these twisted
generalized flag varieties using the Hochschild-Serre spectral sequence for the hy-
percohomology of Lichtenbaum’s complexes.

One of the purposes of this text is to show that an easy generalization of the results
of Kahn enables one to state the results for generalized flag varieties and for finite
groups in a uniform way.

In fact we prove that if G is a finite group, W a faithful representation of G over an
algebraically closed field k£ of exponential characteristic p such that the complement
of the open set U on which G acts freely in W has a codimension bigger than 4, then
there is an exact sequence

0 — CH(k) - H3(G, Q/Z(2))
— Hp, (U//G, #E(Q/Z(2))) — Hyo(W, #%(Qp/Zp(2)))

where CH% (k) is the equivariant Chow group of Speck and J#%(Q/Z(2)) is the
sheaf corresponding to the presheaf

V = Hi(V,Q/Z(2)).

The connection with the results of Saltman becomes clear if one takes into account
the inclusions

H}  (k(W),Q/Z(2)) C Ho(U//G, % (Q/Z(3)))
C H¥k(W)%,Q/Z(2)).

The second section of this paper contains a partial description of the £ -cohomo-
logy groups of big open sets in cellular varieties followed by an easy generalization
of the results of Kahn, the third applies the previous computations to the case of finite
groups and makes explicit the connection with Saltman’s work and the fourth extends
the results to higher degrees using the work of Voevodsky.
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2. Hochschild-Serre spectral sequence for Lichtenbaum’s complexes
2.1. Notations. — In the sequel we use the following notations:

Notation 2.1.1. — For any field L, let L be an algebraic closure of L and L? be the
separable closure of L in L. For any variety V' over L we denote by L(V') the function
field of V and for any extension L' of L by V. the product V' Xgpec z Spec L'. We
put V2 = V.. One denotes by V() the set of points of codimension ¢ in V, and, for
any € V, by k(z) its residue field. The Chow groups of cycles of codimension &
on V modulo rational equivalence are denoted by CH*(X).

If L is a field, let p be the exponential characteristic of L, that is 1 if L is of
characteristic 0 and the usual characteristic otherwise. If n is prime to pand V' a
variety over L, let u,, be the étale sheaf of n-th roots of unity and for any rand i in
Z>o, let W, Q{,’log be the logarithmic part of the corresponding De Rham-Witt sheaf

W,£%,. By [BK, corollary 2.8], for V = Spec L one has
Wit 10q (L) = K;(L) /9" K;(L).
If n = n'p” with (n’,p) = 1, then one puts
One then defines
Q/Z(j) = imZ/nZ(j), (Q/Z)(j)= lm Z/nZ(j)
n (n,p)=1
and if / is a prime number

Q/2Zu(5) = lim Z/I"2(j).

If F' is one of the above complex of étale sheaves, we put
H(V, F) = Hy(V, F)
and if L is a field H*(L, F) = H}(Spec L, F). The Zariski sheaf corresponding to
the presheaf
U Hy(U, F)

is denoted by jfét(F).

If V is an algebraic variety over L and U a Galois covering of V'* with a finite
Galois group G, then there exists a finite Galois extension L’ of L and a Galois étale
covering U’ of V1, with Galois group G such that there exists an isomorphism from
U! to U over V,. We shall say that the pair (L', U’) represents the étale covering
U — V. We shall denote by Gal(U/V') the profinite group

lig Gal(U'/V)
o)
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where (L', U’) is taken over the pairs representing I//V* and such that U’ is Galois
over V.

2.2, ¢ -cohomology of big open sets. — The following well known result is a
direct consequence of the Brown-Gersten-Quillen spectral sequence.

Proposition 2.2.1. — If X is a smooth variety over a field k and 'Y a subvariety of
codimension at least c in X then

Hyo (X, ) = Hpp(X — Y, ;)
ifi<c—2

Proof. — By Gersten’s resolution the groups Hi'ar(X ,J j) are isomorphic to the
homology groups of the complex

@ Kj._.,-+1n(:z:)—a—":i) @ Kj_,-n(a:)g @ K;_i_1k(z).

zex(i_l) :I:EX(i) zEX("‘H-)
Since the codimension of Y is at least ¢, we have for j < ¢ — 1 the equality

(X —Y)0) = x0)

and the residue map 8; is the same for X and X — Y if i < ¢ — 1. Therefore the
homology groups coincide. O

Let us recall the definition of cellular varieties.

Definition 2.2.1. — A variety X over a field k is called k-cellular if and only if
there exists a sequence of closed subsets of X

b=ZycZ,Cc---CZ,=X

such that for 1 < ¢ < n — 1, Z;) — Z; is isomorphic to an affine space over k.

Corollary 2.2.2. — If X is a smooth cellular variety over k and Y a subvariety of
codimension at least c in X, then, ifi < c— 2,

Hi. (X -Y, ;) = CH(X) ® Kj_ik
where CH!(X) is a finitely generated free module over Z.
Proof. — By [Kah4, lemma 3.3], the group CH*(X) is a free Z-module of fi-
nite type, Then, using the proof of [Ped, proposition 3.1], we get that the module
D; j>0 Hzar(X, K it;) is a free ;5 Kjk-module with a basis given by any basis
of @i>0 CH(X ) over Z. By the last proposition, if ¢ < ¢ — 2, we get

T X =Y, ;) = Hi (X, X ) = CH(X)® K;_;k. O
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2.3. The main result in degree three. — Following the method described by Kahn
in [Kah2] we shall now use the Hochschild-Serre spectral sequence for Lichten-
baum’s complexes to get information about the kernel and cokemel of the map

H3(k, Q/Z(2)) — H3 1 (k(V), Q/Z(2))

for varieties having an étale covering which is a big open set in a cellular variety.

Theorem 2.3.1. — Let U — V be a finite étale Galois covering of smooth geomet-
rically integral varieties over a perfect field k which is of the form
UV >V

where k' is a finite separable extension of k. Let -G be the Galois group of this
covering. Assume that there is an embedding of U in a k'-cellular variety X such
that

codimx (X —U) > 4,

and assume moreover that the action of G on U extends to an action of G on X over
k. Let 9 = Gal(U*®/V'). Then the following assertions hold:

(i) There is an exact sequence

H*(¥,Q/Z(2)) - HL (V,3) = (PicX ® k)¢
— Ker(H*(¥,Q/Z(2)) - H3 (¥ (X)%, Q/Z(2))) - CHE(X)rors
— HY(G,PicX @ k')

where CH%(X), the equivariant Chow group of X, coincides with CH*(V).
(ii) There is a canonical morphism n from the group

Ker(Hp, (V, #&(Q/Z(2))) = Hiu(X°, #4(Qp/Z5(2))))
Im(H3(¥, Q/Z(2)))

to the group
CH?(X)%/CHE(X)
such that
Kern C Coker (CHZ(X o = H'(G,Pic X ® k"))
Remarks 2.3.2. — (i) The group H3, (X*,50%(Qp/Zp(2))) is trivial if X is

complete (see [Kah2, remark, page 397]).
(ii) The assumption that & is perfect is only needed for the p-part of the results.

Before proving this theorem, we give an example.
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Example 2.3.1. — Let V be a generalized flag variety, that is a projective variety
over k which is homogeneous under the action of a connected linear algebraic group
G and such that the stabilizer of a point of V' (k*) is a standard parabolic subgroup
of G*. Then Bruhat’s decomposition yields a cellular decomposition of V' over any
Galois extension k' of k splitting the group G and over which V has a rational point.
Moreover it yields a basis of Pic V* which is globally invariant under the action of
the Galois group of k. We get the following exact sequence

HL (V,3) - (PicV* ® k™)
— Ker(H3(k, Q/Z(2)) - H3(k(V), Q/Z(2))) = CH*(V )iors — 0

where 4 = Gal(k®/k). This sequence has been studied with more details in [Pe4]
where it was obtained using results of Colliot-Thélene and Raskind [CTR] and Kahn
[Kah1].

In section 3 we shall study the applications of theorem 2.3.1 to negligible classes
and unramified cohomology. We now turn to its proof.

2.4. Proof of theorem 2.3.1. — The Hochschild-Serre spectral sequence for Licht-
enbaum’s complexes was described and used by Kahn in [Kahl] and [Kah2]. We
use it in a slightly more general setting.

For any smooth connected variety X over k we consider Lichtenbaum’s complex
I'(2) = (T(2,X)%)icz (see [Lil], [Li2] and [Li3]). By [Kah2, theorem 1.1] the
hypercohomology groups of these complexes are given by

(0 fori <0,
K3(k(X))ina ifi =1,
i HS. (X, 3) ifi=2
2.4.1 Hi(X,[(2)) = { 2™ ’
@4.) (X,1'(2)) <_H%ar(X,.)6’2) ifi =3,
Coker cl% ifi =5,
|Hg Y(X,Q/Z(2)) ifi>6,

where cl% is the divisible cycle class map
CH?X ® Q/Z - HA(X,Q/Z(2))
and there is an exact sequence
0 — CH2X — HE(X,[(2)) — H2, (X, 7#3(Q/Z(2))) - 0.

As in [Mi, theorem II1.2.20] and [Kah2] we get a Hochschild-Serre spectral sequence
for these hypercohomology groups

ER = HP(4,HL(U*,T(2))) = Hg (V,T'(2)).
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By [MS2], the canonical map
K3(k*)ina = K3(K*(U))ind

is injective with a uniquely divisible cokernel. And by corollary 2.2.2 we have iso-
morphisms

HY(U®, ¢ 3) = CHY(X) ® Kak* —=> K)k?®,
HY(U?, ¢ 3) = Pic(X) ® k°*.

If n is prime to p there is an exact sequence [MS1, theorem 11.5], [S], [Le]

0 — p@2(k) = K3(k)ina = K3(k)ina — H (K, p2?)
— K2(k) B K?(k) = H?(k,u®?) = 0.

Therefore the prime to p part of the spectral sequence yields an exact sequence

HX(4,(Q/Z) (2))—HL(V, # 2) 5 (Pic(X*) @ k°*)Y - H3(¥,(Q/Z)' (2))
— Ker(Hgt(V, I'(2))—HL (X, r(z))) —HY Y, Pic(X*) ® k**)

where the ' means that we consider only the prime to p part of the groups. On the
other hand, by [MS2], the p-part of K3(k*)inq is uniquely divisible and by Bloch-
Kato theorem the p-part of the spectral sequence yields a similar exact sequence for
the p-parts of the group. So we get an exact sequence

HY(Y,Q/2(2)) = HiulV, 2 2) = (Pic(X*) @ k)7 - H*(9,Q/Z(2))
— Ker(H&(V,T'(2)) — Hg(X°,T'(2))) = HY(¥,Pic(X®) ® k**).

Moreover, since k is pq_srfect, by Bloch-Ogus spectral sequence [BO], and the cor-
responding one for W"Qg(,log [—37] [GS, theorem 1.4] and by the fact that sheafifica-
tion commutes with direct limits, we have that the group H2, (U*, #£3(Q/Z(2))) is
isomorphic to HY, (X*, 7#%(Q/Z(2))). But X* contains an affine space ALY, and
therefore this group is contained in the group HY, (AN, 5% (Q/Z(2))) the prime
to p part of which is trivial by homotopy invariance. Therefore we get that there is an
exact sequence

0 — CHY(X*) —» Hg(U*,T'(2)) — Hzu(X*, #4(Qp/Zp(2))) — 0.
Using the exact sequence

0 — CH*(V) = Hg(V,T(2)) = Hz.(V, #4(Q/Z(2))) = 0
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and a little diagram chase, one gets an exact sequence

H*(4,Q/Z(2)) — Hzu(V, H2) —+ (Pic(X*) ® k**)7

— Ker(H*(¢,Q/Z(2)) —» Hpu(V, 5 4(Q/Z(2))))
— Ker(CH?(V) —» CH2(X*)?) - HY(¥,Pic(X*®) ® k**)

and an injection from the homology of the complex

Ker (Hy (V, #%(Q/Z(2))) = HL(X*, #4(Qp/Z(2)))

— H3(¥4,Q/Z(2)) — Coker(CH?(V)— CH%(X*)¥)
to
Coker (Ker(CHZ(V) — CHX(X*)?) » HY(¥, (Pic X* ® k‘)*)).
But CH2(X?) is a free abelian group, therefore
CH2(V)iors C Ker(CH?(V) — CH2(X?)).
A transfer argument implies the inverse inclusion. We also have
CH?(X*) = CH?}(X) and CH?(X*)? = CH}(X)S.
Similarly Pic X¢ = Pic X and therefore
(PicX* ® k**)¥ = (PicX @ ¥')¢
and by using the inflation restriction exact sequence and Hilbert’s theorem 90
HY(Y,PicX® ® k**) = HY(G,PicX @ k'*).
Finally by Bloch-Ogus spectral sequence
HY,(V, #%(Q/2(2))) C H(k(V), Q/Z(2))
= H(K'(X)%,Q/Z(2)). O

3. Application to the case of finite groups

3.1. Negligible classes. — The notion of negligible classes has been introduced by
Serre in his lecture at the Collége de France [Se]. We shall use a weaker condition
than the one he used.

Definition 3.1.1. — Let H be a finite group, M be a H-module and E be a field.
Then a class A in H*(H, M) is said to be totally E-negligible if and only if for any
extension F' of E and any morphism

p: Gal(F*/F) > H
the image of A by p* is trivial in H*(F, M).
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If H is a finite group and W a faithful representation of G over a field E and
n € Zyo then forany g € G,

(Wn)? = (W),
where WY is the subspace of invariant elements under g, and thus it has a codimen-
sion bigger or equal to n. Let U, be the open set in W" on which G acts freely.

We get that codimyy» W™ — U,, > n. We recall the definition of equivariant Chow
groups (see Edidin and Graham [EG, §2.2]).

Definition 3.1.2. — IfY is a smooth geometrically integral variety equipped with a
G-action over k then

CHg(Y) = CH((Y x Ui11)//G).
We put CH%, (k) = CH%(Spec k).
Corollary 3.1.1. — If k is an algebraically closed field and G a finite group, then
the equivariant Chow group CHZ(Spec k) is canonically isomorphic to the group of
totally k-negligible classes in H3(G, Q/Z(2)).
Remarks 3.1.2. — (i) The map
CHZ(k) — H*(G,Q/Z(2))
coincides with the cycle class map defined as the composite map
CHE (k) = CH*(Us//G) — Hg(Us//G,T(2)) = H*(G,Q/Z(2)).
(ii) The injectivity of this map follows from [MS1, corollary 18.3].

Proof. — First of all, as it was pointed out by Serre, the group of totally k-negligible
classes in H3(G, Q/Z(2)) coincides with the kernel of the map

H%(G,Q/Z(2)) — H*(k(W)%,Q/Z(2))

where W is an arbitrary faithful representation of G over k. Indeed one of the inclu-
sion is obvious and if -y belongs to this kemel, if K is an extension of k, and

p: Gal(K*/K) = G

any map then we may assume, without loss of generality, that p is surjective. Let K’
correspond to the kernel of p. By the no-name lemma K'(W) is rational over K.
Thus the map

H*(Gal(K*/K), Q/Z(2)) - H*(Gal(K(W)*/K'(W)®),Q/Z(2))
is injective and there is a commutative diagram . '
H3(G,Q/Z(2)) — H*(Gal(K*/K),Q/Z(2))

H3(Gal(k(W)*/k(W)F), Q/Z(2)) — H*(Gal(K(W)*/K'(W)®), Q/Z(2)).
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We may apply theorem 2.3.1 to W’ = W* and we get an exact sequence
0- Ker(H3(G, Q/Z(2))~H*(k(W)®, Q/2(2))) » CHE(Spec ko —0. [

Let us now compare this result with the corresponding one of Saltman. We first
recall the definition of the groups considered by Saltman.

Definition 3.1.3. — Let | be a prime number, G an l-group, and W a faithful
representation of G over C. Then Z;G is the free F;-module over the set of irre-
ducible G-invariant subvarieties of codimension 2 in W. For any G-invariant closed
irreducible subvariety of codimension 1 in W and any f in C(Y') such that f™ is
invariant under G for some n 2 1, one defines Div(f) in Z;(G) as the class of

> ()Y
Y
where Y goes over the set defining Z;G. Let R;(G) be the subgroup of Z;(G) gener-
ated by these divisors. Then
N3G = ZiG/R,G.

Let H3(G, Q/Z(i)), denote the set of totally C-negligible classes. It contains two
subgroups, namely the group of permutation negligible classes

H3(G,Q/2Z(i))p, = Ker(H*(G, Q/Z(i)) - H*(G,C(W)*))
and

H3(G,Q/Z(i)). = Y Coresy H*(G, Q/Z(i))a.

HGG
Then in [Sa2, theorem 4.13], Saltman proved that there is a canonical isomorphism
H3G,Q/Z)./H?*(G,Q/Z), + H*(G,Q/Z). = N3(G).

Proposition 3.1.3. — If G is an l-group and W a representation of G of the form
W' where W' is a faithful representation of G over C, then there is a commutative
diagram

2 % s
CHg(C) — H(G,Q/Z(2))

} ’

NG) = H(G,Q/Z(2))/(H*(G,Q/Z(2)p + H*(G, Q/Z(2)).)-

In order to prove this proposition, we first need to prove that the canonical mor-
phism ®¢ is compatible with corestriction and cup-product.
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Notations 3.1.4. — If H is a subgroup of a finite group G, W a faithful represen-
tation of G, and U; the open set in W* on which G acts freely, then there is an étale
covering

Uir1//H 5 Uis1//G.
It induces a map
ma : CH (Usy1 //H) - CH!(Ui11//G)
and thus a map
CHi,; (k) — CHL (k)
which will be denoted by Cores$,.

Lemma 3.1.4. — If H is a subgroup of a finite group G, then the following diagram
commutes:

S
CH} (k)= H*(H,Q/Z(2))n
Coresgl Cores?;l

L fe]
CHZ (k)= H*(G, Q/Z(2))n-
Proof. — The Hochschild-Serre spectral sequence
HP(G)H?:t(U47 F)) = Hgt(U4//G7 F)

where F' is a complex of étale sheaves on Uys//G is compatible with restriction and

morphisms of complexes.
If F' is an étale sheaf on U, // H, then we define Ind$; F as the direct image of F
by the canonical projection

7 : Us//H — Uy //G.
But for any étale map U — U, // H there is a canonical map
U—Uxy,yeUsf/H
which induces a map n*m, F — F and therefore maps
HY(Uy//G,Ind§ F) — HL(Us//H,n* Ind§ F) - HL(Us//H, F).

Since , is exact in this case, the composite maps are isomorphisms, which is ana-
loguous to Shapiro’s lemma. The corresponding isomorphisms for hypercohomology

H{,(Us//G, Ind§ F) = H{(Us//H, F)

are compatible with the Hochschild-Serre spectral sequence. If F' is defined over
U, // G, then by [SGA4, exposé XVIII, théoréme 2.9] there is a transfer map

Tr: ra*F — F.
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The corestriction may be defined as the composite of the map induced by Tr and the
inverse of the Shapiro isomorphism. Thus the Hochschild-Serre spectral sequence is
compatible with the corestriction. Therefore we get a commutative diagram for the
prime to p part

HYH,(Q/2)(2) <=, m3(G,(Q/z)(2)
3.1.1) B (H, HL (U, (@) 2% (G, HL (U, I(2)’
H(U,T(2) % By, D)

as well as a similar one for the p-part.

The long exact sequence of hypercohomology with support is also compatible with
morphisms of complexes and contravariant for étale coverings. Thus they are com-
patible with corestrictions. Using [CTHK, §I.1], we get that the coniveau spectral
sequence

EM = [[ HZ?PU.//G,T(2)) = HEM(U//G,T(2))
zeX(p)

and the similar one for Uy // H are compatible with corestrictions. A similar statement
holds for the isomorphisms (see [Kah2, theorem 6.1])

HP(Ua[/G, #4(T(2))) = EZ*.

Therefore we get a commutative diagram

0 0
CH2(U4V/H) Coresit CH2EU4//G)
(3.12) B/ ETE) 5 )6, 1e)
HY (U4 H, Q/2() < B9, (Uu)/G,#8(Q/2)
0 0

where the vertical lines are exact by [Kah2, theorem 1.1].
The lemma follows from the commutativity of the diagrams (3.1.1) et (3.1.2). O
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Notations 3.1.5. — The complexes

05Z—-Q—0 and 05Z-25QeQ =Q—0
are both quasi-isomorphic to Q/Z[—1]. Therefore in the category of bounded com-
plexes of étale sheaves there is a canonical morphism
L
Q/Z[-1] ® Q/Z[-1] —» Q/Z[-1].
Similarly one may define canonical products
r L - - »
Q/Z(i){-1] ® Q/Z(H)[-1] = Q/Z(: + j)[-1].
Let I'(1) be the complex G,[—1]. There is also a product
L
1) ®r(l) - I'((2)
and the natural morphisms
Q/Z(1)[-1] = T(1) and Q/Z(2)[-1] - T'(2)

may be fitted into a commutative diagram

Q/Z(1)[-1] & Q/Z(1)-1] — cf/zm[—l]
I'(1) § I(1) —— T(2).
The top horizontal line corresponds to a cup-product
U: HE(X, Q/Z(1)) ® H(X, Q/Z(1)) ~ HE (X, Q/Z(2)).
If we consider the short exact sequence of G-modules
0— k* = k(W*H* - DivW* =0,
we get a long exact sequence
0 — k* = k(Us//G)* = Div(Uy//G) = HY(G, k*) —» HY(G, k(W*)*).
But by Hilbert’s theorem 90 H(G, k(W*)*) is trivial and we get an isomorphism
g : Picg k — HY(G,Q/Z(1)).
Remark 3.1.5. -—— The product above may also be described as the composite map
HE(X,Q/Z(1)) ® HY(X, Q/Z(1)) — HE™ (X, Z(1)) ® HE(X, Q/Z(1))
— HPH (X, Q/Z(2))
where
HE(X, 2(j)) = Jim HE(X, Z/nZ(5)).
n
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Lemma 3.1.6. — If G is a finite group and k a separably closed field, one has a
commutative diagram

Picg k ®z Picg k ————— CH%k

L L

HY(G,Q/Z(1)) ® H(G,Q/Z(1)) — H%(C,Q/Z(2))
where the top map is given by the intersection product.

Proof. — Thanks to the compatibility of the coniveau spectral sequence with cup-
products one gets for any a in Picg k a commutative diagram

Picgck -5 CHLk

PicUs//G =% CH2U.//G
vz ~
H(Us//G,T(1)) — HL(Us//G,T(2))
r t

H(G,Q/Z(1)[-1])) — H4(G,Q/Z(2)[-1])
where a is successively seen as an element of

Picgk, PicUs//G, Hi(Us//G,T(1)) and H*G,Q/Z(1)[-1]). O

Proof of proposition 3.1.3. — The group CHZ(C) may be described as a quotient
Z/R where Z is the free Z-module over the set of G-orbits in W) and R is the
subgroup generated by the divisors of functions f in C(Y)**®*P¢Y where ¥ goes
over W(1), Then the obvious surjective map

Z—)ZIG

sends R into R;G. Indeed, if Y € W) is not G-invariant and f € C(Y)*5®Pe?¥,
then for any C in W) invariant under G, vc(f) belongs to [Z. Thus we get a
surjective morphism
CHZ(C) —» N3G.
We put
CHZ(C). = Y Cores§ CH%(C).

HGG

By lemma 3.1.4 we have an isomorphism
CHZ(C). = H*(G, Q/Z(2))..
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By [Sa2, poposition 4.7], the permutation negligible classes may be described as
Ker(H*(G,Q/Z(2)) + H(G,Q")))
where @Q* is a G-module such that
VHCG, HYH,Q*)=0
and there is an exact sequence
0-+Q/Z(2) > Q*"—>Q—0
where () is a permutation module. It may be constructed as follows: let
Q= @ (Z[G/H])H' (H:Q/Z(2)
HCG .
If H is a subgroup of G, any « in H1(H, Q/Z(2)) defines canonically an element
& € Exty(Z, Q/Z(2)) = Extt(Z[G/H], Q/Z(2))
where the isomorphism is given by Shapiro’s lemma. We consider
n=), Y,  &€Extx(Q,Q/Z(2)
HCG acHY(H,Q/Z(2))
the class 7 defines an extension
0-Q/Z(2) > Q*—>Q@—0
unique up to isomorphism. But then
H(G,Q/Z(2))c = Im(H*(G, Q) > H*(G,Q/Z(2)))
= Y mm(H*G,Z[G/H]) 2 H(G,Q/%(2)))
HCG
acHY(H,Q/Z(2))
where 9, is the map defined by the short exact sequence
0> Q/Z(2) > E, - Z[G/H]— 0
associated to &. On the other hand, we have a commutative diagram
HY(G,Z[G/H])) —=— H*(G,Q/Z(2))
Tl TCoresg
HY(H,2) —=— H%(H,Q/Z(2))
which follows from the commutative diagram of G-modules
0 — Q/Z(2)[G/H] —— E|[G/H] —— Z|G/H] —— 0

» ! ||

0O— Q/Z22) — E, —— Z[G/Hl —> 0
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where E, is the extension of H-modules defined by & and the fact that the core-
striction is induced by the trace and the inverse of Shapiro’s isomorphism. But for
G = H the map 8, is compatible with cup-products and therefore coincides with the
cup-product by the class of « itself wich is the image of 1 by the the map

HY(H,Z) 22 HY(H,Q/Z(2)).
Therefore H3(G, Q/Z(2)), is given as
)" Cores§ Im(H'(H, Q/Z(2)) ® H*(H,2) — H*(H,Q/Z(2)))
HcCG
which is the same as
> Cores§ Im(H(H, Q/Z(1)) ® H'(H,Q/Z(1)) — H*(H,Q/Z(2))).
HCG
We put
. CHZ4(C), = Z Cores§, Im(Picy C ® Picy C — CH% C).
HCG
By lemma 3.1.6 we get an isomorphism
CHE(C)p = H(G, Q/Z(2))p-
It remains to prove that
(3.1.3) Ker(CHZ(C) — N3(G)) = CH%(C). + CH%/(C),.
Since G is a [-group, it has a subgroup of index ! and since the composite map
Cores$; o Resd

coincides with the multiplication by [G : H], we get that I CH% C is contained in
both sides of (3.1.3). Alsoif Y in W2 is not G-invariant then the class of its orbit
is the image of the class of Y in CHgtab & Y(C) C by the corestriction. Therefore the

group CHZ(C), is generated by ! CH%(C) and the G-orbits in W) which are not
reduced to one element. Thus the quotient
CH%(C)/ CHZ(C).
may be described as the quotient of the F;-vector space Fy with basis the elements
of W@° by the subspace R; generated by divisors of functions in C(Y')¢ where
Y e w€,
The image of CHZ(C),, in this group coincides with the image of
Picg C ® Picg C
which is generated by products [y][z] with y and z in W®€. Moreover one has that
Picg C = PicU,//G.
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. . . . 1
Therefore one may assume that y is the inverse image of an element y’ in W' 2(1) by
the first projection W — W' whereas z comes from an element 2’ by the second
one. Since the map

C(W")* = Div(W'?)
is surjective, 2’ is defined by a function f on W' and y.z is given as the divisor of
the function f o pr, restricted to . Since z is G-invariant, one has

Vge G, I9f/feC*
and the map

G —» C*
g — f/f

is a morphism. Therefore (f o pr,)!/¢l € C(Y')®. We get that the image of the group
CHZ(Spec C), in F;/R, is contained in

Ker(F;/R; — N3(G)).
Conversely, let Y belong to (W1))€ and § be a function on Y such that
IneZsg, [freC(Y)®
then
VgeG, ‘f/f€Q/L(1)
and it defines an element of
HY(G,Q/Z(1)).

Let Z' in Div(W"?) represent the corresponding element of the group Picg C and &'
in C(W')* be such that

Divh' = Z'.
We may choose A and p in C so that the divisor of
h = AR’ o pry +uh' o pr,

intersects properly with Y. By construction we have that

VgeG, (Ph/h)y =°f/f
and therefore

hiy/f € C(Y)C.
Then the image of Div f in F/R; coincides with the one of hjy which is the image
of the product
Divh.y
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and we get that
Ker(F/R; — N3(G)) = Im(CHZ%(C), — Fi/R))
as wanted. |

Example 3.1.1. — If G is an F-vector space with [ # 2 by [Bro, page 60], one has
an isomorphism

H"(G,Q/Z) = Hom(H,(G,Z),Q/Z).
By [Car, théoréme 1], we get that
S2GY @ A3GY = H3(G,Q/Z)
where the isomorphism is given by the map
A3GY = A’HY(G, Z/pZ) — H*(G,Z/pZ) — H3(G,Q/Z)
and the map
52GY = S’H*(G,Z) - H(G,Z) = H*(G, Q/Z).
By [Pel, lemma 7], the map
A3GY - H3(k(W)C,Q/Z)

is injective. But by lemma 3.1.6, the elements in the image of S2G" are permutation
negligible and we get that

2@V = CH% k.
More generally, Totaro has given a description of the map
CHg(k) — H*71(G, Q/Z(3))
in this case.

Example 3.1.2. — If G has a 2-dimensional representation P then we may assume
that there is a surjective map W —s P. Its kernel defines an element of CHZ (k). If G
is a 2-group having a cyclic subgroup of index 2 this is the example of Saltman [Sa2,
theorem 4.14] who proved that the element obtained in N3G is non-trivial.

3.2. Unramified cohomology groups. — Let us first recall the definition of higher
unramified cohomology groups (see [CTOY]).

Definition 3.2.1. — If K is a function field over k, that is generated by a finite
number of elements as a field over k then one considers the set 2(K/k) of discrete
valuation rings A of rank one such that

kCACK and Fr(4) =K.
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For any A in 22(K/k) and any n prime to the exponential characteristic p of k, one
considers the residue map

da: HY(K,p&%) = H kg, u¥ 1)

where k4 denotes the residue field of A. The unramified cohomology groups of K
over k are defined as

H:;r/k(K; pel) = ﬂ Ker da.

AcP(K/k)
We shall also consider
s e(K(Q/ZY () = L Hip (K, u®).
(n,p)=1

Remarks 3.2.1. — By [CTO], the unramified cohomology groups are invariant for
stable rationality. In particular, it follows from the no-name lemma that, for any finite
group G the unramified cohomology group

Hi, 1 ((W),(Q/Z)'(5))

where W is a faithful representation of G over k depends only on &k and G.
If i = 2, Bogomolov [Bo] proved that

HZ,o(C(W)%,Q/Z(1)) = Ker(H*(G,Q/Z(1)) —» ] #*(B,Q/Z(1)))
Be®

where £ denotes the set of bicyclic groups in G, that is abelian subgroups generated
by two elements.

Theorem 2.3.1 implies the following generalization of a result of Saltman:

Corollary 3.2.2. — (See Saltman [Sa2, theorem 5.3]) If G a finite group and W a
faithful representation of G over a separably closed field k, then

HE . (k(W),(Q/ZY (2)) C Im(H*(G,(Q/Z)'(2)) —» H*(k(W),(Q/Z)'(2)).

Proof. — Let U be the open set in W on which G acts freely. We may assume that
codimy (W — U) > 4 and we may apply theorem 2.3.1 to U and get that

Hy.(U//G, #4((Q/Z) (2)))
is contained in
Im(H%(G,(Q/Z)'(2)) — H}(k(W)%,(Q/Z)'(2))).
But it follows from Bloch-Ogus spectral sequence that
Hin(k(W)C,(Q/2)'(2)) C Hzo(U//G, #5((Q/2)'(2)))
and this implies the corollary. O
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4. Application of Voevodsky’s motivic complexes

In this section, we want to generalize the results of the previous sections to the
fourth and fifth cohomology groups using the Hochschild-Serre and coniveau spectral
sequences for Voevodky’s étale complexes Z(3) and Z(4) [Vo3, §2.1].

Let us first recall a few facts about the coniveau spectral sequence.

4.1. Reminder on the coniveau spectral sequence. —

Notations 4.1.1. — From now on, we assume that the characteristic of &k is 0. Let
Z(n) be Voevodsky’s étale motivic complex of weight n [Vo3, §2.1]. Then for any
smooth variety X, one puts

HY,(X, Z(n)) = HL(X, Z(n)a).

. Let a be the canonical morphism from the big étale site to the big Zariski one. Then
there is a Leray spectral sequence (see [Mi, theorem IT1.1.18])

ED(n) = HEy(X, #4(Z(n))) = HE (X, Z(n))
where 5 (Z(n)) is the Zariski sheaf corresponding to the presheaf HY(Z(n)) given
by
U — HL(U, Z(n)).
Indeed, by [Mi, proposition III.1.13], this sheaf coincides with R9a,Z(n)g. Using
[Vo2, §3.3] and the proof of [Vol, theorem 5.3], we get that H,(Z(n)) has a canon-
ical structure of homotopy invariant pretheory and by [Vol, proposition 4.26] this is

also the case of S (Z(n)) (see also [Vo3, page 10]). By [Vol, theorem 4.37], there
is a Gersten resolution of #% (Z(n)) and we get a coniveau spectral sequence

BEP'(n) = €D (i2)s(HL(Z(n))-p) = HE'(X, Z(n))
zeX ()
where for any pretheory F', the pretheory F_; is given by

F_(U) = Coker(F(U x A1) 2% F(U x (Al - {0}))).

Theorem 4.1.1. — (See Kahn [Kahd4]) With notations as above, if n > 1, one has

(i) the group EY*(n) is uniquely divisible if p > gand 0 < p < n —2,
(i) the group EPY(n) is uniquely 2-divisible ifp = qand 0 < p< n—2,
(iii) one has
B (n)®Ze) = P Klp(k(2) ® Zg)
zeX(P)

ifg=nandd<p<n-—3,
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(iv) there are canonical isomorphisms
EPin)= @ K, (x(=)
zeX(P)

fg=nandn—-2<p<n,
(v) the group EY¥(n) @ Zy) is trivial ifg=n+1and 0 < p<n—3,
(vi) one has
BY(n)= P H'(s(z),Q/Z(n)
zeX @)
fo<p<g—landg>n+1,
(vii) all other E{"¥(n) withq =n + 1 or p > q are trivial.

Remark 4.1.2. — The Milnor-Bloch-Kato conjecture is used in all the assertions
where the prime 2 plays a special role. If we assumed that this conjecture held for
any prime, we would be able to simplify the assertions accordingly.

Proof. — By [Vo3, lemma 2.9] and comparison theorems between Nisnevich and
Zariski topology [Vol, theorem 5.7], one has that if < n,

HYE(n)) s = 2L (Z(n — ).

Therefore, if p < n, one has

BM(n) = P HLP(k(z),Z(n - p)).

zeX (@)

But for any positive m there is a distinguished triangle

Z(n) == Z(n) — Z/mZ(n) = Z(n)[1]
yielding for any field K a long exact sequence
4.1.1)

HE(K, Z(n)) =™ HY(K, Z(n)) - HY(K, Z/mZ(n)) - B (K, Z(n))

and by [Vo3, theorem 2.6],
4.1.2) HY(K,Z/mZ(n)) = HY(K, p3")

which is trivial if ¢ < 0. This implies assertion (i).
Assertion (ii) is proved in [Kah3, theorem 3.1 (a)].
By Beilinson-Lichtenbaum conjecture [Vo3, theorem 2.11],if 0 < g < n,

H%is(K! Z(n)) ® z(2) — Hgt(K, Z(n)) ® Z(z)
and by [SV, proposition 3.2] one has
K (K) = Hiy(K, Z(n))

this implies (iii). The same argument implies the case p = n — 2 of (iv).
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Assertions (iv) and (vii) for p = n or n — 1 follow from the isomorphisms
Z(1) = G [-1] and Z(0) = Z.
Assertion (v) follows from Hilbert’s theorem 90 [Vo3, theorem 4.1] which also
implies (vii) forp=n—2andg=n+1.
From the distinguished triangle
Z(n) — Q(n) — Q/Z(n) - Z(n)[1]
and the comparaison theorem for Q(n) [Vo3, theorem 2.5], one gets that the motivic
cohomology group Hf, (K, Z(n)) is torsion for ¢ > n + 1. Then (4.1.1) and (4.1.2)
gives an isomorphism
H(K, Z(n)) = HE™ (K, Q/Z(n))
if ¢ € n. This yields (vi) for p € n.
The exact sequence
0-Z->Q—->Q/Z—-0
implies that
HLHQ/T) ifg>2,
HLZ) = Z ifg=0,
0 otherwise.
But by [Vol, §3.4], one has
HG(Q/2(3)-j = #  (Q/Z(i - j))
and we get the assertions (vi) and (vii) for p > n. O

Notation 4.1.2. — We define H. (X, ¥ gl ) as the i-th homology group of the
complex (see [Kat, page 242])
0= P EKMe@) > P KMflisx)—>---—» @ Z—o.
zeX(©) zeX ) zeXx(@
Corollary 4.1.3. — One has
@) EY(n)®Zy) = H&(X,Jé’gl) ®Zy ifg=nand0<p<n—2
(i) E5¥(n) = H (X, X ) ® Z(z) ifg=nandn—-1<p<n,
(iv) ES¥(n) ® Z(gy istrivialifg=n+1and 0 < p<n—3,
(iv) EY?(n) = H7, (X, #%(Q/Z(n))) f0<p<g—landg>n+1.
(v) all other E5¥(n) withq =n + 1 or p > q are trivial.

Corollary 4.1.4. — If X is a smooth variety over a field k of characteristic 0 and
Y a subvariety of codimension at least c in X, then for any positive integers n and q
such that ¢ > sup(n, q) the natural restriction map

H} (X,Z(n)) = H{(X - Y,Z(n))
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is an isomorphism.

Proof. — This follows from assertion (vii) of theorem 4.1.1 as in proposition 2.2.1.
O

Corollary 4.1.5 (Kahn, [Kahd, §5, n = 3]). —  With notations as above, there is
an exact sequence

0 — HZ, (X, 3) ® Z(z) = HY(X, Z(2)(3)) = Hu(X, #%(Q2/Z2(3)))
— CH*(X) ® Z() — Ker(HE(X, Z(3)(3)) — Hzu(X, #5(Q2/Z2(3))))
— Hz, (X, #4(Q2/Z2(3))) - 0.
Corollary 4.1.6. — With notations as above, there is a canonical isomorphism
Hyo(X, X 3") ® Zgy = HL(X, Z()(3)).

Corollary 4.1.7. — (See Kahn, [Kahd4, §5, n = 4]) With notation as above, there is
a canonical exact sequence

0 = HZ, (X, 1) ® Z(zy — HY(X, Z3)(4)) = H2or(X, 55(Q2/Z2(4)))
= H3, (X, X 4) ® Zzy — Ker(HL(X, Z(2)(4)) — HI(X, #8(Q2/Z2(4)))
— H7, (X, #%(Q2/Z2(3))) — Ker(CHY(X) ® Z(z) — HE(X,Z(3(4))).

Remark 4.1.8. — The maps CH}(X) ® Z(z) & H*(X,Z(i)) ® Z(z) which appear
in these corollaries are induced by the usual cycle class map.

4.2. Finite groups and motivic cohomology. — We now want to relate the coho-
mology of finite groups with coefficients in Q/Z(n) to integral motivic cohomology.

Proposition 4.2.1. — If W is a faithful representation of a finite group G over an
algebraically closed field k of characteristic 0, such that the open set U on which G
acts freely verifies

codimy W —-U >1¢
and i > n then
H"Y(G, Qa/Za(n)) = Hy(U//G, Zz)(n))
Proof. — We consider the Hochschild-Serre spectral sequence
HP(G,HL(U,Z(n))) = Hgt‘"q(U//G, Z(n)).
By corollary 4.1.4, we have thatif 7 < ¢
H,, (U, Z(n)) = HL(W, Z(n)) = HL(F, Z(n))
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where the second isomorphism is given by homotopy invariance. Using the distin-
guished triangle

Z(n) =5 Z(n) - Z/mZ(n) — Z(n)[1]
and the isomorphisms
HI(F, u$") = H(F,Z/mZ(n))

we get that the groups Hgt(F, Z(n)) are uniquely divisible for ¢ # 0 and ¢ # 1.
By [Kah3, theorem 3.1 (a)] the group HY,(F, Z(5)(n)) is also uniquely divisible. We
obtain a short exact sequence

0 = Q2/Zs(n) — HY(F, Zz)(n)) — Hi(F, Q(n)) - 0.
By [Vo03, theorem 2.5], we have
HL.(F,Q(n)) = HL(F, Q(n))

which, by construction, is 0 if ¢ 2> n 4 1. Therefore we get that

- HP(G,Hg,(F,Z3)(n))) is uniquely divisible if p = 0,9 < n, ¢ # 1,

- H(F, Z(3)(n)) is divisible,

- HP(G,HA(F, Z3)(n))) = HP(G, Q2/Za(n)) if p > 0,

- H?(G,H{(F,Z)(n))) = 0 otherwise.
The spectral sequence yields for ¢ > n + 1 isomorphisms

H™Y(G,Qz2/Za(n)) = Hy(U//G, Z(z)(n))
and an exact sequence
HZ(F, Zgy)(n)) 2 HY(G, Qa/Z2(n)) = HE™M(U//G, Z(z)(n)) — 0.

But the first group is divisible and the second killed by #@G, therefore v is trivial. [
4.3. Equivariant J¢ -cohomology. — The following proposition is classical (see
[To, §11).

Proposition 4.3.1. —  Let W and W' be two faithful representations of a finite
group G over a field k such that there are open sets U and U’ on which G acts freely
with

codimy W —U 2q+1 and codimy W' —U' >q+1,
then for any smooth G-variety there is a canonical isomorphism

HI(Y x U)//G, ") = HY((Y x U")//G, M.

Before proving this proposition let us recall a result of Rost:
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Proposition 4.3.2 (Rost). — If X — Y is a vector bundle, then for any q¢ 2 0,
p 2 0, one has

HP(X, M) = HP (Y, )).

Proof. — This follows from theorem 1.4, remark 2.4, and proposition 8.6 in [Re].
O

Proof of proposition 4.3.1. — As in [To, §1] or [EG] we use Bogomolov’s double
fibration argument. By the proof of proposition 2.2.1, if W = W', we have isomor-
phisms

HY((Y x U)//G, %) = H((Y x (UNU))//G, 7))
=5 HI((Y x U")//G, M)
thus this group does not depend on the choice of U. But the canonical map
Y xUxW)//G—~ (Y xU)//G
is a vector bundle. Using proposition 4.3.2, we get isomorphisms
HI(Y xU)//G, M) = HI(Y xU x W')//G, M)
= HY(Y x W x U")//|G, M)
=y HI(Y xU"//G,¢M). O

Definition 4.3.1. — With notation as in the proposition, we define the equivariant
J¢ -cohomology group as

HE(Y, ") = Hy, (Y x U)//G, ¥ 3")
and put H2(k, ¢’ M) = H%(Speck, £ }).
Example 4.3.1. — If p = q, we obtain the usual equivariant Chow group.
Example 4.3.2. — If p = q — 1, then we have
HE(Y, ¥ ¥ ,) = HP(Y x U//G, X 411)
which coincides with the equivariant higher Chow group CHZ,(Y, 1) (see [EG)).

Proposition 4.3.3. — For any finite group G and any algebraically closed field k,
one has

Hy(k, % 3") = H*(G,Q/Z(2)).
Proof. — We use the Hochscild-Serre spectral sequence
HP(G,HY(U,T(2)) = BY(U//G,T(2))
and the results of Kahn (2.4.1) to get the isomorphism. O
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Definition 4.3.2. — Similarly we define the equivariant .##’¢-cohomology groups
HE(Y, #4(Q/%(n))) = HZ, (Y x U)//G, #74(Q/Z(n)))
and put HE(k, #%(Q/Z(n))) = HP(Spec k, #%(Q/Z(n))).
Remark 4.3.4. — One has the inclusions
HY  (k(W)C,Q/Z(n)) € H(k, #5(Q/Z(r))) C HP(k(W)®, Q/Z(n)).
Example 4.3.3. — if p = 2 we have
H(k(W)®, Q/2(2)) = Br(k(W)°)
which is in general infinite,
H*(G,Q/Z(1)) = HE(k, #4(Q/Z(1)))
and, by Bogomolov’s result,

H2 o (k(W)%, Q/Z(1)) = Ker(H*(G,Q/Z(1)) —» [] H*(B,Q/Z(1)))

Be#®

where 4 is the set of bicyclic groups in G.

4.4, Application to negligible classes. — In degree 4, we get the following results:

Theorem 4.4.1. — If G is a finite group and k an algebraically closed field of
characteristic 0, then there is a canonical exact sequence

0 — H(k, H'3) ® Zg) = H*(G, Q2/Z5(3)) — HE(k, #&(Q2/Z2(3)))
— CH%(k) ® Z(2) - Hs(G, Qz/Z2(3))
and a canonical isomorphism
Hi(k, X 31) ® Z(z) = H3(G, Q2/Z2(3)).

Proof. — The first assertion follows from proposition 4.2.1 and corollary 4.1.5 and
the second from the same proposition and corollary 4.1.6. [

Notations 4.4.1. — Let H*(G, Q2/Z2(i — 1)), be the kernel of the map
H'(G,Qa/Zs(i — 1)) = H'(K(W)%, Q2/Z5(i — 1))
and H*(G, Qz/2Z3(i — 1)), be

> Coresf; H'(H,Qz/Z(i — 1))a.
HCG
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We also consider the group
H'(G,Qa/Z(i — 1))y

= ) CoresG(H'(H, Q2/Z5(1)) U H'*(H, Qa/Za(i - 2)))
HCG
where the product is defined as in notations 3.1.5. As in paragraph 3.1 we may define
for any subgroup H of G a map

Cores§; : Hiy(k, #Mq) - HE(k, o))
and there is a natural product (see [Ro, remark 2.4 and §14])
Hi(k, M) @ Hi(k, M) - HG (k, M)
We define
HZ(k,  g)c = Z Im Cores$
HCG
and

Hé(k, H 3)p = E Cores$ (Picg Speck U Hx(k, X 2)).
HCG

Remark 4.4.2. — The group H*(G, Q2/Z2(i — 1)), coincides also with the kernel
of a map

HY(G,Q2/Zy(i — 1)) & H'(G,k(W)*).

Proposition 4.4.3. —  With the notations of theorem 4.4.1 the canonical isomor-
phism

HE(k, 23 ® Z(zy > H(G,Q2/Z2(3)n
induces an isomorphism from
HE(k, 3/ (HE(k, A 3)p + HE (R, K 3).)
to
H*(G, Q2/Z2(3))n/ (H*(G, Qz/Z2(3))p + H*(G, Q2/Z2(3))c)-
Proof. — This follows easily from the next two lemmata:
Lemma 4.4.4. — With notations as above, there is a commutative diagram
Hy(k, #¥) @ Z(ny —— HY(H,Q2/Z2(3))
lComg lCoresg
Hi(k, ) ® Zisy —— HYG,Q2/Z2(3)).

Proof. — As the proof of lemma 3.1.4 this follows from the compatibility of the
spectral sequences with corestriction. O
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Lemma 4.4.5. — With notations as above, there is a commutative diagram
Hi(k, Y )@Picck®Zzy  — HE(k, H3)®Zp

L |
H*(G,Q/Z(2)) ® H'(G,Q2/Z5(1)) —— H*(G,Q2/22(3))n-

Proof. — As in the proof of lemma 3.1.6, the compatibility of the coniveau spectral
sequence with cap-product (see also [We]) yields a commutative diagram

H3(G,Q2/2:(2)[-1]) ® H*(G,Q2/Z2(1)[-1]) — H5(G,Q2/Z(3)[-1])
H3(U//G,Z(2)) ® H*(U//G,Z(1)) ——— H*(U//G,Z(3))

HYU//G,#2)  Pic(U//G) ————— H*(U//G,*3). O
In degree 5 we get the following results:

Theorem 4.4.6. — If G is a finite group and k an algebraically closed field of
characteristic 0, then there is a canonical exact sequence

0 — HE(k, #}') ® Z(z) — HY(G, Q2/Z2(4)) — HE(k, #5(Qz/Z2(4)))
— H3(X, ' ¥) = H%(G,Qz/Z3(4)).
Proof. — This follows from corollary 4.1.7 and proposition 4.2.1. O
Notation 4.4.2. — We put

HE(k, 2 3)p = ) Cores§(Picg kU Hg(k, 2 3")).
HCG

Proposition 4.4.7. — The canonical isomorphism
HE(k, 1) ® Zz) == H*(G, Qa/Za(4))n
induces an isomorphism from
HE(k, ' 2")/ (HE(k, H o)y + HE(k, K 4)c)
to
H5(G, Q2/Z2(4))n/ (H3(G, Q2/Z2(4))p + H(G, Qa/Z2(4)).).
Proof. — The proof is similar to the one of proposition 4.4.3. O

This text owes much to the work of Bruno Kahn. I would like to thank him and Burt Totaro
for several fruitful discussions.
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