TORSEURS UNIVERSELS ET MÉTHODE DU CERCLE

22 Avril 1998

par

Emmanuel Peyre

Résumé. — Ce texte décrit les premières étapes d'une généralisation de la méthode du cercle au cas d'une hypersurface lisse dans une variété presque de Fano.

En effet, sous certaines conditions, il est possible d'exprimer dans ce cas les deux membres d'une version raffinée de la conjecture de Manin sur le comportement asymptotique du nombre de points de hauteur bornée de l'hypersurface en termes du torseur universel de la variété ambiante qui joue, dans ce cadre, le rôle de l'espace affine.

Abstract. — This paper presents the first steps of a generalization of the circle method for smooth hypersurfaces in almost Fano varieties.

Indeed it is possible, under some conditions, to express both sides of a refined version of Manin's conjecture on the asymptotic behavior of the number of points with bounded height on the hypersurface in terms of the universal torsor of the variety, which plays here the rôle of the affine space.

Table des matières

1. Introduction 2
2. Une version raffinée d'une conjecture de Manin 3
2.1. Variétés presque de Fano
2.2. Hauteurs d'Arakelov 5
2.3. Mesure de Tamagawa 10
2.4. Enoncé d'une question
3. Passage au torseur universel 12
3.1. Structure sur les torseurs universels
3.2. Fonctions de comptage
3.3. Fonctions de Möbius
3.4. Montée du nombre de points 24

3.5. Montée de la constante	26
4. Intersections complètes	29
4.1. Encerclement du nombre de points	29
4.2. Encerclement de la constante : introduction	31
4.3. Aspect géométrique	33
4.4. Aspect analytique	35
4.5. Transformation de Fourier locale	36
4.6. Mesures adéliques	37
4.7. Transformation adélique et encerclement de la constante	
	39
5. Conclusion	43
Références	44

1. Introduction

L'objet de ce texte est le comportement asymptotique du nombre de points de hauteur bornée sur des variétés dont le faisceau anticanonique vérifie certaines conditions de positivité.

De nombreux progrès ont été réalisés dans la compréhension de ce comportement asymptotique. Une interprétation géométrique de la puissance et de la puissance du logarithme qui interviennent a été proposée dans les articles de Franke, Manin et Tschinkel [FMT] et de Batyrev et Manin [BM]. Des descriptions adéliques de la contante ont été proposées lorsque la hauteur est associée au faisceau anticanonique dans [Pe1] puis dans un cadre plus général par Batyrev et Tschinkel dans [BT4].

Jusqu'à une période récente on disposait essentiellement de deux méthodes pour étudier ce comportement asymptotique :

- D'une part les méthodes basées sur des techniques d'analyse harmonique fine qui s'appliquent lorsque la variété est équipée d'une action non-triviale d'un groupe algébrique,
- D'autre part les méthodes inspirées de la méthode du cercle qui a été développée pour des intersections complètes dans l'espace projectif.

Parmi les cas traités par le premier type de méthodes, on peut citer celui des variétés de drapeaux généralisées étudiées dans [FMT] et [Pe1] à l'aide des travaux de Langlands sur les séries d'Eisenstein, le cas des variétés toriques considéré par Batyrev et Tschinkel dans [BT1], [BT3] et [BT2] et celui des fibrations en variétés toriques au-dessus de variétés de drapeaux généralisées par Strauch et Tschinkel [ST].

La seconde méthode qui a donné d'importants résultats pour les intersections complètes dans l'espace projectif, a été tout récemment utilisée par Robbiani pour létude d'un cas sortant de ce cadre, à savoir celui d'une hypersurface dans $\mathbf{P}^m \times \mathbf{P}^m$ définie par l'annulation d'une section de $\mathcal{O}(1,1)$.

Le but de ce texte est d'étendre à un cadre plus général les parties théoriques de la méthode du cercle. Il reste toutefois un important travail à faire concernant le cœur même de la méthode du cercle, à savoir la majoration de sommes d'exponentielle.

Le paragraphe 2 de ce texte rappelle la description conjecturale du comportement asymptotique du nombre de points de hauteur bornée. Le troisième a pour objet le passage aux torseurs universels au niveau desquels le problème se décrit naturellement comme passage d'une somme à une intégrale, argument qui apparaît déja dans [Sa] et [Pe2]. Dans le quatrième nous décrivons comment, dans le cas d'une hypersurface vérifiant certaines conditions, on peut passer du torseur universel de la variété ambiante à celui de la sous-variété à l'aide de formules inspirées de la formule d'inversion de Fourier.

2. Une version raffinée d'une conjecture de Manin

2.1. Variétés presque de Fano. — Nous utiliserons dans ce texte les notations suivantes :

Notations 2.1.1. — Si $\mathscr X$ est un schéma sur A et B une A-algèbre, $\mathscr X(B)$ désigne l'ensemble $\operatorname{Hom}_{\operatorname{Spec} A}(\operatorname{Spec} B,\mathscr X)$ et $\mathscr X_B$ le produit $\mathscr X\times_{\operatorname{Spec} A}\operatorname{Spec} B$. Si X est une variété lisse sur un corps E, son groupe de Picard est noté $\operatorname{Pic} X$, son groupe de Neron-Severi $\operatorname{NS}(X)$ et son faisceau canonique ω_X . On désigne par $C_{\operatorname{eff}}(X)$ le cône des classes de diviseurs effectifs dans $\operatorname{NS}(X)\otimes \mathbf R$. On note $\overline E$ une clôture algébrique de E et E^s sa clôture séparable dans $\overline E$. On pose alors $\overline X=X_{\overline E}$ et $X^s=X_{E^s}$.

Le dual d'un module M est noté M^{\vee} .

- **Définition 2.1.2.** Une variété V sur un corps k de caractéristique nulle sera dite presque de Fano si elle est projective, lisse et géométriquement intègre et si elle vérifie les conditions suivantes :
 - (i) les groupes de cohomologie $H^i(V, \mathcal{O}_V)$ sont nuls pour i = 1 ou 2,
- (ii) le groupe de Néron-Severi géométrique, qui sous l'hypothèse (i) coïncide avec $\operatorname{Pic} \overline{V}$, est sans torsion,
- (iii) la classe $[\omega_V^{-1}]$ de ω_V^{-1} dans $\mathrm{NS}(V)\otimes\mathbf{R}$ appartient à l'intérieur du cône des diviseurs effectifs.
- **Exemple 2.1.1.** Si V est une variété de Fano, alors V est presque de Fano. En effet, par le théorème de Kodaira, la condition (i) est vérifiée, la condition (ii) résulte de [**Pe1**, lemme 1.2.1] et (iii) découle du fait que, par définition ω_V^{-1} est ample, qui est une condition ouverte.
- **Exemple 2.1.2.** Si V est une variété torique projective et lisse, alors par [Da, corollary 7.4], les groupes $H^i(V, \mathcal{O}_V)$ sont nuls pour i > 0, et par [Oda, lemma

2.3] tout fibré en droites a une base de sections équivariantes sous l'action du tore et donc le cône des diviseurs effectifs dans $\operatorname{Pic} \overline{V} \otimes \mathbf{R}$ est engendrée par les [D] où D décrit l'ensemble des sous-variétés irréductibles invariantes de codimension 1 dans \overline{V} . La classe $[\omega_V^{-1}]$ étant la somme de ces [D] par $[\mathbf{Oda}]$, page 70, example], il est à l'intérieur du cône et la condition (iii) est vérifiée. La variété V est donc presque de Fano.

Proposition 2.1.1. — Soit X une compactification équivariante projective et lisse d'un tore T sur C, L_1, \ldots, L_m des faisceaux inversibles amples sur X et s_1, \ldots, s_m des sections non nulles de ces faisceaux. On note $X_T^{(1)}$ l'ensemble des sous-variétés irréductibles invariantes de codimension un de X. On suppose que $\dim X \geqslant m+3$, que

$$\left[\sum_{D \in X_{\sigma}^{(1)}} D - \sum_{i=1}^{m} L_i\right] \in \widehat{C_{\text{eff}}(X)},$$

que les hypersurfaces définies par les s_i se coupent transversalement, que leurs intersections successives sont connexes et qu'elles coupent proprement les diviseurs D de $X_T^{(1)}$.

Alors la sous variété V définie par l'annulation des s_i est presque de Fano. En outre, la restriction induit un isomorphisme

$$\operatorname{Pic} X \xrightarrow{\sim} \operatorname{Pic} V$$

qui envoie $C_{\text{eff}}(X)$ dans $C_{\text{eff}}(V)$ et la classe de $\sum_{D \in X_T^{(1)}} D - \sum_{i=1}^m L_i$ sur celle de ω_V^{-1} .

Démonstration. — Nous allons démontrer par récurrence sur n que V vérifie les assertions de la proposition et que si $L = \sum_{j=1}^m \epsilon_i L_j$ avec $\epsilon_j \in \mathbf{Z}_{\leq 0}$ pour $1 \leq j \leq m$, alors le groupe $H^i(V, L)$ est nul si $0 < i < \dim V$.

Si m=0, l'énoncé de la proposition résulte de l'exemple précédent, l'assertion de nullité pour \mathcal{O}_V résulte de [Da, corollary 7.4] et celle pour les sommes de fibrés L_i de [Da, theorem 7.5.2] et du théorème de dualité de Serre (cf. [Ha, corollary III.7.7]).

Supposons le résultat démontré pour m-1 et soit V' la sous-variété de X définie par l'annulation de $s_1, \ldots s_{m-1}$. La variété V' vérifie alors les assertions ci-dessus.

La variété V est alors définie dans V' comme lieu des zéros de s_m . Par l'hypothèse de transversalité, V est lisse et étant connexe, elle est intègre. Par définition elle est projective. Par ailleurs, on a une suite exacte de faisceaux de Zariski sur V'

$$(2.1.1) 0 \to L_m^{-1} \otimes \mathcal{O}_{V'} \to \mathcal{O}_{V'} \to \mathcal{O}_V \to 0.$$

D'où une suite exacte longue de cohomologie (cf. [Ha, lemma III.2.10])

$$H^i(V',L_m^{-1}) \rightarrow H^i(V', \mathbb{O}_{V'}) \rightarrow H^i(V, \mathbb{O}_V) \rightarrow H^{i+1}(V',L_m^{-1}).$$

On obtient donc que $H^i(V, \mathcal{O}_V)$ est nul pour $0 < i < \dim V = \dim V' - 1$. Comme $\dim V \geqslant 3$, cela entraı̂ne l'assertion (i) de la définition. De même, on obtient l'annulation des groupes de cohomologie de l'hypothèse de récurrence. Par le théorème de Lefschetz classique [GH, page 156] on a un isomorphisme :

$$H^2(V(\mathbf{C}), \mathbf{Z}) \xrightarrow{\sim} H^2(V'(\mathbf{C}), \mathbf{Z}).$$

En utilisant la suite exacte de faisceaux analytiques

$$0 \to \mathbf{Z} \to \mathcal{O}_V \xrightarrow{\exp} \mathcal{O}_V^{\times} \to 0$$

et des théorèmes de comparaison entre géométrie algébrique et géométrie algébrique, on obtient un diagramme commutatif

$$\begin{array}{ccc} 0 \to H^1(V', \mathbb{O}_{V'}^{\times}) \stackrel{\sim}{\longrightarrow} H^2(V'(\mathbf{C}), \mathbf{Z}) \to 0 \\ & & & & \downarrow \\ 0 \to H^1(V, \mathbb{O}_V^{\times}) \stackrel{\sim}{\longrightarrow} H^2(V(\mathbf{C}), \mathbf{Z}) \to 0 \end{array}$$

et on obtient que la restriction de Pic V' à Pic V est un isomorphisme.

Le cône des classes de diviseurs effectifs de X étant engendré par les classes des diviseurs D de $X_T^{(1)}$, l'assertion sur les cônes effectifs résulte de l'hypothèse sur la propreté des intersections avec ces diviseurs. Enfin $[\omega_{V'}^{-1}] = \sum_{D \in X_T^{(1)}} [D] - \sum_{i=1}^{m-1} [L_i]$ et l'assertion correspondante pour V résulte de [Ha, proposition II.8.20].

Enfin
$$[\omega_{V'}^{-1}] = \sum_{D \in X_T^{(1)}} [D] - \sum_{i=1}^{m-1} [L_i]$$
 et l'assertion correspondante pour V résulte de [Ha, proposition II.8.20].

Remarque 2.1.2. — A priori le cône des diviseurs effectifs de V peut être plus grand que celui de X. Toutefois, si X est de la forme $\prod_{i=1}^t \mathbf{P}_{\mathbf{C}}^{n_i}$ et si $m < \inf_{1 \le i \le t} n_i$, alors il y a égalité entre les cônes de diviseurs. En effet la formule de Künneth implique que

$$\forall L \in \operatorname{Pic} X, \quad H^i(X, L) = 0 \quad \text{si} \quad 0 < i < \inf_{1 \le i \le t} n_i.$$

On obtient alors par récurrence sur m que

$$\forall L \in \operatorname{Pic} V, \quad H^i(V, L) = 0 \quad \text{si} \quad 0 < i < \inf_{1 \leq i \leq t} n_i - m.$$

et la suite exacte (2.1.1) pour i = 0 implique que les deux cônes coïncident.

2.2. Hauteurs d'Arakelov. — La donnée naturelle pour construire des fonctions de comptage sur l'ensemble des points rationnels de variétés propres est une hauteur d'Arakelov dont nous allons rappeler la définition.

Notations 2.2.1. — Dans la suite, k désigne un corps de nombres, O_k son anneau des entiers, d son discriminant, M_k l'ensemble de ses places, M_f celui de ses places finies et M_{∞} celui de ses places archimédiennes. Pour toute place v de k, on note k_v le complété correspondant et $|\cdot|_v$ la norme sur k_v normalisée par

$$\forall v|p, \quad \forall x \in k_v, \quad |x|_v = |N_{k_v/\mathbf{Q}_p}(x)|_p.$$

Si v est une place finie, \mathcal{O}_v est l'anneau des entiers de k_v et \mathbf{F}_v le corps résiduel.

Définition 2.2.2. — Soit V une variété projective lisse et géométriquement intègre sur k, L un faisceau inversible sur V. Si v est une place de k, une métrique v-adique sur L est une application associant à un point x de $V(k_v)$ une norme $\|.\|_v$ sur $L(x) = L_x \otimes_{\mathcal{O}_{V,x}} k_v$ de sorte que pour toute section s de L définie sur un ouvert W de V l'application

$$x \mapsto \|\mathbf{s}(x)\|_{n}$$

soit continue pour la topologie v-adique.

Si v est un place finie de k, $\mathscr V$ un modèle projectif et lisse de V sur $\mathbb O_v$ et $\mathscr L$ un modèle de L, alors on peut lui associer une métrique v-adique sur L de la manière suivante : tout point x de $V(k_v)$ définit un point $\tilde x$ de $\mathscr V(\mathbb O_v)$ et $\tilde x^*(\mathscr L)$ fournit une $\mathbb O_v$ -structure sur L(x) dont on peut choisir un générateur y_0 ; la norme d'un élément y de L est alors donnée par la formule

$$||y||_v = \left| \frac{y}{y_0} \right|_v.$$

Une métrique adélique sur L est une famille de métriques $(\|.\|_v)_{v \in M_k}$ telle qu'il existe un ensemble fini de places finies S, un modèle projectif et lisse $\mathscr V$ de V sur l'anneau $\mathcal O_S$ des S-entiers et un modèle $\mathscr L$ de L sur cet anneau tel que pour tout v de $M_f - S$, $\|.\|_v$ soit la métrique définie par $\mathscr L \otimes_{\mathcal O_V} \mathcal O_v$.

Nous appellerons hauteur d'Arakelov sur V la donné d'une paire

$$\mathbf{h} = (L, (\|.\|_v)_{v \in M_k})$$

où L est un faisceau inversible sur V et $(\|.\|_v)_{v\in M_k}$ une métrique adélique sur ce fibré.

Pour toute hauteur h sur V et tout point rationnel x de V, la hauteur de x relativement à h est définie par

$$\forall y \in L(x), \quad \mathbf{h}(x) = \prod_{v \in M_k} \|y\|_v^{-1}.$$

Remarque 2.2.1. — La formule du produit assure que le produit ci-dessus est indépendant de y.

Exemple 2.2.1. — Si $\mathbf{h}_i = (L_i, (\|.\|_v^i)_{v \in M_k})$ pour i = 1 ou 2 sont deux hauteurs d'Arakelov, leur produit tensoriel $\mathbf{h}_1 \otimes \mathbf{h}_2$ est $(L_1 \otimes L_2, (\|.\|_v)_{v \in M_k})$ où

$$\forall v \in M_k, \ \forall x \in V(k_v), \ \forall y \in L_1(x), \ \forall z \in L_2(x), \ \|y \otimes z\|_v = \|y\|_v^1 \|z\|_v^2.$$

On en déduit immédiatement l'égalité

$$\forall x \in V(k), \quad \mathbf{h}_1 \otimes \mathbf{h}_2(x) = \mathbf{h}_1(x)\mathbf{h}_2(x).$$

Exemple 2.2.2. Soit $\mathbf{h} = (L, (\|.\|_v)_{v \in M_k})$ une hauteur sur V et $\mathbf{f} = (f_v)_{v \in M_k}$ une famille de fonctions strictement positives sur $V(k_v)$ telle que pour presque toute place v de k la fonction f_v soit constante et égale à 1, alors

$$\mathbf{f}.\mathbf{h} = (L, (f_v ||.||_v)_{v \in M_k})$$

est une hauteur sur V. Réciproquement, si $\mathbf{h}' = (L, (\|.\|'_v)_{v \in M_k})$ est une autre hauteur sur V relative au même faisceau, alors pour toute place v de k le quotient $\|.\|'_v/\|.\|_v$ définit une fonction f_v sur $V(k_v)$ qui, pour presque toute place, est constante et égale à 1. On a bien sûr $\mathbf{h}' = f.\mathbf{h}$.

Exemple 2.2.3. — Si $\phi: V \to W$ est un morphisme de variétés projectives lisses et géométriquement intègres et $\mathbf{h} = (L, (\|.\|_v)_{v \in M_k})$ une hauteur sur W alors $\phi^*(\mathbf{h})$ est la hauteur $(\phi^*L, (\|\phi(.)\|_v)_{v \in M_k})$ où l'on note également ϕ l'application induite $\phi^*L(x) \to L(\phi(x))$ pour tout x de V.

En particulier si L est un faisceau inversible très ample, il définit un morphisme

$$\phi: V \to \mathbf{P}(\Gamma(V, L)^{\vee})$$

de sorte que $L=\phi^*(\mathcal{O}(1))$ et tout système de métriques sur $\mathcal{O}(1)$ induit une hauteur sur V.

Exemple 2.2.4. — Si K/k est une extension de corps de nombres, V une variété projective lisse et géométriquement intègre sur k, L un faisceau inversible sur V et $\mathbf{h}_K = (L \otimes K, (\|.\|_v)_{v \in M_K})$ une hauteur sur V_K , alors la hauteur induite $\mathbf{h} = (L, (\|.\|_v')_{v \in M_k})$ est définie par

$$\forall \mathfrak{p} \in M_k, \quad \forall x \in V(k_{\mathfrak{p}}), \quad \forall y \in L(x), \quad \|y\|_{\mathfrak{p}}' = \left(\prod_{\mathfrak{P} \mid \mathfrak{p}} \|y_{\mathfrak{P}}\|_{\mathfrak{P}}\right)^{[K:k]^{-1}}.$$

Cela permet également d'associer à tout hauteur h relative à un faisceau inversible L sur V_K une hauteur $N_{K/k}h$ relative au faisceau $N_{K/k}L$ sur V.

Exemple 2.2.5. — Soit $\mathscr V$ un schéma plat projectif et régulier sur $\mathcal O_k$ et $(\mathscr L,h)$ un fibré en droites hermitien sur $\mathscr V$ (cf. [BGS, §2.1.2]), $\mathscr L$ désigne donc un fibré inversible sur $\mathscr V$ et h une forme hermitienne C^∞ sur le fibré en droites holomorphe $L_{\mathbf C}$ sur $\prod_{\sigma:k\to\mathbf C}\mathscr V(\mathbf C)$ invariante sous l'action de la conjugaison.

On suppose que h s'écrit comme produit tensoriel de formes hermitiennes C^{∞} que l'on notera h_{σ} et telles que $h_{\overline{\sigma}}$ soit la conjuguée de h_{σ} .

Pour toute place finie v de k, $\mathscr L$ induit comme ci-dessus une metrique $\|.\|_v$ sur $L=\mathscr L\otimes k$ et pour toute place archimédienne v de k, on a un plongement σ de k dans C et la forme hermitienne h_σ définit une métrique v-adique $\|.\|_v$ sur L. Par définition, $h=(L,(\|.\|_v)_{v\in M_k})$ est une hauteur sur V, et la hauteur d'un point rationnel est donné par la formule

$$\forall x \in V(k), \quad \mathbf{h}(x) = \exp(\widehat{\operatorname{deg}}(\hat{c}_1(\mathscr{L})|\overline{x}))$$

où \overline{x} est l'adhérence de x dans \mathscr{V} , $\hat{c}_1(\mathscr{L})$ le caractère de Chern arithmétique de \mathscr{L} (cf. [BGS, page 932]), (.|.) l'accouplement

$$\widehat{\operatorname{CH}}^*(\mathscr{V}) \times Z_*(\mathscr{V}) \to \widehat{\operatorname{CH}}^*(\operatorname{Spec} \mathcal{O}_k)_{\mathbf{Q}}$$

défini par Bost, Gillet et Soulé (cf. [BGS, §2.3]) et $\widehat{\text{deg}}$ l'application degré sur le groupe de Chow arithmétique $\widehat{\text{CH}}^*(\operatorname{Spec} \mathcal{O}_k)$.

En effet par [BGS, §3.1.2.1 et (2.1.15)],

$$\begin{split} \widehat{\operatorname{deg}}(\widehat{c}_{1}(\mathcal{L})|\overline{x}) &= \widehat{\operatorname{deg}}\widetilde{x}^{*}(\mathcal{L}) \\ &= \log(\#(\widetilde{x}^{*}\mathcal{L}/\mathfrak{O}_{k}y)) - \sum_{\sigma:k \to \mathbf{C}} \log h_{\sigma}(y,y)^{1/2} \end{split}$$

où \tilde{x} : Spec $\mathcal{O}_k \to \mathscr{V}$ est définie par x et y un élément de L(x). En suivant les définition on obtient

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\mathscr{L})|\overline{x}) = -\sum_{v \in M_k} \log \|y\|_v$$
.

Définition 2.2.3. — On note $\mathcal{H}(V)$ l'ensemble des classes d'isomorphismes de hauteurs d'Arakelov quotienté par la relation d'équivalence définie par

$$(L,(\|.\|_v)_{v\in M_k})\sim (L,(\lambda_v\|.\|_v)_{v\in M_k})$$

pour toute famille de réels $(\lambda_v)_{v\in M_k}\in \bigoplus_{v\in M_k}\mathbf{R}_{>0}$ telle que $\prod_{v\in M_k}\lambda_v=1$.

L'ensemble $\mathcal{H}(V)$ est un groupe pour le produit tensoriel des hauteurs, il est muni d'une structure de $\mathbb{R}_{>0}$ -ensemble donnée par

$$\lambda.(L,(\|.\|_v)_{v\in M_k}) = (L,(\lambda_v\|.\|_v)_{v\in M_k})$$

si $(\lambda_v)_{v\in M_k}\in \bigoplus_{v\in M_k}\mathbf{R}_{>0}$ vérifie $\prod_{v\in M_k}\lambda_v=\lambda$. On dispose d'un morphisme d'oubli $o: \mathscr{H}(V)\to \operatorname{Pic} V.$ Si $\phi: V\to W$ est un morphimes de variétés projectives, lisses et géométriquement intègres sur k, alors ϕ^* définit un morphisme $\mathscr{H}(W)\to \mathscr{H}(V)$ qui s'insère dans un diagramme commutatif:

$$\mathcal{H}(W) \longrightarrow \mathcal{H}(V)$$

$$\downarrow \qquad \qquad \downarrow$$
 $\operatorname{Pic}(W) \longrightarrow \operatorname{Pic}(V).$

Enfin si K/k est une extension de corps de nombres on dispose d'un morphisme de norme

$$N_{K/k}: \mathscr{H}(V_K) \to \mathscr{H}(V).$$

Remarque 2.2.2. — Si x est un point rationnel et \mathbf{h} une hauteur, $\mathbf{h}(x)$ ne dépend que de la classe de \mathbf{h} dans $\mathscr{H}(V)$. On notera ev_x le morphisme $\mathscr{H}(V) \to \mathbf{R}_{>0}$ obtenu.

Exemple 2.2.6. — Si $V = \operatorname{Spec} k$, alors une hauteur d'Arakelov est la donnée d'un espace vectoriel L de dimension un sur k et d'une famille de normes $(\|.\|_v)_{v \in M_k}$ sur L telle qu'il existe une \mathcal{O}_k -structure de \mathscr{L} de L de sorte que pour tout place finie v de k en-dehors d'un ensemble fini S, on ait

$$\forall y \in \mathcal{L}, \quad \|y\|_v = (\#(\mathcal{O}_v y/\mathcal{L} \otimes \mathcal{O}_v))^{-1}.$$

Cette description explicite montre que le morphisme $ev_{Spec k}$ est un isomorphisme.

Notons qu'en outre on a pour toute variété V projective lisse et géométriquement intègre sur k et tout point x de V(k) un diagramme commutatif.

$$\begin{array}{ccc} \mathscr{H}(V) & \xrightarrow{\operatorname{ev}_x} & \mathbf{R}_{>0} \\ & \downarrow_{x^*} & & \downarrow \\ \mathscr{H}(\operatorname{Spec} k) & \xrightarrow{\sim} & \mathbf{R}_{>0}. \end{array}$$

Définition 2.2.4. — On appelle système de hauteurs une section de l'application composée

$$\mathcal{H}(V) \stackrel{o}{\to} \operatorname{Pic} V \to \operatorname{NS}(V).$$

Un système de hauteurs \mathbf{H} sur V induit un accouplement

$$\mathbf{H}: \mathrm{NS}(V) \otimes \mathbf{C} \times V(k) \to \mathbf{C}$$

qui est l'exponentielle d'une fonction linéaire en la première variable et telle que

$$\forall L \in NS(V), \quad \forall a \in V(k), \quad \mathbf{H}(L, x) = \mathbf{H}(L)(x).$$

Comme l'ont souligné Batyrev et Manin [BM], l'existence de sous-variétés accumulatrices susceptibles d'occulter certains phénomènes globaux dans le comportement asymptotique du nombre de points de hauteur bornée amène à se restreindre à un ouvert non vide assez petit de la variété. On utilisera donc la définition qui suit.

Définition 2.2.5. — Soit V une variété projective, lisse et géométriquement intègre sur k et W un sous-espace localement fermé de V. Alors pour toute hauteur \mathbf{h} sur V et tout nombre réel H strictement positif

$$n_{W,h}(H) = \#\{x \in W(k) \mid h(x) \leqslant H\}.$$

Si \mathbf{H} est un système de hauteurs sur V alors la fonction zêta associée est définie par

$$orall s \in \mathrm{NS}(V) \otimes_{\mathbf{Z}} \mathbf{C}, \quad \zeta_{\mathbf{H}}(s) = \sum_{x \in W(k)} \mathbf{H}(s,x)^{-1}.$$

Remarque 2.2.3. — Si [o(h)] appartient à l'intérieur de $C_{\text{eff}}(V)$, alors il existe un ouvert U de V tel que $n_{U,h}(H)$ soit fini pour tout H.

2.3. Mesure de Tamagawa. — Dans la suite V désigne une variété presque de Fano sur k. Dans ce cas toute métrique adélique sur le fibré anticanonique ω_V^{-1} définit une mesure de Tamagawa qui permet de donner un interprétation conjecturale du terme principal du nombre de points de hauteur bornée.

Notations 2.3.1. — Si X est un variété sur k, $X(A_k)$ désigne l'espace adélique qui lui est associé. (cf. [We, §1]).

Pour toute place v de k, la mesure de Haar $\mathrm{d}x_v$ sur k_v est normalisée de la manière suivante :

- Si v est finie, alors $\int_{\mathcal{O}_u} \mathrm{d}x_v = 1$,
- si $k_v \xrightarrow{\sim} \mathbf{R}$, alors dx_v est la mesure de Lebesgue usuelle,
- si $k_v \xrightarrow{\sim} \mathbf{C}$, alors $\mathrm{d} x_v = i \mathrm{d} z \, \mathrm{d} \overline{z}$.

Soit $\mathbf{h} = (\omega_V^{-1}, (\|.\|_v)_{v \in M_k})$ une hauteur sur une variété presque de Fano V. En toute place v de k on lui associe la mesure borélienne $\omega_{\mathbf{h},v}$ sur $V(k_v)$ définie par la relation (cf. [We], [Pe1, §2.2.1])

$$oldsymbol{\omega}_{\mathbf{h},v} = \left\| rac{\partial}{\partial x_1} \wedge \cdots \wedge rac{\partial}{\partial x_n}
ight\|_v \mathrm{d} x_{1,v} \, \ldots \, \mathrm{d} x_{n,v}$$

où x_1,\ldots,x_n désignent des coordonnées locales analytiques au voisinage d'un point x de $V(k_v)$ et $\frac{\partial}{\partial x_1}\wedge\cdots\wedge\frac{\partial}{\partial x_n}$ est vu comme section locale de ω_V^{-1} . D'après [Pe1, lemme 2.1.1], on peut se donner un ensemble fini S de places finies

D'après [Pe1, lemme 2.1.1], on peut se donner un ensemble fini S de places finies et un modèle projectif et lisse $\mathscr V$ de V sur $\mathcal O_S$ dont les fibres sont géométriquement intègres et tel que pour toute place finie $\mathfrak p$ en-dehors de S, le groupe de Picard géométrique Pic $\mathscr V_{\overline{\mathbf F}_{\mathfrak p}}$ soit isomorphe à Pic \overline{V} de façon compatible aux actions des groupes de Galois et la partie l-primaire du groupe de Brauer $\operatorname{Br}(\overline{V})$ soit finie pour tout nombre premier l n'appartenant pas à $\mathfrak p$.

Pour tout $\mathfrak p$ de M_k-S , le terme local de la fonction L associée à Pic $\overline V$ est défini par

$$L_{\mathfrak{p}}(s,\operatorname{Pic} \overline{V}) = \frac{1}{\operatorname{Det}(1-(\#\mathbf{F}_{\mathfrak{p}})^{-s}\operatorname{Fr}_{\mathfrak{p}}|\operatorname{Pic}\mathscr{V}_{\overline{\mathbf{F}}_{\mathfrak{p}}}\otimes\mathbf{Q})}$$

où $\operatorname{Fr}_{\mathfrak p}$ est le Frobenius en $\mathfrak p.$ La fonction L globale est définie par le produit eulérien

$$L_S(s,\operatorname{Pic} \overline{V}) = \prod_{\mathfrak{p} \in M_f - S} L_{\mathfrak{p}}(s,\operatorname{Pic} \overline{V})$$

qui par [Pe1, lemme 2.2.5] converge absolument pour Re s > 1 et s'étend en une fonction méromorphe sur C avec un pôle d'ordre t = rg Pic V en 1.

Les facteurs de convergence $(\lambda_v)_{v\in M_k}$ pour la mesure de Tamagawa sont définis par

$$\lambda_v = \begin{cases} L_v(1, \operatorname{Pic} \overline{V}) & \text{si } v \in M_f - S \\ 1 & \text{sinon.} \end{cases}$$

Les conjectures de Weil montrées par Deligne impliquent la convergence de la mesure adélique $\prod_{v \in M_k} \lambda_v^{-1} \omega_{\mathbf{h},v}$ (cf. [**Pe1**, proposition 2.2.2]).

Définition 2.3.2. — Avec les notation qui précèdent, la mesure de Tamagawa associée à h est définie par

$$\boldsymbol{\omega}_{\mathbf{h}} = \lim_{s \to 1} (s-1)^t L_S(s, \operatorname{Pic} \overline{V}) \frac{1}{\sqrt{d}^{\dim V}} \prod_{v \in M_k} \lambda_v^{-1} \boldsymbol{\omega}_{\mathbf{h}, v}.$$

Remarque 2.3.1. — Par construction elle est indépendante du choix de S et ne dépend que de l'image de h dans $\mathcal{H}(V)$.

Exemple 2.3.1. — Si $f = (f_v)_{v \in M_k}$ est une famille de fonction comme dans l'exemple 2.2.2, alors

$$oldsymbol{\omega_{f.\mathbf{h}}} = \Bigl(\prod_{v \in M_k} f_v\Bigr) oldsymbol{\omega_{\mathbf{h}}}.$$

Notation 2.3.3. — On pose $\tau_{\mathbf{h}}(V) = \omega_{\mathbf{h}}(\overline{V(k)})$ où $\overline{V(k)}$ désigne l'adhérence des points rationnels de V dans $V(A_k)$.

2.4. Enoncé d'une question. — Pour énoncer notre question qui est une version raffinée d'une conjecture de Manin [BM, conjecture C'], nous utiliserons la notion d'accumulation qui suit :

Définition 2.4.1. — Soit h une hauteur d'Arakelov sur V telle que [o(h)] appartienne à l'intérieur du cône effectif. Un fermé irréductible strict F de V est dit modérément accumulateur pour h si et seulement si pour tout ouvert non vide W de F, il existe un ouvert non vide U de V tel que

$$\overline{\lim}_{H \to +\infty} \frac{n_{W,\mathbf{h}}(H)}{n_{U,\mathbf{h}}(H)} > 0.$$

Nous renvoyons à [BT4] et [Pe2, §2.4] pour des exemples de telles sous-variétés.

Notation 2.4.2. — Si V est une variété presque de Fano, on considère l'hyperplan affine \mathscr{P} de $\mathrm{NS}(V)^\vee \otimes \mathbf{R}$ d'équation $\langle y, \omega_V^{-1} \rangle = 1$. Cet hyperplan est muni d'une mesure canonique θ définie par ω_V^{-1} (cf. [**Pe1**, page 120]). On note $C_{\mathrm{eff}}(V)^\vee$ le cône dual de $C_{\mathrm{eff}}(V)$ défini par

$$C_{\text{eff}}(V)^{\vee} = \{ y \in \text{NS}(V)^{\vee} \otimes \mathbf{R} \mid \forall x \in C_{\text{eff}}(V), \langle x, y \rangle > 0 \}$$

et on pose

$$\alpha(V) = \theta(C_{\text{eff}}(V)^{\vee} \cap \mathscr{P}).$$

On note également

$$\beta(V) = \#H^1(k, \operatorname{Pic} \overline{V}).$$

Remarque 2.4.1. — La constante $\alpha(V)$ définie par Batyrev et Tschinkel [BT1] est obtenue en multipliant par (t-1)! celle considérée ici.

Question 2.4.2. — Soit V une variété presque de Fano sur k et \mathbf{h} une hauteur sur V définie par une métrique adélique sur ω_V^{-1} . On suppose que V(k) est dense pour la topologie de Zariski et que le complémentaire U dans V des sous-variétés modérément accumulatrices est un ouvert de Zariski non vide de V. A quelle condition a-t-on l'équivalence

$$(2.4.1) n_{U,\mathbf{h}}(H) \sim \alpha(V)\beta(V)\tau_{\mathbf{h}}(V)H(\log H)^{t-1}$$

lorsque H tend vers l'infini?

Remarques 2.4.3. — (i) L'introduction du facteur $\beta(V)$ est due à Batyrev et Tschinkel [BT1].

- (ii) L'équivalence (2.4.1) est compatible avec le produit de variétés [FMT, §1.2, proposition], [Pe1, corollaire 4.3].
 - (iii) Elle est vérifiée dans les cas suivants :
 - Si V est une intersection complète lisse dans $\mathbf{P}_{\mathbf{Q}}^N$ définie par m équations homogènes de degré $d\geqslant 2$ si

$$N > 2^{d-1}m(m+1)(d-1)$$

[Bi], [Pe1, proposition 5.5.3],

- Si V est une variété de drapeaux généralisée [FMT], [Pe1, théorèmes 6.1.1 et 6.2.2],
- Si V est une variété torique lisse [Pe1, §8-11], [BT1], [BT3], [Sa],
- pour certains fibrés en variétés toriques au-dessus de variétés de drapeaux généralisées [ST].

3. Passage au torseur universel

3.1. Structure sur les torseurs universels. — Nous allons commencer par rappeler la définition des torseurs universels qui est due à Colliot-Thélène et Sansuc [CTS2].

Définition 3.1.1. — Soient G un groupe algébrique linéaire sur un corps E et Y une variété sur E. Un G-torseur au-dessus de Y est la donnée d'un morphisme fidèlement plat $\pi:X\to Y$ au-dessus de E et d'une action $\mu:X\times G\to X$ de G sur X au-dessus de Y telle que l'application

$$(g,x)\mapsto (gx,x)$$

définisse un isomorphisme de variétés de $G \times_E X$ sur $X \times_Y X$.

Par [Mi, theorem III.3.9], si G est lisse et abélien, les classes d'isomorphismes de G-torseurs au-dessus de Y sont classifiées par le groupe de cohomologie étale

 $H^1_{\text{\'et}}(Y,G)$ et par [CTS2, (2.0.2) et proposition 2.2.8], si T est un tore sur E, c'est-à-dire une E-forme de \mathbb{G}_m^n et si X est une variété propre, lisse et géométriquement intègre ayant un point rationnel sur E, alors on dispose d'une suite exacte naturelle

$$0 \to H^1(E,T) \to H^1_{\operatorname{\acute{e}t}}(X,T) \xrightarrow{\rho} \operatorname{Hom}_{\operatorname{Gal}(E^s/E)}(X^*(T),\operatorname{Pic} X_{E^s}) \to 0$$

où $X^*(T)$ désigne le groupe des caractères de T^s et où pour tout torseur \mathcal{T} et tout caractère ξ de T, $\rho(\mathcal{T})(\xi)$ est la classe du \mathbf{G}_m -torseur $\xi_*(\mathcal{T})$ dans $\mathrm{Pic}\,X_{E^s}$ qui est isomorphe à $H^1_{\mathrm{\acute{e}t}}(X_{E^s},\mathbf{G}_m)$.

Soit X une variété propre, lisse et géométriquement intègre sur un corps E. On suppose que le groupe de Picard géométrique Pic X^s est de type fini et sans torsion. On note alors $T_{\rm NS}$ le tore dont le groupe de caractère est le ${\rm Gal}(E^s/E)$ -module Pic X^s . Un torseur universel pour X est un $T_{\rm NS}$ -torseur T au-dessus de X dont l'invariant $\rho(T)$ coïncide avec ${\rm Id}_{{\rm Pic}(X^s)}$.

Remarque 3.1.1. — Nous renvoyons à [CTS2, §2.6] et [Pe2, §3.3] pour des exemples de torseurs universels. Rappelons seulement qu'il résulte de [Sa, §8] qu'un torseur universel au-dessus d'une compactification équivariante lisse d'un tore T est un ouvert d'un espace affine.

Si Y est une intersection complète lisse dans une variété presque de Fano X ayant un point rationnel et si la restriction de Pic X^s à Pic Y^s est un isomorphisme, alors on a un diagramme commutatif

où j désigne le plongement de Y dans X. Il en résulte que les torseurs universels audessus de Y sont obtenus en prenant l'image inverse de Y dans les torseurs universels au-dessus de X. On dispose donc de diagrammes commutatifs de la forme :

$$\begin{array}{ccc} \mathcal{T}_Y & \longrightarrow & \mathcal{T}_X \\ \downarrow & & \downarrow \\ Y & \longrightarrow & X \end{array}$$

où l'application du haut est une immersion fermée de $T_{\rm NS}$ -ensembles. Si, en outre, X est une compactification équivariante lisse d'un tore, alors \mathcal{T}_X se plonge comme ouvert dans un espace affine \mathbf{A}_E^N et l'action de $T_{\rm NS}$ s'étend à cet espace affine.

A chaque torseur universel au-dessus d'une variété presque de Fano sont associées deux structures canoniques, à savoir un espace d'adèles et une mesure sur cet espace. Nous allons maintenant décrire une construction intrinsèque de ces structures.

Notation 3.1.2. — On pose

$$\delta(V) = \inf\{\langle x, \omega_V^{-1} \rangle, \ x \in C_{\text{eff}}(\overline{V})^{\vee} \cap \operatorname{Pic} \overline{V}^{\vee} - \{0\}\}.$$

Convention 3.1.3. — Dans la suite V désigne une variété presque de Fano sur k dont le cône des diviseurs effectifs $C_{\text{eff}}(\overline{V})$ est un cône polyédrique rationnel de Pic $\overline{V} \otimes \mathbf{R}$. On suppose en outre que $\delta(V) > 1$.

On note U une ouvert non vide de V.

Remarque 3.1.2. — La condition (iii) dans la définition 2.1.2 assure que pour toute variété presque de Fano $\delta(V) > 0$ et donc $\delta(V) \ge 1$.

Exemple 3.1.1. — Si V est une intersection complète lisse dans \mathbf{P}^N définie par m équations f_1, \ldots, f_m de degrés respectifs d_1, \ldots, d_m , alors

$$\omega_V^{-1} = \mathcal{O}_V \Big(N + 1 - \sum_{i=1}^m d_i \Big)$$

et la condition s'écrit $\delta(V) - 1 = N - \sum_{i=1}^m d_i > 0$, qui est exactement l'hypothèse faite dans [**Pe1**, page 131]. La raison pour laquelle cette condition apparaît dans [**Pe1**] est exactement la même qu'ici : elle assure la convergence de sommations liées à la formule d'inversion de Möbius.

Exemple 3.1.2. Si V est une compactification équivariante lisse d'un tore T et $\overline{V}_T^{(1)}$ désigne l'ensemble des sous-variétés irréductibles invariantes de codimension un de \overline{V} , on a une suite exacte canonique

$$(3.1.1) 0 \to X^*(T) \xrightarrow{j} \bigoplus_{D \in \overline{V}_T^{(1)}} \mathbf{Z}D \xrightarrow{\pi} \operatorname{Pic} \overline{V} \to 0$$

où $X^*(T)$ désigne le groupe des \overline{k} -caractères de T; le cône $C_{\mathrm{eff}}(\overline{V})$ est engendré par les $\pi(D)$ pour $D\in \overline{V}_T^{(1)}$ et

$$\omega_V^{-1} = \sum_{D \in \overline{V}_T^{(1)}} \pi(D).$$

Supposons qu'il existe λ de $C_{\rm eff}(\overline{V})^{\vee} \cap \operatorname{Pic} \overline{V}^{\vee} - \{0\}$ vérifiant $\langle \lambda, \omega_V^{-1} \rangle = 1$. On a alors

$$\left\langle \lambda, \sum_{D \in \overline{V}_T^{(1)}} \pi(D) \right\rangle = 1 \quad \text{et} \quad \forall D \in \overline{V}_T^{(1)}, \, \langle \lambda, \pi(D) \rangle \geqslant 0$$

et donc il existe $D_0 \in \overline{V}_D^{(1)}$ tel que

$$\langle \lambda, \pi(D) \rangle = \begin{cases} 1 & \text{si } D = D_0, \\ 0 & \text{sinon.} \end{cases}$$

Si on considère la suite exacte duale de (3.1.1),

$$0 \to \operatorname{Pic} \overline{V}^{\vee} \xrightarrow{\pi^{\vee}} \bigoplus_{P \in \overline{V}_{T}^{(1)}} \mathbf{Z} D^{\vee} \xrightarrow{j^{\vee}} X^{*}(T)^{\vee} \to 0,$$

on obtient que $D_0^{\vee} = \pi^{\vee}(\lambda)$ et donc $D_0^{\vee} \in \operatorname{Ker} j^{\vee}$. Mais il résulte de [**Da**, §6] que, par définition de j, l'application j^{\vee} est non nulle sur D_0 , ce qui est contradictoire. Par conséquent les variétés toriques projectives et lisses vérifient les conditions ci-dessus.

Exemple 3.1.3. — Si V est le surface obtenue en éclatant quatre points en position générale sur \mathbf{P}_k^2 , alors

$$\operatorname{Pic} \overline{V} = \mathbf{Z} \Lambda \oplus igoplus_{i=1}^4 \mathbf{Z} E_i$$

où on note Λ le relevé strict d'une droite de \mathbf{P}_k^2 et E_i les diviseurs obtenus par éclatement. Le cône effectif est engendré par les diviseurs $F_{i,5}=E_i$ pour $1\leqslant i\leqslant 4$ et $F_{i,j}=\Lambda-E_i-E_j$ pour $\{i,j,k,l\}=\{1,2,3,4\}$ et le faisceau canonique est donné par

$$\omega_V^{-1} = 3\Lambda - \sum_{i=1}^4 E_i = 2F_{1,2} + F_{3,4} + F_{3,5} + F_{4,5}.$$

Comme le groupe des automorphismes de \overline{V} agit transitivement sur les diviseurs $F_{i,j}$, on obtient que pour tout i,j avec $1 \leqslant i < j \leqslant 5$, $\omega_V^{-1} - 2F_{i,j}$ appartient au cône effectif. Par conséquent cette surface vérifie également le condition précédente.

Notation 3.1.4. — On note $\mathbf{A}_{-C_{\text{eff}}(\overline{V}),k}$ le schéma affine

$$\operatorname{Spec}(\overline{k}[-C_{\operatorname{eff}}(\overline{V})\cap X^*(T_{\operatorname{NS}})]^{\mathscr{G}})$$

où ${\mathscr G}$ désigne le groupe de Galois absolu de k. Pour tout torseur universel ${\mathcal T}$ au-dessus de V, on note $\widehat{\mathcal T}_{C_{\mathrm{off}}(\overline{V})}$ le produit contracté

$$\mathcal{T} imes^{T_{ ext{NS}}} \mathbf{A}_{-C_{ ext{eff}}(\overline{V}),k}.$$

On dispose d'une immersion ouverte $\mathcal{T} \to \widehat{\mathcal{T}}_{C_{\mathrm{eff}}(\overline{V})}$, l'action de T_{NS} s'étend à $\widehat{\mathcal{T}}_{C_{\mathrm{eff}}(\overline{V})}$ et on a une fibration $\widehat{\mathcal{T}}_{C_{\mathrm{eff}}(\overline{V})} \to V$ en variétés toriques affines géométriquement isomorphes à la variété $\mathbf{A}_{-C_{\mathrm{eff}}(\overline{V}),k}$.

On appelle espace adélique associé à $\mathcal T$ et $C_{\mathrm{eff}}(\overline V)$ l'intersection

$$\mathcal{T}_{C_{\operatorname{eff}}(\overline{V})}(oldsymbol{A}_k) = \Bigl(\prod_{v \in M_k} \mathcal{T}(k_v)\Bigr) \cap \widehat{\mathcal{T}}_{C_{\operatorname{eff}}(\overline{V})}(oldsymbol{A}_k)$$

qui peut être explicitement décrit comme produit restreint des $\mathcal{T}(k_v)$ (cf. également [Pe2, §4.2]).

Le faisceau canonique $\omega_{T_{\rm NS}}$ est trivial, un isomorphisme avec $\mathcal{O}_{T_{\rm NS}}$ étant donné par la forme différentielle canonique de $T_{\rm NS}$. Par conséquent, on a pour tout torseur universel $\pi:\mathcal{T}\to V$ un isomorphisme

$$\omega_{\mathcal{T}} \xrightarrow{\sim} \pi^*(\omega_V).$$

Mais par [CTS2, proposition 2.1.1], l'application π^* de Pic V dans Pic \mathcal{T} est triviale. Il en résulte que $\omega_{\mathcal{T}}$ est trivial. Mais il découle aussi de la proposition citée que

$$\Gamma(\mathcal{T}, \mathfrak{O}_{\mathcal{T}}^{\times}) = \Gamma(V, \mathfrak{O}_{V}^{\times}) = k^{\times}.$$

Par conséquent, il existe une section $\breve{\omega}_{\mathcal{T}}$ de $\omega_{\mathcal{T}}$ partout non nulle et unique à une constante multiplicative près. Par [We, §2] cette section $\breve{\omega}_{\mathcal{T}}$ définit pour toute place v de k une mesure $\omega_{\mathcal{T},v}$ sur $\mathcal{T}(k_v)$.

Le résultat suivant est annoncé dans [Pe2, remarque 4.4.4].

Lemme 3.1.3. — Avec les hypothèses ci-dessus, si \mathcal{T} a un point rationnel, le produit des mesures $\omega_{\mathcal{T},v}$ converge et coïncide avec la mesure $\omega_{\mathcal{T}}$ définie dans [Pe2, définition 4.4.3].

Démonstration. — Il suffit de montrer que l'on peut choisir la section $\check{\omega}_{\mathcal{T}}$ de sorte que la mesure $\omega_{\mathcal{T},v}$ coïncide avec celle définie dans [Pe2, notations 4.4.1]. Or, par définition, $\omega_{\mathcal{T},v}$ est localement donnée par la formule

$$oldsymbol{\omega}_{\mathcal{T},v} = \left| \left\langle rac{\partial}{\partial x_1} \wedge \dots \wedge rac{\partial}{\partial x_N}, reve{\omega}_{\mathcal{T}}
ight
angle \right|_v \mathrm{d} x_{1,v} \dots \mathrm{d} x_{N,v}$$

où x_1, \ldots, x_n désignent des coordonnés locales analytiques au voisinage d'un point x de $V(k_v)$.

D'un autre coté, la mesure $\omega'_{\mathcal{T},v}$ définie par [Pe2, notations 4.4.1] est construite de la manière suivante : on note $\omega_{T_{\rm NS},v}$ la mesure définie par la forme différentielle canonique $\breve{\omega}_{T_{\rm NS}}$ sur $T_{\rm NS}$ et on se donne un morphisme $\psi_{\omega_V^{-1}}$ de \mathcal{T} dans ω_V^{-1} dont l'image ne rencontre pas la section nulle et qui est compatible avec le morphisme de tore de $T_{\rm NS} \to \mathbf{G}_m$ induit par l'injection $\mathbf{Z} \to {\rm Pic}\,V$ envoyant 1 sur la classe de ω_V^{-1} . Pour tout point x de $V(k_v)$, on considère sur la fibre $\mathcal{T}_x(k_v)$ la mesure $\omega_{\mathcal{T}_x,v}$ donnée par

$$\int_{\mathcal{T}_x(k_v)} f(r) \omega_{\mathcal{T}_x,v}(r) = \int_{T_{\rm NS}(k_v)} f(r.y) \left\| \psi_{\omega_V^{-1}}(r.y) \right\|_v^{-1} \omega_{T_{\rm NS},v}(r)$$

où y est un point arbitraire de $\mathcal{T}_x(k_v)$. La mesure $m{\omega}_{\mathcal{T},v}'$ est alors définie par la relation

$$\int_{\mathcal{T}(k_v)} f(y) \omega_{\mathcal{T},v}'(y) = \int_{V(k_v)} \omega_{\mathbf{h},v}(x) \int_{\mathcal{T}_x(k_v)} f(y) \omega_{\mathcal{T}_x,v}(y).$$

Mais $\breve{\omega}_{T_{\rm NS}}$ fournit un isomorphisme $\omega_{\mathcal{T}} \xrightarrow{\sim} \pi^* \omega_V$ et $\psi_{\omega_V^{-1}}^{\vee} : \mathcal{T} \to \omega_V$ fournit une section partout non nulle de $\omega_{\mathcal{T}}$, qu'on peut supposer égale à $\breve{\omega}_{\mathcal{T}}$. D'autre part, on

peut choisir des coordonnés locales x_1, \ldots, x_n sur un ouvert W de $V(k_v)$ sur lequel \mathcal{T} se trivialise et fixer cette trivialisation

$$\mathcal{T}(k_v)_{|W} \xrightarrow{\sim} W \times T_{\rm NS}(k_v).$$

Des coordonnées locales x_{n+1}, \ldots, x_N sur $T_{NS}(k_v)$ fournissent alors des coordonnées locales sur $\mathcal{T}(k_v)$. On a alors les relations

$$\omega_{\mathcal{T},v}' = \left\| \frac{\partial}{\partial x_1} \wedge \dots \wedge \frac{\partial}{\partial x_n} \right\|_v \|\psi_{\omega_V^{-1}}(x_1, \dots, x_N)\|_v^{-1}$$

$$\times \left| \left\langle \frac{\partial}{\partial x_{n+1}} \wedge \dots \wedge \frac{\partial}{\partial x_N}, \breve{\omega}_{T_{\text{NS}}} \right\rangle \right|_v dx_{1,v} \dots dx_{N,v}$$

$$= \left| \left\langle \frac{\partial}{\partial x_1} \wedge \dots \wedge \frac{\partial}{\partial x_N}, \psi_{\omega_V^{-1}}^{\vee}(x_1, \dots, x_N) \wedge \breve{\omega}_{T_{\text{NS}}} \right\rangle \right|_v$$

$$\times dx_{1,v} \dots dx_{N,v}$$

$$= \omega_{\mathcal{T},v}. \quad \Box$$

Définition 3.1.5. — La mesure

$$\omega_{\mathcal{T}} = \prod_{v \in M_k} \omega_{\mathcal{T},v}$$

est, par la formule du produit, indépendante du choix de $\breve{\omega}_{\mathcal{T}}$. On l'appelle mesure canonique de $\mathcal{T}_{C_{\text{eff}}(\overline{V})}(\boldsymbol{A}_k)$.

Exemple 3.1.4. Si V est une intersection complète dans une variété X, définie par l'annulation de sections s_1, \ldots, s_m de fibrés en droites L_1, \ldots, L_m de sorte que la restriction donne un isomorphisme

$$\operatorname{Pic}(\overline{X}) o \operatorname{Pic}(\overline{V})$$

et que X et V vérifient la convention 3.1.3 et si X a un point rationnel, alors par la remarque 3.1.1, un torseur universel \mathcal{T}_V est l'image inverse de V dans un torseur universel $\pi: \mathcal{T}_X \to X$. Comme les faisceaux inversibles $\pi^*(L_i)$ sont triviaux pour $1 \leq i \leq m$, \mathcal{T}_V est donc défini dans \mathcal{T}_X par l'annulation de m fonctions f_1, \ldots, f_m qui vérifient

$$\forall y \in \mathcal{T}_X(\overline{k}), \quad \forall t \in T_{\mathrm{NS}}(\overline{k}), \quad f_i(t.y) = [L_i](t)f_i(y),$$

où $[L_i]\in \operatorname{Pic} \overline{V}=X^*(T_{\operatorname{NS}})$. Si $\breve{\omega}_{\mathcal{T}_X}$ est une trivialisation de $\omega_{\mathcal{T}_X}$, On dispose alors d'une forme différentielle de Leray $\breve{\omega}_{\operatorname{L},\mathcal{T}_V}$ section de $\omega_{\mathcal{T}_V}$ et définie par la relation

$$\forall y \in \mathcal{T}_V(\overline{k}), \quad \breve{\omega}_{\mathbb{L}, \mathcal{T}_V}(y) \wedge f^* \left(\bigwedge_{i=1}^m \mathrm{d} x_i \right) (y) = \breve{\omega}_{\mathcal{T}_X}(y).$$

Cette forme différentielle est une section partout non nulle de $\omega_{\mathcal{T}_V}$ on peut donc poser $\breve{\omega}_{\mathcal{T}_V} = \breve{\omega}_{L,\mathcal{T}_V}$.

Si, en outre, X est une compactification projective lisse d'un tore T, alors \mathcal{T}_X est un ouvert d'un espace affine \mathbf{A}_k^N et on peut prendre

$$\breve{\omega}_{\mathcal{T}_X} = \mathrm{d}x_1 \wedge \cdots \wedge \mathrm{d}x_N.$$

La forme pour \mathcal{T}_V est alors donnée localement par l'expression explicite

$$\breve{\omega}_{\mathbf{L},\mathcal{T}_{V}}(x) = (-1)^{Nm - \sum_{j=1}^{m} l_{j}} \det \left(\frac{\partial f_{i}}{\partial x_{l_{j}}}(x) \right)_{1 \leq i,j \leq m}^{-1} \mathrm{d}x_{0} \wedge \cdots \wedge \mathrm{d}x_{n}$$

pour $l_1 < \cdots < l_m$.

3.2. Fonctions de comptage. — Nous souhaitons maintenant expliciter et démontrer la description en termes des torseurs universels de la formule asymptotique (2.4.1) telle qu'elle est annoncée dans [Pe2, §5.4].

Le passage au torseur universel nécessite la construction d'un domaine fondamental dans le produit $\prod_{v \in S} \mathcal{T}(k_v)$ sous l'action de $T_{\rm NS}(\mathcal{O}_S)$, qui permettra en fait de construire un domaine fondamental de $\mathcal{T}_{C_{\rm eff}(\overline{V})}(A_k)$ sous l'action de $T_{\rm NS}(k)$. Nous allons rappeler la construction d'un tel domaine donnée dans [**Pe2**].

On peut rapprocher cette construction du lien entre systèmes de métriques et sections des applications quotients

$$\mathcal{T}(A_k)/K_{T_{
m NS}} o V(A_k)$$

indiquée par Salberger [Sa].

Notations 3.2.1. — Pour tout tore T sur k, on note $X_*(T)$ le $\operatorname{Gal}(\overline{k}/k)$ -réseau dual de $X^*(T)$ et pour tout place v de k, $X_*(T)_v$ le groupe $X_*(T)^{\operatorname{Gal}(\overline{k_v}/k_v)}$. En outre $T(\mathcal{O}_v)$ désigne le sous-groupe compact maximal de $T(k_v)$ et on pose

$$K_T = \prod_{v \in M_k} T(\mathfrak{O}_v) \quad ext{et} \quad W(T) = K_T \cap T(k).$$

Le groupe W(T) est le groupe fini des éléments de torsion dans T(k). On dispose d'une injection canonique

$$\log_v: T(k_v)/T(\mathcal{O}_v) \to X_*(T)_v \otimes \mathbf{R}$$
.

Quitte à augmenter l'ensemble des mauvaises places S, on peut supposer qu'il contient les places archimédiennes et les places ramifiées dans une extension galoisienne fixée K/k qui déploie le tore $T_{\rm NS}$. Par [Ono1, theorem 4] et [Ono2, §3], on peut en outre supposer que l'application naturelle

$$T_{\mathrm{NS}}(k) \to \bigoplus_{v \in M_k - S} X_*(T_{\mathrm{NS}})_v$$

est surjective et qu'on a une suite exacte

$$0 \to W(T_{\rm NS}) \to T_{\rm NS}(\mathcal{O}_S) \xrightarrow{\log_S} \prod_{v \in S} X_*(T_{\rm NS})_v \otimes \mathbf{R}$$

où \log_S est induite par les applications \log_v pour $v \in S$. En outre l'image M de \log_S est un réseau dans le noyau du morphisme

$$\prod_{v \in S} X^*(T_{\mathrm{NS}})_v^{\vee} \otimes \mathbf{R} \to X^*(T_{\mathrm{NS}})_k \otimes \mathbf{R}$$

où $X^*(T_{\rm NS})_k = X^*(T_{\rm NS})^{{\rm Gal}(\overline{k}/k)}$. On note Δ un domaine fondamental de M dans ce noyau et pr une projection du groupe de gauche sur ce noyau.

On se donne alors un système de hauteurs \mathbf{H}_K sur K et on note \mathbf{H} le système de hauteurs défini par le diagramme commutatif

$$NS(V) \xrightarrow{[K:k]H} \mathcal{H}(V)
\downarrow \qquad \qquad \uparrow^{N_{K/k}}
NS(V_K) \xrightarrow{\mathbf{H}_K} \mathcal{H}(V_K).$$

On suppose en outre que $\mathbf{h} = \mathbf{H}([\omega_V^{-1}])$ et que

$$\forall L \in C_{\text{eff}}(V) \cap \text{Pic } V, \quad \forall x \in V(k), \quad \mathbf{H}(L, x) \geqslant 1.$$

Soit \mathcal{T} un torseur universel au-dessus de V ayant un point rationnel y_0 . Si L est un fibré en droites sur V_K , L^\times désigne le complémentaire de la section nulle dans L. Le morphisme $\mathbf{Z} \to \operatorname{Pic} V_K$ envoyant 1 sur la classe de L induit un morphisme $\phi_L: T_{\mathrm{NS}K} \to \mathbf{G}_{m,K}$ et $\phi_{L*}(\mathcal{T})$ est isomorphe à L^\times . On note $\psi_L: \mathcal{T} \to L$ un morphisme partout non nul obtenu de cette manière. On fixe une place \mathfrak{p}_0 de k, et on suppose que la hauteur $(L, (\|.\|_{\mathfrak{P}})_{\mathfrak{P} \in M_K})$ représente $\mathbf{H}_K([L])$, on note alors

$$\forall \mathfrak{P} \in M_{K}, \ \forall y \in \mathcal{T}(K_{\mathfrak{P}}), \ \|y\|_{\mathfrak{P}}^{L} = \begin{cases} \frac{\|\psi_{L}(y)\|_{\mathfrak{P}}}{\|\psi_{L}(y_{0})\|_{\mathfrak{P}}} \text{ si } \mathfrak{P} \not\mid \mathfrak{p}_{0} \\ \frac{\|\psi_{L}(y)\|_{\mathfrak{P}}}{\|\psi_{L}(y_{0})\|_{\mathfrak{P}}} \mathbf{H}_{K}(L, \pi(y_{0})) \frac{[K_{\mathfrak{P}}:k_{\mathfrak{P}_{0}}]}{[K:k]} \text{ sinon.} \end{cases}$$

Les fonctions $\|.\|_{\mathfrak{P}}^L$ ne dépendent que de $\mathbf{H}_K([L])$, de y_0 et de \mathfrak{p}_0 . Elles induisent des fonctions $\|.\|_v^L$ pour toute place v de k et tout L de Pic V_v . On obtient des fonctions

$$\tilde{\mathbf{H}}_{\mathcal{T},v}^{\log}: \mathcal{T}(k_v) \to (\operatorname{Pic} V_v)^{\vee} \otimes \mathbf{R}$$

caractérisées par les relations

$$\forall y \in \mathcal{T}(k_v), \quad \forall L \in \operatorname{Pic} V_v, \quad \|y\|_v^L = q_v^{-\tilde{\mathbf{H}}_{\mathcal{T},v}^{\log}(y)(L)}$$

où $q_v = \# \mathbf{F}_v$ si $v \in M_f$, $q_v = e$ si k_v est isomorphe à \mathbf{R} et $q_v = e^2$ sinon. On considère alors

$$\Delta_{\mathbf{H}_K}(\mathcal{T}) = \left\{ y \in \prod_{v \in S} \mathcal{T}(k_v) \middle| \operatorname{pr} \left((\tilde{\mathbf{H}}_{\mathcal{T},v}^{\log}(y_v))_{v \in S} \right) \in \Delta \right\}$$

qui, par [Pe2, proposition 4.3.1] est, sous réserve d'une augmentation de S, un domaine fondamental de $\prod_{v \in S} \mathcal{T}(k_v)$ sous $T_{NS}(\mathfrak{O}_S)/W(T_{NS})$.

Nous pouvons maintenant définir les fonctions de comptage.

Notations 3.2.2. — Quitte à agrandir S, on peut fixer un modèle lisse $\widehat{\mathcal{T}}$ de $\widehat{\mathcal{T}}_{Cost}(\overline{V})$. Pour toute place p de k en-dehors de S, on note

$$\mathcal{T}_{C_{\mathrm{eff}}(\overline{V})}(\mathfrak{O}_{\mathfrak{p}}) = \widehat{\mathscr{T}}(\mathfrak{O}_{\mathfrak{p}}) \cap \mathcal{T}(k_{\mathfrak{p}}).$$

et on considère

$$\mathcal{T}_{C_{\mathrm{eff}}(\overline{V}),S}(\boldsymbol{A}_k) = \prod_{v \in S} \mathcal{T}(k_v) \times \prod_{\mathfrak{p} \notin S} \mathcal{T}_{C_{\mathrm{eff}}(\overline{V})}(\mathfrak{O}_{\mathfrak{p}}).$$

Pour tout élément $\mathfrak b$ de $\bigoplus_{\mathfrak p\in M_k-S} X_*(T_{\rm NS})_{\mathfrak p}$, on note $\mathfrak b_{\mathfrak p}$ la composante de $\mathfrak b$ dans $X_*(T_{\rm NS})_{\rm p}$ et on pose

$$T_{\mathrm{NS}}(-C_{\mathrm{eff}}(\overline{V}), \mathfrak{b}_{\mathfrak{p}}) = \{t \in T_{\mathrm{NS}}(k_{\mathfrak{p}}) \mid \forall y \in C_{\mathrm{eff}}(\overline{V}) \cap \mathrm{Pic}\,V_{\mathfrak{p}}, \, v_{\mathfrak{p}}(y(t)) \leqslant \langle y, \mathfrak{b}_{\mathfrak{p}} \rangle \}$$

et

$$\mathfrak{b}.\mathcal{T}_{C_{\mathrm{eff}}(\overline{V}),S}(\boldsymbol{A}_k) = \prod_{v \in S} \mathcal{T}(k_v). \prod_{\mathfrak{p} \not \in S} T_{\mathrm{NS}}(-C_{\mathrm{eff}}(\overline{V}),\mathfrak{b}_{\mathfrak{p}}) \mathcal{T}_{C_{\mathrm{eff}}(\overline{V})}(\mathfrak{O}_{\mathfrak{p}}).$$

On peut remarquer que si $b_{\mathfrak{p}} \in T_{\rm NS}(k_{\mathfrak{p}})$ est tel que $\log_{\mathfrak{p}}(b_{\mathfrak{p}}) = \mathfrak{b}_{\mathfrak{p}}$, alors

$$T_{
m NS}(-C_{
m eff}(\overline{V}), \mathfrak{b}_{\mathfrak{p}}) = b_{\mathfrak{p}}T_{
m NS}(-C_{
m eff}(\overline{V}), 0)$$

et

$$T_{\mathrm{NS}}(-C_{\mathrm{eff}}(\overline{V}), \mathfrak{b}_{\mathfrak{p}}).\mathcal{T}_{C_{\mathrm{eff}}(\overline{V})}(\mathfrak{O}_{\mathfrak{p}}) = b_{\mathfrak{p}}.\mathcal{T}_{C_{\mathrm{eff}}(\overline{V})}(\mathfrak{O}_{\mathfrak{p}}).$$

La fonction de comptage sur le torseur universel $\mathcal T$ associée au système de hauteurs \mathbf{H}_K , au nombre réel positif H et à l'élément $\mathfrak b$ de $\bigoplus_{v\in M_k-S} X_*(T_{\mathrm{NS}})_v$ est alors la fonction $\Phi^{\mathbf{H}}_{\mathcal{T}}(H, \mathfrak{b}, .)$ indicatrice de l'ensemble des $y = (y_v)_{v \in M_k}$ de $\mathcal{T}_{C_{\mathrm{eff}}(\overline{V})}(A_k)$ vérifiant les conditions qui suivent :

$$(3.2.1) \forall v \in S, \quad \pi(y_v) \in U(k_v),$$

$$(3.2.2) (y_v)_{v \in S} \in \Delta_{\mathbf{H}_K}(\mathcal{T}),$$

(3.2.3)
$$\forall L \in C_{\text{eff}}(V), \quad \prod_{v \in S} \|y_v\|_v^L \leqslant 1,$$

$$\prod_{v \in S} (\|y_v\|_v^{\omega_v^{-1}})^{-1} \leqslant H,$$

(3.2.4)
$$\prod_{v \in S} (\|y_v\|_v^{\omega_V^{-1}})^{-1} \leqslant H,$$

$$(3.2.5) y \in \mathfrak{b}.\mathcal{T}_{C_{\text{eff}}(\overline{V}),S}(A_k).$$

3.3. Fonctions de Möbius. — Nous aurons besoin dans le prochain paragraphe de fonctions de Möbius que nous allons maintenant définir et étudier.

Notations 3.3.1. — Soit M un **Z**-module libre de type fini et $C \subset M \otimes \mathbf{R}$ un cône polyédrique rationnel strictement convexe, c'est-à-dire de la forme

$$\sum_{i=0}^N \mathbf{R}_{\geqslant 0} m_i$$

avec $m_i \in M$ et tel que $C \cap -C = \{0\}$. Si R est un anneau commutatif, on note R[[C]] (respectivement R((C))) l'ensemble des fonctions $M \to R$ dont le support est contenu dans C (respectivement dans un translaté de C). On dispose sur ces R-modules d'un produit (de convolution) défini par

$$\forall x \in M, \quad fg(x) = \sum_{y+z=x} f(y)g(z).$$

En effet si $\operatorname{Supp}(f) \subset m+C$ et $\operatorname{Supp}(g) \subset n+C$ alors le support de fg est contenu dans m+n+C. La fonction δ_0 indicatrice de $\{0\}$ est une unité pour ce produit. Si A est une partie de M, on note 1_A sa fonction indicatrice.

Exemple 3.3.1. — Si C est un cône régulier c'est-à-dire de la forme

$$\sum_{i=0}^m \mathbf{R}_{\geqslant 0} m_i$$

où $(m_i)_{0\leqslant i\leqslant m}$ peut être complété en une base de M, alors on a des isomorphismes évidents

$$\mathbf{Z}[[C]] = \mathbf{Z}[[T_1, \dots, T_m]]$$
 et $\mathbf{Z}((C)) = \mathbf{Z}[[T_1, \dots, T_m]][T_1^{-1}, \dots, T_m^{-1}]$ où T_1, \dots, T_m sont des indéterminées.

Remarque 3.3.1. — Géométriquement, Q[[C]] peut être vu comme complété de l'anneau local à l'origine de la variété torique affine

$$\operatorname{Spec} \mathbf{Q}[C]$$

pour la topologie définie par l'idéal maximal.

Notations 3.3.2. — On a un plongement canonique $R[M] \subset R((C))$ et on pose

$$R[C] = R[M] \cap R[[C]]$$

qui coïncide en fait avec l'algèbre du monoïde $C\cap M$. On note T une indéterminée. Si $m\in M$, T^m désigne l'élément correspondant de R[M]. Si $f\in R[[C]]$, on pose

$$\sum_{m\in M} f(m)T^m = f.$$

Si $\phi: M \to M'$ est un morphisme de **Z**-modules libres de type fini envoyant C dans un cône polyédrique rationnel strictement convexe C' de $M' \otimes \mathbf{R}$ et tel que $\ker \phi \cap C = \{0\}$, alors on dispose d'un morphisme de R-modules

$$\phi_*: R((C)) \to R((C'))$$

envoyant R[[C]] dans R[[C']] défini par

$$\forall x \in M', \quad \phi_* f(x) = \sum_{\phi(y)=x} f(y).$$

Lemme 3.3.2. — Avec les notation ci-dessus, ϕ_* est un morphisme d'anneau.

Démonstration. — Si $f, g \in R((C))$ et $x \in M'$, on a les relations

$$\phi_*(fg)(x) = \sum_{y+z=x} \left(\sum_{\phi(y')=y} f(y') \right) \left(\sum_{\phi(z')=z} g(z') \right)$$

$$= \sum_{\phi(y)+\phi(z)=x} f(y)g(z)$$

$$= (\phi_*f)(\phi_*g)(x). \quad \Box$$

Exemple 3.3.2. — Si $\lambda \in M^{\vee}$ appartient à l'intérieur du cône C^{\vee} défini par

$$C^{\vee} = \{x \in M^{\vee} \otimes \mathbf{R} \mid \forall y \in C, \, \langle x, y \rangle \geqslant 0\}$$

alors $\lambda:M o {f Z}$ envoie C dans ${f R}_{\geqslant 0}$ et on dispose d'un morphisme

$$\lambda_*: R((C)) \to R((T)).$$

Lemme 3.3.3. — Avec les notations qui précèdent, si R est intègre, alors R((C)) est un anneau intègre.

Démonstration. — Soient f et g deux éléments non nuls de R((C)). On peut choisir λ de M^{\vee} à l'intérieur de C^{\vee} , $x_0 \in \text{Supp } f$ et $y_0 \in \text{Supp } g$ de sorte que

$$\forall x \in \operatorname{Supp} f - \{x_0\}, \ \lambda(x) > \lambda(x_0) \quad \text{et} \quad \forall y \in \operatorname{Supp} g - \{y_0\}, \ \lambda(y) > \lambda(y_0).$$

On en déduit que $\lambda_*(f)$ et $\lambda_*(g)$ sont non nuls et le lemme découle de l'intégrité de R((T)).

Lemme 3.3.4. — Avec les notations ci-dessus, si R est intègre et si $f \in R[[C]]$ vérifie $f(0) \in R^{\times}$, alors f est inversible dans R[[C]].

 $D\acute{e}monstration$. — La fonction g est un inverse de f si et seulement si elle vérifie la relation

$$\forall y \in M, \quad \sum_{x \in C} g(y - x) f(x) = \delta_0(y)$$

Soit $C^{\times} = C - \{0\}$, alors cette équation s'écrit également

(3.3.1)
$$\forall y \in M, \quad g(y) = f(0)^{-1} \Big(\delta_0(y) - \sum_{x \in C^{\times}} g(y - x) f(x) \Big).$$

Or pour tout m de M^{\vee} à l'intérieur du cône C^{\vee} , on a

$$\forall x \in C^{\times}, \quad \langle x, m \rangle > 0.$$

Un récurrence sur $\langle x, m \rangle$ montre alors que (3.3.1) défini une fonction g dont le support est contenu dans C.

Notation 3.3.3. — On note μ_C l'inverse de 1_C dans R[[C]].

Lemme 3.3.5. — En conservant les notations qui précèdent, Il existe $P \in \mathbf{Z}[C]$ et une famille finie $(m_j)_{j \in J}$ d'éléments de M tels que

$$\mathbf{1}_C = \frac{P}{\prod\limits_{j \in J} (1 - T^{m_j})}.$$

Démonstration. — Si C est un cône régulier de la forme $\sum_{i=0}^{m} \mathbf{R}_{\geqslant 0} m_i$, la fonction 1_C peut s'écrire

$$1_C = \sum_{n \in \mathbb{Z}_{\geq 0}^m} T^{\sum_{i=1}^m n_i m_i} = \frac{1}{\prod_{i=1}^m (1 - T^{m_i})}.$$

Dans le cas général (cf. par exemple [**Oda**, page 23]), on écrit C comme support d'un éventail régulier Σ , c'est-à-dire que Σ est un ensemble de cônes polyédriques rationnels strictement convexes de $M \otimes \mathbf{R}$ tel que

- (i) si $\sigma \in \Sigma$ et σ' est un face de σ , alors $\sigma' \in \Sigma$,
- (ii) si $\sigma, \sigma' \in \Sigma$ alors $\sigma \cap \sigma'$ est une face de σ et de σ' ,
- (iii) $C = \bigcup_{\sigma \in \Sigma} \sigma$,
- (iv) tout σ de Σ est régulier.

La fonction 1_C s'écrit alors

$$\mathbf{1}_C = \sum_{\sigma \in \Sigma} \alpha_\sigma \mathbf{1}_\sigma$$

avec $\alpha_{\sigma} \in \mathbf{Z}$ et le résultat découle du cas précédent.

Proposition 3.3.6. — Pour tout élément λ de M^{\vee} à l'intérieur de C^{\vee} , il existe une constante R telle que

$$\forall x \in C, \quad |\mu_C(x)| < R^{\langle \lambda, x \rangle}.$$

Démonstration. — L'élément P de $\mathbf{Z}[C]$ du lemme 3.3.5 peut s'écrire

$$P = 1 + \sum_{m \in C^{\times}} \alpha_m T^m$$

On pose $Q=1+\sum_{m\in C^{\times}}-|\alpha_m|T^m$. La relation (3.3.1) montre alors que les coefficients de P^{-1} vérifient

$$\forall x \in M, \quad |P^{-1}(x)| \leqslant Q^{-1}(x).$$

Mais par le lemme 3.3.5 la fonction de Möbius s'écrit

$$\boldsymbol{\mu}_C = P^{-1} \prod_{j \in J} (1 - T^{m_i})$$

et donc

$$\forall x \in C, \quad |\mu_C(x)| \leqslant \left(Q^{-1} \prod_{i \in J} (1 + T^{m_i})\right)(x).$$

on en déduit l'inégalité

$$\forall x \in C, \quad |\mu_C(x)| \leqslant \lambda_* \Big(Q^{-1} \prod_{j \in J} (1 + T^{m_j}) \Big) (\lambda(x)).$$

Soit R_0 l'inverse de la plus petite des valeurs absolues des racines de λ_*Q . Pour tout nombre réel $\epsilon > 0$ on a

$$\frac{\lambda_* \left(Q^{-1} \prod_{j \in J} (1 + T^{m_j})\right)(x)}{(R_0 + \epsilon)^x} \to 0$$

$$x \to +\infty$$

en outre $\mu_C(0) = 1$ et le lemme est démontré.

3.4. Montée du nombre de points. — Notre but est maintenant d'exprimer le nombre $n_{U,h}(H)$ en termes des torseurs universels.

Notations 3.4.1. — Une famille de représentants des classes d'isomorphisme de torseurs universels ayant un point rationnel au-dessus de V, qui est finie par [CTS1, proposition 2], est notée $(\mathcal{T}_i)_{i\in I}$.

Pour toute place v de $M_f - S$, on considère le cône

$$C_v = \{x \in X_*(T_{\mathrm{NS}})_v \mid \forall y \in C_{\mathrm{eff}}(V_v), \ \langle x, y \rangle \leqslant 0\}.$$

On pose $\mu_v = \mu_{C_v}$ et

$$\mu = \prod_{v \in M_k - S} \mu_v : \bigoplus_{v \in M_k - S} X_*(T_{NS})_v \to \mathbf{R}.$$

Proposition 3.4.1. — Avec les notations qui précèdent, quitte à augmenter S, pour tout nombre réel positif H, on a la relation :

$$n_{U,\mathbf{H}}(H) = \frac{1}{\#W(T_{\mathrm{NS}})} \sum_{i \in I} \sum_{\mathfrak{b} \in \bigoplus_{v \in M_{\mathfrak{b}} - S} X_{*}(T_{\mathrm{NS}})_{v}} \mu(\mathfrak{b}) \sum_{y \in \mathcal{T}_{i}(k)} \Phi_{\mathcal{T}_{i}}^{\mathbf{H}}(H, \mathfrak{b}, y).$$

Remarques 3.4.2. (i) Les sommations du terme de droite ne font intervenir qu'un nombre fini de termes non nuls.

(ii) Si on remplace ω_V^{-1} par un autre fibré en droites L à l'intérieur de $C_{ ext{eff}}(V)$ dans la condition (3.2.4) de la définition des fonctions de comptage, la démonstration reste valide et on obtient une expression de $n_{U,\mathbf{H}(L)}$ en termes des torseurs universels.

Démonstration. — Soit x un point rationnel de U et i l'unique élément de I pour lequel \mathcal{T}_i a un point rationnel au-dessus de x. Il nous faut montrer que :

(3.4.1)

$$\frac{1}{\#W(T_{\mathrm{NS}})} \sum_{\mathbf{b} \in \bigoplus_{v \in M_{k} - S} X_{*}(T_{\mathrm{NS}})_{v}} \mu(\mathbf{b}) \sum_{y \in \mathcal{T}_{i}(k)} \Phi_{\mathcal{T}_{i}}^{\mathbf{H}}(H, \mathbf{b}, y) = \begin{cases} 1 \text{ si } \mathbf{h}(x) \leqslant H, \\ 0 \text{ sinon.} \end{cases}$$

Mais pour S assez gros, il résulte de [Pe2, proposition 4.2.2] que $\mathcal{T}_{i_{C_{\mathrm{eff}}}(\overline{V})}(\mathfrak{O}_{\mathfrak{p}})$ peut être décrit de la manière suivante :

$$\mathcal{T}_{i_{C_{\mathrm{eff}}}(\overline{V})}(\mathcal{O}_{\mathfrak{p}}) = \{ y \in \mathcal{T}_{i}(k_{\mathfrak{p}}) \mid \forall \mathfrak{P} | \mathfrak{p}, \, \forall L \in C_{\mathrm{eff}}(\overline{V}), \, \|y\|_{\mathfrak{P}}^{L} \geqslant 1 \}.$$

Il en résulte que

$$\sum_{\mathfrak{b} \in X_{\bullet}(T_{\mathrm{NS}})_{\mathfrak{p}}} \mu_{\mathfrak{p}}(\mathfrak{b}) \mathbf{1}_{T_{\mathrm{NS}}(-C_{\mathrm{eff}}(\overline{V}),\mathfrak{b}).\mathcal{T}_{C_{\mathrm{eff}}(\overline{V})}(\mathfrak{O}_{\mathfrak{p}})}$$

est la fonction indicatrice de

$$\{y \in \mathcal{T}_i(k_{\mathfrak{p}}) \mid \forall \mathfrak{P} | \mathfrak{p}, \, \forall L \in C_{\mathrm{eff}}(\overline{V}), \, \|y\|_{\mathfrak{P}}^L = 1\}.$$

Le terme de gauche de (3.4.1) est donc $\#W(T_{\rm NS})^{-1}$ fois la somme des valeurs de la fonction caractéristique de l'ensemble des y de $\mathcal{T}_{ix}(k)$ vérifiant les conditions suivantes:

$$(3.4.2) (y_v)_{v \in S} \in \Delta_{\mathbf{H}_K}(\mathcal{T}_i),$$

(3.4.3)
$$\forall L \in C_{\text{eff}}(V), \quad \prod_{v \in S} \|y_v\|_v^L \leqslant 1,$$

$$(3.4.4) \quad \prod_{v \in S} (\|y_v\|_v^{\omega_v^{-1}})^{-1} \leqslant H,$$

(3.4.4)
$$\prod_{v \in S} (\|y_v\|_v^{\omega_v^{-1}})^{-1} \leqslant H,$$

$$(3.4.5) \qquad \forall \mathfrak{P} \in M_K - S_K, \quad \forall L \in C_{\text{eff}}(\overline{V}), \quad \|y_{\mathfrak{P}}\|_{\mathfrak{P}}^L = 1,$$

où S_K désigne l'ensemble des places de K au-dessus de S. Comme

$$\prod_{v \in M_k} \|y_v\|_v^L = \mathbf{H}(L, \pi(y))^{-1} \geqslant 1,$$

la condition (3.4.5) implique (3.4.3). Mais on a une suite exacte

$$0 \to T_{\mathrm{NS}}(\mathcal{O}_S) \to T_{\mathrm{NS}}(k) \to \prod_{v \in M_k - S} X_*(T_{\mathrm{NS}})_v \to 0$$

et donc les conditions (3.4.2) et (3.4.5) définissent un domaine fondamental pour l'ensemble $\mathcal{T}_{C_{\text{eff}}(\overline{V})}(A_k)$ sous $T_{\text{NS}}(k)/W(T_{\text{NS}})$. D'autre part la condition (3.4.4), compte tenu de (3.4.5) peut être remplacée par $\mathbf{h}(\pi(y)) \leq H$.

3.5. Montée de la constante. — Nous allons maintenant montrer l'analogue intégral du résultat précédent.

Convention 3.5.1. — Dans la suite nous supposons également que les torseurs universels au-dessus de V vérifient le principe de Hasse et l'approximation faible.

Proposition 3.5.1. — Avec les notations et conventions qui précèdent, il existe S tel que pour tout nombre réel positif H on ait

(3.5.1)

$$\begin{split} \alpha(V)\beta(V)\tau_{\mathbf{h}}(V) \int_{0}^{\log H} u^{t-1}e^{u}\mathrm{d}u \\ &= \frac{1}{\#W(T_{\mathrm{NS}})} \sum_{i \in I} \sum_{\substack{\mathfrak{b} \in \bigoplus X_{*}(T_{\mathrm{NS}})_{v} \\ v \in M_{k} - S}} \mu(\mathfrak{b}) \int_{\mathcal{T}_{i_{C_{\mathrm{eff}}}(\overline{V})}(A_{k})} \Phi^{\mathrm{H}}_{\mathcal{T}_{i}}(H, \mathfrak{b}, y) \omega_{\mathcal{T}_{i}}(y). \end{split}$$

Remarques 3.5.2. (i) Le terme principal de $\int_0^{\log H} u^{t-1} e^u du$ est $H(\log H)^{t-1}$; c'est en fait le seul ayant une signification pour le comportement asymptotique.

- (ii) L'intégrale converge par le lemme 3.1.3. Il résultera de la démonstration que la sommation sur b converge absolument.
- (iii) En rapprochant la proposition 3.4.1 de la proposition précédente, on constate que la question 2.4.2 se ramène à des majorations de la forme

$$\left| \sum_{y \in \mathcal{T}_{i}(k)} \Phi^{\mathbf{H}}_{\mathcal{T}_{i}}(H, \mathfrak{b}, y) - \int_{\mathcal{T}_{i}_{C_{\text{eff}}(\overline{V})}(A_{k})} \Phi^{\mathbf{H}}_{\mathcal{T}_{i}}(H, \mathfrak{b}, y) \boldsymbol{\omega}_{\mathcal{T}_{i}}(y) \right|$$

comme c'était le cas dans [Pe2] pour les fonctions zêta associées.

Notons que l'équivalence entre ces deux termes lorsque H tend vers l'infini est l'analogue, dans notre cadre, de la notion de variété strictement d'Hardy-Littlewood introduite par Borovoi et Rudnick dans [BR].

Démonstration. — Remarquons tout d'abord que si v est une place de k, \mathcal{T} un torseur au-dessus de V, b un élément de $T_{NS}(k_v)$ et U un ouvert de $\mathcal{T}(k_v)$, alors

$$\boldsymbol{\omega}_{\mathcal{T},v}(b^{-1}U) = \left| [\boldsymbol{\omega}_V^{-1}](b) \right|_v \boldsymbol{\omega}_{\mathcal{T},v}(U).$$

On en déduit que

$$\begin{split} \int_{\mathcal{T}_{i_{C_{\text{eff}}}(\overline{V})}(A_{k})} \Phi^{\mathbf{H}}_{\mathcal{T}_{i}}(H, \mathfrak{b}, y) \omega_{\mathcal{T}_{i}}(y) \\ &= \frac{1}{\prod\limits_{\mathfrak{p} \in M_{k} - S} \#\mathbf{F}_{\mathfrak{p}}^{\langle \omega_{\overline{V}}^{-1}, -\mathfrak{b}_{\mathfrak{p}} \rangle}} \int_{\mathcal{T}_{i_{C_{\text{eff}}}(\overline{V})}(A_{k})} \Phi^{\mathbf{H}}_{\mathcal{T}}(H, 0, y) \omega_{\mathcal{T}_{i}}(y). \end{split}$$

Mais par hypothèse,

$$\forall x \in C_{\text{eff}}(\overline{V})^{\vee} \cap \operatorname{Pic} \overline{V}^{\vee} - \{0\}, \quad \langle x, \omega_V^{-1} \rangle > 1$$

et il en résulte que

$$(3.5.2) \forall v \in M_f - S, \quad \forall \mathfrak{b} \in C_v - \{0\}, \quad \langle \mathfrak{b}, \omega_V \rangle \geqslant 2$$

Or il découle de la proposition 3.3.6 que pour toute place v il existe une constante R_v telle que

$$\forall \mathfrak{b} \in C_v, \quad |\mu_{C_v}(\mathfrak{b})| < R_v^{\langle \mathfrak{b}, \omega_V \rangle}.$$

En outre, l'ensemble décrit par les paires $(X_*(T_{\rm NS})_v, C_v)$ étant fini, on peut choisir une constante R indépendante de v. Quitte à agrandir S, la série

$$\sum_{\mathfrak{b}\in\bigoplus X_{*}\left(T_{\mathrm{NS}}\right)_{v}}\boldsymbol{\mu}_{v}(\mathfrak{b})(\#\mathbf{F}_{v})^{\langle\omega_{V}^{-1},\mathfrak{b}\rangle}$$

converge absolument et par (3.5.2), il existe une constante R' telle que

$$\left|1 - \sum_{\mathfrak{b} \in X_*(T_{\mathrm{NS}})_v} |\mu_v(\mathfrak{b})| (\#\mathbf{F}_v)^{\langle \mathfrak{b}, \omega_V^{-1} \rangle} \right| < R' \#\mathbf{F}_v^{-2}.$$

Par conséquent,

$$\sum_{\substack{\mathfrak{b} \in \bigoplus_{v \in M_k - S}} \mathcal{K}_{\bullet}(T_{\mathrm{NS}})_v} \boldsymbol{\mu}(\mathfrak{b}) \prod_{v \in M_k - S} (\#\mathbf{F}_v)^{\langle \omega_V^{-1}, \mathfrak{b}_v \rangle}$$

converge absolument et le terme de droite de (3.5.1) se met sous la forme (3.5.3)

$$\begin{split} \frac{1}{\#W(T_{\mathrm{NS}})} \prod_{\mathfrak{p} \in M_k - S} \left(\sum_{\mathfrak{b} \in X_{\bullet}(T_{\mathrm{NS}})_{\mathfrak{p}}} \frac{\mu_{\mathfrak{p}}(\mathfrak{b})}{\#\mathbf{F}_{\mathfrak{p}}^{\langle \omega_{V}^{-1}, -\mathfrak{b} \rangle}} \right) \frac{1}{\sqrt{d}^{\dim \mathcal{T}_{i}}} \\ \times \sum_{i \in I} \int_{\prod_{v \in S} \mathcal{T}_{i}(k_{v})} \Phi_{\mathcal{T}_{i}, S}^{\mathbf{H}}(H, y) \prod_{v \in S} \omega_{\mathcal{T}_{i}, v}(y) \prod_{v \in M_{k} - S} \omega_{\mathcal{T}_{i}, v}(\mathcal{T}_{i_{C_{\mathrm{eff}}}(\overline{V})}(\mathfrak{O}_{v})) \end{split}$$

où $\Phi^{\mathbf{H}}_{\mathcal{T}_i,S}(H,x)$ désigne la fonction caractéristique de l'ensemble des y de $\Delta_{\mathbf{H}_K}(\mathcal{T}_i)$ tels que

$$\prod_{v \in S} (\|y_v\|_v^{\omega_V^{-1}})^{-1} \leqslant H \quad \text{et} \quad \forall L \in C_{\text{eff}}(V), \quad \prod_{v \in S} (\|y_v\|_v^L) \leqslant 1$$

Mais la relation $\mu_v \mathbf{1}_{C_v} = \delta_0$ implique que

(3.5.4)
$$\sum_{\mathfrak{b}\in X_{*}(T_{\mathrm{NS}})_{v}} \frac{\mu_{v}(\mathfrak{b})}{\#\mathbf{F}_{v}^{\langle\omega_{V}^{-1},-\mathfrak{b}\rangle}} = \left(\sum_{\mathfrak{b}\in -C_{v}} \frac{1}{\#\mathbf{F}_{v}^{\langle\omega_{V}^{-1},\mathfrak{b}\rangle}}\right)^{-1} = L_{v}(T_{\mathrm{NS}}, C_{\mathrm{eff}}(\overline{V}), \omega_{V}^{-1})^{-1}$$

où $L_v(T_{\rm NS}, C_{\rm eff}(\overline{V}), \omega_V^{-1})$ désigne le terme local de la fonction L de Draxl [**Dr**]. D'autre part, il résulte de la démonstration de [**Pe2**, théorème 5.3.1] qu'on a la relation

(3.5.5)

$$\begin{split} \prod_{v \in M_k - S} \omega_{\mathcal{T}_i, v}(\mathcal{T}_{i_{C_{\text{eff}}}(\overline{V})}(\mathbb{O}_v)) &= \left[\prod_{v \in M_k - S} L_v(T_{\text{NS}}, C_{\text{eff}}(\overline{V}), \omega_V^{-1}) \right] \\ &\times \left[\prod_{v \in M_k - S} \omega_{T_{\text{NS}}, v}(T_{\text{NS}}(\mathbb{O}_v)) L_v(1, \text{Pic } \overline{V}) \right] \\ &\times \left[\prod_{v \in M_k - S} L_v(1, \text{Pic } \overline{V})^{-1} \omega_{\mathbf{h}, v}(V(k_v)) \right]. \end{split}$$

Fixons un élément i de I et $(x_v)_{v \in S} \in \prod_{v \in S} V(k_v)$ un point appartenant à l'image de l'ensemble $\prod_{v \in S} \mathcal{T}_i(k_v)$. Il découle de [Ono1, pages 120-122] qu'on a une suite exacte

$$0 \to T^1_{\mathrm{NS}} \Big(\prod_{v \in S} k_v \Big) \to \prod_{v \in S} T_{\mathrm{NS}}(k_v) \to (\mathrm{Pic}\, V)^{\vee} \otimes \mathbf{R} \to 0$$

définissant le groupe $T^1_{NS}(\prod_{v \in S} k_v)$. Il existe donc un élément y_0 de $\prod_{v \in S} \mathcal{T}_i(k_v)$ tel qu'on ait $\prod_{v \in S} \|y_0\|_v^L = 1$ pour tout L de Pic V. En utilisant la démonstration du

lemme 3.1.3 on obtient comme dans la démonstration de [Pe2, théorème 5.3.1] que

$$\int_{\substack{\Pi \\ v \in S}} \mathcal{T}_{i}(k_{v}) \Phi_{\mathcal{T}_{i},S}^{\mathbf{H}}(H,y) \prod_{v \in S} \omega_{\mathcal{T}_{i},v}(y)$$

$$= \#W(T_{\mathrm{NS}}) \int_{\{y \in C_{\mathrm{eff}}(V)^{\vee} | \langle y, \omega_{V}^{-1} \rangle \leqslant \log H\}} e^{\langle \omega_{V}^{-1}, y \rangle} \mathrm{d}y$$

$$\times \omega_{T_{\mathrm{NS}}^{1},S} \left(T_{\mathrm{NS}}^{1} \left(\prod_{v \in S} k_{v}\right) / T_{\mathrm{NS}}(\mathcal{O}_{S})\right) \left(\prod_{v \in S} \omega_{\mathbf{h},v}\right) \left(\pi \left(\prod_{v \in S} \mathcal{T}_{i}(k_{v})\right)\right)$$

où $\omega_{T^1_{\rm NS},S}$ est la mesure induite par la forme canonique sur $T^1_{\rm NS}(\prod_{v\in S}k_v)/T_{\rm NS}(\mathfrak{O}_S)$. Mais on obtient directement l'égalité

$$(3.5.7) \qquad \int_{\{y \in C_{\text{eff}}(V)^{\vee} | \langle y, \omega_V^{-1} \rangle \leqslant \log H\}} e^{\langle \omega_V^{-1}, y \rangle} dy = \alpha(V) \int_0^{\log H} u^{t-1} e^u du$$

et on déduit du théorème d'Ono l'égalité suivante

$$\frac{\#H^{1}(k,\operatorname{Pic}\overline{V})}{\#\operatorname{III}^{1}(k,T_{\operatorname{NS}})} = \frac{1}{\sqrt{d}^{t}} \left[\lim_{s \to 1} (s-1)^{t} L_{S}(s,\operatorname{Pic}\overline{V}) \right]^{-1}$$

$$\omega_{T_{\operatorname{NS}}^{1},S} \left(T_{\operatorname{NS}}^{1} \left(\prod_{v \in S} k_{v} \right) / T_{\operatorname{NS}}(\mathfrak{O}_{S}) \right)$$

$$\prod_{v \in M_{k}-S} \omega_{T_{\operatorname{NS}},v} (T_{\operatorname{NS}}(\mathfrak{O}_{v})) L_{v}(1,\operatorname{Pic}\overline{V})$$

où

$$\mathrm{III}^1(k,T_{\mathrm{NS}}) = \mathrm{Ker}\Big(H^1(k,T_{\mathrm{NS}}) \to \prod_{v \in M_k} H^1(k_v T_{\mathrm{NS}})\Big).$$

En réunissant les formules (3.5.3) à (3.5.8), on obtient que le terme de droite de la proposition peut se réecrire

Mais il résulte de l'hypothèse sur les torseurs universels que tout point de $\overline{V(k)}$ appartient exactement à $\#\Pi^1(k,T_{\rm NS})$ ensembles de la forme $\pi(\prod_{v\in M_k}\mathcal{T}_i(k_v))$. La somme coïncide donc avec $\tau_{\mathbf{h}}(V)$.

4. Intersections complètes

4.1. Encerclement du nombre de points. —

Convention 4.1.1. — Dans ce paragraphe, on suppose que V est une intersection complète dans une variété X presque de Fano sur k de sorte que V elle-même soit presque de Fano et qu'on ait un isomorphisme

$$\operatorname{Pic} \overline{X} \xrightarrow{\sim} \operatorname{Pic} \overline{V}$$

qui envoie le cône des diviseurs effectifs de \overline{X} exactement sur celui de \overline{V} . On suppose en outre que

$$\forall L \in C_{\text{eff}}(\overline{V})^{\vee} \cap (\operatorname{Pic} \overline{V}^{\vee} - \{0\}), \quad \langle L, \omega_V^{-1} \rangle > 1.$$

Remarque 4.1.1. — Si V est une intersection complète dans une variété torique projective et lisse sur k vérifiant les hypothèses de la proposition 2.1.1 alors les conditions qui précèdent, à l'exception des deux dernières sont automatiquement vérifées.

Notations 4.1.2. — On fixe un torseur universel \mathcal{T}_V au-dessus de V et on suppose V définie par l'annulation de m sections s_1, \ldots, s_m de fibrés $[L_i] \in \operatorname{Pic} X$. D'après l'exemple 3.1.4, on a un diagramme commutatif de la forme

$$\mathcal{T}_V \stackrel{\tilde{\jmath}}{\longrightarrow} \mathcal{T}_X \ \downarrow^{\pi_V} \qquad \downarrow^{\pi_X} \ V \stackrel{j}{\longrightarrow} X$$

où $\tilde{\jmath}$ est une immersion fermée de sorte que \mathcal{T}_V soit défini par l'annulation de m sections f_1,\ldots,f_m du faisceau structural $\mathcal{O}_{\mathcal{T}_X}$, vérifiant les relations

$$(4.1.1) \forall y \in \mathcal{T}_X(\overline{k}), \quad \forall t \in T_{\mathrm{NS}}(\overline{k}), \quad f_i(t.y) = [L_i](t)f_i(y).$$

On note $f:\mathcal{T}_X \to \mathbf{A}_k^m$ l'application induite. On peut noter que l'application f s'étend au schéma $\widehat{\mathcal{T}_X} = \widehat{\mathcal{T}_X}_{C_{\mathrm{eff}}(\overline{X})}$.

Soit χ le caractère de Tate $A_k/k \to \mathbf{S}^1$. Il est défini par

$$\xi\mapsto e^{2i\pi\Lambda(\xi)}$$

où $\Lambda = \sum_{v \in M_k} \Lambda_v$ et $\Lambda_v : k_v \to \mathbf{R}/\mathbf{Z}$ est donnée par $\Lambda_v = \Lambda_p \circ \mathrm{Tr}_{k_v/\mathbf{Q}_p}$ où p est l'unique place de \mathbf{Q} sous v, $\mathrm{Tr}_{k_v/\mathbf{Q}_p}$ l'application trace et Λ_p le caractère défini par :

- si
$$\mathbf{Q}_p = \mathbf{R}$$
, $\lambda_p(x) = [-x]$

- sinon, Λ_p est la composée des applications naturelles

$$\mathbf{Q}_p o \mathbf{Q}_p/\mathbf{Z}_p o \mathbf{R}/\mathbf{Z}.$$

Par [Ta, theorem 4.1.4], l'application qui à un élément x de k associe $\xi \mapsto \chi(x\xi)$ définit un isomorphisme de k sur le groupe $\widehat{A_k/k}$ des caractères de A_k/k , et par [Ta, theorem 4.1.1], l'application qui à un élément η de A_k associe $\xi \mapsto \chi(\eta \xi)$ définit un isomorphisme de A_k sur son groupe des caractères $\widehat{A_k}$. On obtient donc des dualités

$$\mathbf{e}(\langle .,. \rangle): (\boldsymbol{A}_k/k)^m \times k^m \to \mathbf{S}^1 \text{ et } \mathbf{e}(\langle .,. \rangle): \boldsymbol{A}_k{}^m \times \boldsymbol{A}_k{}^m \to \mathbf{S}^1.$$

On note également e_v le caractère défini par $\xi\mapsto e^{2i\pi\Lambda_v(\xi)}$. Par [Ta, §2.2], la mesure autoduale $d\xi_v$ sur k_v pour e_v est donnée par

$$\mathrm{d}\xi_v = \begin{cases} \mathrm{d}x_v & \text{si } v \in M_\infty, \\ \#(\mathfrak{O}_v/\mathfrak{d}_v)^{-1/2} \mathrm{d}x_v & \text{sinon,} \end{cases}$$

où, pour toute place finie v de k, \mathfrak{d}_v désigne la différente absolue de k_v . On note d ξ

la mesure autoduale $\prod_{v \in M_f} \mathrm{d} \xi_v = \frac{1}{\sqrt{d}} \prod_{v \in M_k} \mathrm{d} x_v \text{ sur } A_k$.

On fixe un système de hauteurs \mathbf{H}_X sur X et on note \mathbf{H}_V le système induit sur V, on note U_X un ouvert de X et $U_V = U_X \cap V$ que l'on supposera dense. On remplacera dans la suite U par U_X (respectivement U_V) dans la définition des fonctions $\Phi_{\mathcal{T}_X}^{\mathbf{H}_X}(H, \mathfrak{b}, .)$ (respectivement $\Phi_{\mathcal{T}_V}^{\mathbf{H}_V}(H, \mathfrak{b}, .)$) ainsi que ω_X^{-1} par ω_V^{-1} dans celle de $\Phi_{\mathcal{T}_X}^{\mathbf{H}_X}(H, \mathfrak{b}, .)$. On se donne également une fonction $\rho: A_k^m \to \mathbf{R}$ continue, qui envoie 0 sur 1 et dont l'introduction sera justifiée au paragraphe 5.

Proposition 4.1.2. — Avec les notations et conventions qui précèdent, pour tout $\mathfrak{b} \in \prod_{v \in M_k - S} X_*(T_{NS})_v$ et tout $H \in \mathbb{R}_{>0}$, on a la relation

$$\sum_{y \in \mathcal{T}_V(k)} \Phi^{\mathbf{H}_X}_{\mathcal{T}_X}(H, \mathfrak{b}, y) = \int_{A_k^m/k^m} \sum_{y \in \mathcal{T}_X(k)} \Phi^{\mathbf{H}_X}_{\mathcal{T}_X}(H, \mathfrak{b}, y) \rho(f(y)) \mathrm{e}(\langle \boldsymbol{\xi}, f(y) \rangle) \mathrm{d}\boldsymbol{\xi} \,.$$

Démonstration. — Soit g la fonction de k^m dans $\mathbf R$ définie par

$$g(z) = \rho(z) \sum_{\{y \in \mathcal{T}_X(k) | f(y) = z\}} \Phi_{\mathcal{T}_X}^{\mathbf{H}_X}(H, \mathfrak{b}, y).$$

Alors, comme $\{y \in \mathcal{T}_X(k) \mid \Phi_{\mathcal{T}_X}^{\mathbf{H}_X}(H, \mathfrak{b}, y) \neq 0\}$ est fini, f ne prend qu'un nombre fini de valeurs sur cet ensemble et donc g est à support fini. Par la formule d'inversion de Fourier, on a donc

$$g(0) = \int_{\mathbf{A}_k^m/k^m} \sum_{z \in \mathbf{k}^m} g(z) \mathbf{e}(\langle \boldsymbol{\xi}, z \rangle) \mathbf{e}(-\langle \boldsymbol{\xi}, 0 \rangle) d\boldsymbol{\xi}.$$

La proposition s'obtient alors à l'aide de la définition de g.

4.2. Encerclement de la constante : introduction. — Notre objectif est maintenant d'obtenir un analogue intégral du résultat précédent, c'est-à-dire une formule de la forme

$$\begin{split} \int_{\mathcal{T}_{V_{C_{\text{eff}}}(\overline{V})}(A_{k})} \Phi_{\mathcal{T}_{V}}^{\mathbf{H}_{V}}(H, \mathfrak{b}, y) \omega_{\mathcal{T}_{V}}(y) &= \\ \int_{A_{k}^{m}} \int_{\mathcal{T}_{X_{C_{\text{eff}}}(\overline{X})}(A_{k})} \Phi_{\mathcal{T}_{X}}^{\mathbf{H}_{X}}(H, \mathfrak{b}, y) \rho(f(y)) \mathbf{e}(\langle \xi, f(y) \rangle) \omega_{\mathcal{T}_{X}}(y) \mathrm{d}\xi \,. \end{split}$$

Nous allons nous inspirer pour cela du travail d'Igusa [Ig2, \S IV.6]. Pour cela il nous faut tout d'abord construire l'analogue intégral de g et nous utiliserons la définition suivante :

Définition 4.2.1. — Soit z un élément de k_v^m ; soit \mathcal{T}_X^z la sous-variété de \mathcal{T}_{Xk_v} définie par le système d'équations

$$f(y) = z$$

On considère alors la forme différentielle $\breve{\omega}_z$ définie par la relation :

$$\breve{\omega}_z(y) \wedge f^* \Big(\bigwedge_{i=1}^m \mathrm{d}x_i \Big)(y) = \breve{\omega}_{\mathcal{T}_X}(y)$$

dans $\omega_{\mathcal{T}_X \mid \mathcal{T}_X^z}$.

Remarque 4.2.1. — Comme indiqué dans l'exemple 3.1.4, si z=0 alors $\breve{\omega}_z$ coïncide avec la mesure $\breve{\omega}_{T_V}$.

Exemple 4.2.1. — Si X est en outre une compactification équivariante projective lisse d'un tore T, alors \mathcal{T}_X est un ouvert d'un espace affine \mathbf{A}_k^N et la forme obtenue coïncide avec la forme de Leray usuelle.

Définition 4.2.2. — On note $\omega_{z,v}$ la mesure sur $\mathcal{T}_X^z(k_v)$ définie par la forme différentielle $\check{\omega}_z$.

Remarque 4.2.2. Si z est un élément de k^m et si \mathcal{T}_X^z est une variété nonsingulière sur k, ce qui résulte de nos hypothèses si m=1, alors il résulte de [We, theorem 2.2.5] que pour presque toute place finie \mathfrak{p} de k, on a la relation

$$\int_{\mathscr{T}_X^z(\mathfrak{O}_v)} \boldsymbol{\omega}_{z,v} = \frac{\#\mathscr{T}_X^z(\mathbf{F}_v)}{\#\mathbf{F}_v^{\dim \mathcal{T}_X^z}}$$

où \mathscr{T}_X^z désigne un modèle de \mathcal{T}_X^z sur \mathfrak{O}_S .

Avent de passer à la formule adélique, il convient de considérer la formule locale correspondante qui s'écrit pour une fonction Φ convenable de $\mathcal{T}_X(k_v)$ dans \mathbf{R} :

$$(4.2.1) \quad \int_{\mathcal{T}_{V}(k_{v})} \Phi(y) \omega_{\mathcal{T}_{V},v}(y) = \int_{k_{v}^{m}} \int_{\mathcal{T}_{X}(k_{v})} \Phi(y) e_{v}(\langle \boldsymbol{\xi}_{v}, \boldsymbol{f}(y) \rangle) \omega_{\mathcal{T}_{X},v}(y) d\boldsymbol{\xi}_{v}.$$

Pour cela nous étudions la fonction $ilde{g}_v: k_v{}^m o \mathbf{R}$ définie par la relation :

$$g_v(z) = \int_{\{y \in \mathcal{T}_X(k_v) | f(y) = z\}} \Phi(y) \omega_{z,v}(y).$$

Comme dans [Ig2, §IV.6], cette étude comprend deux parties indépendantes et de natures différentes. D'une part il faut montrer que g_v est continue en 0, ce qui se ramène à un problème de nature géométrique. D'autre part, il faut déterminer si la

transformation de Fourier de g_v appartient à $L^1(k_v^m)$, qui est un problème analytique associé à des majorations de sommes d'exponentielles.

Finalement le passage du local à l'adélique nécessite la construction pour tout z de A_k^m d'une mesure ω_z sur le produit restreint des $\mathcal{T}_X^{z_v}(k_v)$ relativement aux

$$\mathcal{T}_{X}^{z_{v}}(k_{v})\cap\mathcal{T}_{X_{C_{\mathrm{eff}}}(\overline{X})}(\mathfrak{O}_{v}).$$

La convergence de cette mesure passe également par une majoration de la transformée de Fourier de \tilde{g}_v .

Le prochain paragraphe est consacré à l'aspect géométrique de la question, à savoir l'étude de ce qu'Igusa nomme "données numériques".

4.3. Aspect géométrique. — Dans [Ig2, §IV.6], la partie géométrique est liée à des résolutions des singularités ; ici ce rôle est joué par des plongements équivariants de \mathcal{T}_X .

Pour cette étude nous ferons l'hypothèse suivante :

Convention 4.3.1. — La variété V est une hypersurface de X.

Remarque 4.3.1. — (i) On peut a priori se ramener à cette hypothèse par un argument d'itération.

(ii) Cette hypothèse entraı̂ne que la variété \mathcal{T}_X^z est lisse pour tout z de \overline{k} . Cela résulte de l'hypothèse sur V si z=0 et de la formule (4.1.1) sinon.

Définition 4.3.2. — On dira que V vérifie l'hypothèse (G) s'il existe une désingularisation \mathbf{A}_{Σ} de $\mathbf{A}_{C_{\mathrm{eff}}(\overline{X})}$ qui est équivariante sous l'action de T_{NS} .

Remarque 4.3.2. — L'existence d'une telle désingularisation a été annoncée par Brylinski [Br].

Proposition 4.3.3. — Si V vérifie l'hypothèse (G) et si Φ est une fonction continue à support compact dans $\widehat{T}_X(k_v)$, alors la fonction

$$g_v: k_v \rightarrow \mathbf{R}$$
 $z \mapsto \int_{\{y \in \mathcal{T}_X(k_v) | f(y) = z\}} \Phi(y) \omega_{z,v}(y)$

est continue.

Démonstration. — La continuité en-dehors de 0 est immédiate. Pour z=0, il nous faut désingulariser \widehat{T}_X . On considère donc une désingularisation équivariante \mathbf{A}_{Σ} de $\mathbf{A}_{C_{\mathrm{eff}}(\overline{X})}$ qui correspond à un éventail régulier Σ dont $C_{\mathrm{eff}}(\overline{X})^{\vee}$ est le support (cf. [Oda, §1.5] et la démonstration du lemme 3.3.5). L'ensemble $\Sigma(1)$ des générateurs des cônes de dimension un dans Σ est en bijection avec l'ensemble des \overline{k} -hypersurfaces $\overline{T}_{\mathrm{NS}}$ -invariantes de \mathbf{A}_{Σ} et on pose

$$\delta_{\Sigma}(V) = \inf_{\sigma \in \Sigma(1)} \langle \sigma, \omega_V^{-1} \rangle.$$

Comme
$$\Sigma(1) \subset C_{\mathrm{eff}}(\overline{V})^{\vee} \cap \operatorname{Pic} \overline{V}^{\vee} - \{0\}$$
, on a $\delta_{\Sigma}(V) \geqslant \delta(V) > 1$.

Le produit contracté

$$\mathcal{T}_{X,\Sigma} = \mathcal{T}_X \times^{T_{\mathrm{NS}}} \mathbf{A}_{\Sigma}$$

définit alors une désingularisation de la variété $\widehat{\mathcal{T}_X}$ et on dispose d'un diagramme commutatif

$$\mathcal{T}_X \stackrel{\hat{\jmath}}{ o} \mathcal{T}_{X,\Sigma}$$

$$\searrow^j \downarrow^{\pi}$$

$$\widehat{\mathcal{T}_X}$$

où j et $\hat{\jmath}$ sont des immersions ouvertes. Les composantes géométriques irréductibles du complémentaire de \mathcal{T}_X dans $\mathcal{T}_{X,\Sigma}$ sont en bijection avec les éléments de $\Sigma(1)$. Pour chaque σ de $\Sigma(1)$, on définit comme dans [Ig2, §III.2.2], les données numériques $(N_{\sigma}, \nu_{\sigma})$ le long du diviseur correspondant D_{σ} dans $\mathcal{T}_{X,\Sigma}$ de la manière suivante : on se place sur une extension K_v de k_v sur laquelle D_{σ} est défini, N_{σ} désigne la multiplicité de f sur D_{σ} et si X_1, \ldots, X_N sont des coordonnées v-adiques au voisinage d'un point x_0 de D_{σ} , en-dehors des intersections $D_{\sigma} \cap D_{\sigma'}$ pour $\sigma' \neq \sigma$, de sorte que D_{σ} ait pour équation $X_1 = 0$ au voisinage de x_0 , alors la forme $\pi^*\check{\omega}_{\mathcal{T}_X}$ s'écrit

$$\eta X_1^{\nu_\sigma-1} \bigwedge_{i=1}^N \mathrm{d} X_i$$

au voisinage de x_0 , où η désigne une fonction localement inversible au voisinage de x_0 .

Lorsque z tend vers 0, la fonction g_v tend vers

$$\int_{\mathcal{T}_{X,\Sigma}} \Phi \circ \pi(y) \omega_{(0,v)}(y) \leqslant +\infty$$

où $\omega_{(0,v)}$ est une mesure supportée par

$$\overline{\hat{\jmath}(\mathcal{T}_V)} \cup \bigcup_{\sigma \in \Sigma(1)} D_{\sigma}.$$

La restriction à chacun des diviseurs D_{σ} est donnée par

$$\left| \frac{\eta Y_1^{\nu_{\sigma}-1}}{\frac{\partial f \circ \pi}{\partial Y_1}} \right|_{|Y_1=0} \bigwedge_{i=2}^N \mathrm{d}Y_i.$$

Elle est donc finie si $N_{\sigma}-1\leqslant \nu_{\sigma}-1$ et nulle si $\nu_{\sigma}-N_{\sigma}>0$. Par conséquent, si $\nu_{\sigma}-N_{\sigma}>0$ pour tout σ de $\Sigma(1)$, la fonction g_v est continue en 0.

Il reste à déterminer ν_{σ} et N_{σ} , ce qui peut être fait dans une fibre au-dessus de X. Fixons donc un élément σ de $\Sigma(1)$ et donnons-nous une base ξ_1, \ldots, ξ_r de $X^*(T_{NS})$,

de sorte que $\sigma(\xi_i) = \delta_{1,i}$. A une constante multiplicative inversible près la mesure sur cette fibre est de la forme

$$\prod_{i=1}^{n} \xi_{i}^{\langle \xi_{i}^{\vee}, \omega_{X}^{-1} \rangle} \frac{\mathrm{d}\xi_{1}}{\xi_{1}} \wedge \cdots \wedge \frac{\mathrm{d}\xi_{n}}{\xi_{n}}$$

où $(\xi_1^{\vee}, \ldots, \xi_r^{\vee})$ est la base duale de (ξ_1, \ldots, ξ_r) . Comme D_{σ} est donné par $\xi_1 = 0$ et $\sigma = \xi_1^{\vee}$, on obtient que

$$\nu_{\sigma} = \langle \sigma, \omega_X^{-1} \rangle.$$

Par ailleurs, par la relation (4.1.1), la restriction de $f \circ \pi$ à la fibre est, à une constante éventuellement nulle près, de la forme

$$\prod_{i=1}^r \xi_i^{\langle \xi_i^\vee,L\rangle}$$

où $L=L_1$. On obtient donc l'égalité

$$N_{\sigma} = \langle \sigma, L \rangle$$

donc

$$\nu_{\sigma} - N_{\sigma} = \langle \omega_X^{-1} - [L], \sigma \rangle = \langle \omega_V^{-1}, \sigma \rangle. \quad \Box$$

4.4. Aspect analytique. — Le but de ce paragraphe est de donner un exemple pour la condition analytique suivante :

Définition 4.4.1. — On se place dans les hypothèses du paragraphe précédent. On dira que la paire (X,V) vérifie la condition (A) si et seulement s'il existe $\sigma>2$ tel que, quitte à agrandir S, pour toute place v de k et tout sous-ensemble W ouvert compact de $\widehat{\mathcal{T}}_X(k_v)$ on ait

$$\forall \xi \in k_v - \mathfrak{O}_v, \quad \left| \int_{\mathcal{T}_X(k_v) \cap W} \mathbf{e}_v(\xi f(x)) \boldsymbol{\omega}_{\mathcal{T}_X}(x) \right| \leqslant C |\xi|^{-\sigma}$$

pour une constante C égale à 1 si $v \not\in S$ et $W \subset \widehat{\mathscr{T}_X}(\mathfrak{O}_v)$.

Remarque 4.4.1. — Il s'agit en fait d'une majoration de somme d'exponentielles.

Nous allons maintenant décrire un cas particulier où cette condition est impliquée par le cas classique des hypersurfaces projectives.

Proposition 4.4.2. Si en outre X est un produit d'espaces projectifs $\prod_{i=0}^{m} \mathbf{P}_{\mathbf{Q}}^{n_i}$ sur \mathbf{Q} , f est alors donné par un polynôme multihomogène dont le degré total est noté d. On suppose que la dimension de V est supérieure ou égale à 4 et que

$$\inf_{0\leqslant i\leqslant m}n_i\geqslant 2^dd.$$

Alors la condition (A) est vérifiée pour (X, V).

Démonstration. — On pose $N = \sum_{i=0}^m n_i + 1$. Par [Pe2, exemple 4.2.2], l'ensemble $\mathcal{T}_X(\mathbf{Q}_p) \cap \widehat{\mathcal{T}_X}(\mathbf{Z}_p)$ coïncide avec $\prod_{i=0}^m (\mathbf{Z}_p^{n_i+1} - \{0\})$. Mais la fonction indicatrice d'un ouvert compact de $\prod_{i=0}^m \mathbf{A}^N(\mathbf{Q}_p)$ s'écrit comme combinaison linéaire d'images de \mathbf{Z}_p^N par des homothéties-translations. On est donc ramené à la majoration classique

$$\left| \int_{\mathbf{Z}_p^N} \mathbf{e}(\xi f(x)) \mathrm{d}x \right|.$$

Mais les singularités de f(x) = 0 sont contenues dans la réunion

$$\bigcup_{i=0}^{m} \{0\} \times \prod_{j \neq i} \mathbf{A}_{\mathbf{Q}}^{n_i+1}.$$

La codimension du lieu singulier est donc majorée par le plus petit des entiers $n_i + 1$. La proposition résulte alors de [Ig1, lemma 6, page 63].

4.5. Transformation de Fourier locale. — Dans ce paragraphe nous étudions la validité de la formule locale (4.2.1) sous les conditions décrites dans les deux paragraphes qui précèdent.

Proposition 4.5.1. — Si V vérifie l'hypothèse (G) et si la paire (X,V) satisfait la condition (A), alors pour toute place v de k et toute fonction complexe Φ sur $\widehat{\mathcal{T}}_X(k_v)$ continue, à support compact, C^{∞} si v est archimédienne et localement constante si v est finie, on a la relation

$$\int_{\mathcal{T}_V(k_v)} \Phi(y) \omega_{\mathcal{T}_V,v}(y) = \int_{k_v} \int_{\mathcal{T}_X(k_v)} \Phi(y) \mathbf{e}_v(\xi_v f(y)) \omega_{\mathcal{T}_X,v}(y) \mathrm{d}\xi_{v}.$$

Démonstration. — Il résulte de la proposition 4.3.3 que la fonction

$$\begin{array}{ccc} g_v: k_v & \to & \mathbf{R} \\ z & \mapsto & \int_{\{y \in \mathcal{T}_X(k_v) | f(y) = z\}} \Phi(y) \omega_{z,v}(y) \end{array}$$

est continue. Elle est en outre nulle en dehors de l'image par f du support de Φ , et donc à support compact. A fortiori, g_v appartient à $L^1(k_v)$. La transformée de Fourier $\widehat{g_v}$ de g_v est bien définie et se met sous la forme

$$\widehat{g_v}(\xi) = \int_{k_v} g_v(z) e_v(\xi z) dz$$

$$= \int_{\mathcal{T}_X(k_v)} e_v(\xi f(y)) \Phi(y) \omega_{\mathcal{T}_X}(x).$$

Mais par hypothèse si $v \in M_f$, Φ s'écrit comme combinaison linéaire de fonctions indicatrices d'ensembles ouverts compacts W_i de $\widehat{\mathcal{T}_X}$. Cette transformée de Fourier

se récrit donc

$$\widehat{g_v}(\xi) = \sum_{i \in J} \lambda_i \int_{\mathcal{T}_X(k_v) \cap W_i} e(\xi f(y)) \omega_{\mathcal{T}_X, v}(y)$$

$$\leqslant C|\xi|_v^{-\sigma}$$

avec $\sigma > 2$. Donc $\widehat{g_v}$ est une fonction L^1 . Si v est réelle, alors le fait que g_v soit C^{∞} à support compact entraı̂ne que $\widehat{g_v} \in L^1(k_v)$.

Dans tous les cas on peut appliquer la formule d'inversion de Fourier et on obtient

$$g_v(0) = \int_{k_v} \widehat{g_v}(\xi) d\xi$$

et par conséquent

$$\int_{\mathcal{T}_V(k_v)} \Phi(y) \omega_{\mathcal{T}_V,v}(y) = \int_{k_v} \int_{\mathcal{T}_X(k_v)} \Phi(y) e_v(\xi f(y)) \omega_{\mathcal{T}_X,v}(y) d\xi.$$

4.6. Mesures adéliques. — Pour passer de la transformation de Fourier sur k_v à celle sur les adèles, il nous faut démontrer la convergence de certaines mesures adéliques.

Notation 4.6.1. — Si z est un élément de A_k , on note $\mathcal{T}_X^z(A_k)$ le produit restreint de $\mathcal{T}_X^{z_v}(k_v)$ relativement aux intersections

$$\mathcal{T}_X^{z_v}(k_v)\cap \widehat{\mathscr{T}_X}(\mathfrak{O}_v)$$

où $\widehat{\mathscr{T}_X}$ est un modèle de $\widehat{\mathcal{T}_X}$.

Proposition 4.6.1. — Si V vérifie la condition (G) et si la paire (X, V) vérifie la propriété (A), alors pour tout z de A_k , le produit des mesures

$$oldsymbol{\omega}_z = \prod_{v \in M_k} oldsymbol{\omega}_{z_v,v}$$

converge sur $\mathcal{T}_X^z(A_k)$ où $\omega_{z_n,v}$ a été définie au paragraphe 4.2.

Cette proposition repose sur le lemme suivant, analogue du lemme 6.6 de [Ig2, page 165].

Lemme 4.6.2. — Si V vérifie (G) et s'il existe $\sigma > 2$ tel que pour presque tout $v \in M_f - S$ on ait

$$\left| \int_{\mathcal{T}_X(k_v) \cap \widehat{\mathcal{F}_X}(\mathcal{O}_v)} \mathbf{e}_v(\xi f(y)) \omega_{\mathcal{T}_X,v}(y) \right| < |\xi|^{-\sigma},$$

alors pour presque toute place v de $M_f - S$ on a

$$\left| \int_{\mathcal{T}_X^{z_v}(k_v) \cap \widehat{\mathcal{T}_X}(\mathcal{O}_v)} \omega_{\mathcal{T}_X,v}(y) - 1 \right| < Cq_v^{-(\sigma-1)} + C'q_v^{-\frac{3}{2}}$$

où C et C' sont indépendantes de v et $q_v = \#\mathbf{F}_v$.

Remarque 4.6.3. — Il résulte du lemme précédent que la proposition 4.6.1 est valide sous la condition analytique plus faible notée (AF) qui suit : il existe un ensemble S_1 de places et un nombre réel $\sigma > 2$, tel que pour tout $v \in M_f - S_1$ on ait

$$\left| \int_{\mathcal{T}_X(k_v) \cap \widehat{\mathscr{T}_X}(\mathfrak{O}_v)} \mathbf{e}_v(\xi f(y)) \boldsymbol{\omega}_{\mathcal{T}_X,v}(y) \right| < |\xi|^{-\sigma}.$$

Démonstration du lemme 4.6.2. — On considère le fonction

$$\begin{array}{ccc} g_v: k_v & \to & \mathbf{R} \\ z & \mapsto & \int_{\mathcal{T}_X^{z_v}(k_v) \cap \widehat{\mathscr{T}_X}(\mathbb{O}_v)} \omega_{z,v}. \end{array}$$

Il résulte de la démonstration de la proposition 4.5.1 qu'on a les relations

$$g_{v}(z_{v}) = \int_{k_{v}} \int_{\mathcal{T}_{X}(k_{v}) \cap \widehat{\mathscr{T}_{X}}(\mathbb{O}_{v})} e_{v}(\xi_{v}(f(y) - z_{v})) \omega_{\mathcal{T}_{X}, v}(y) d\xi_{v}$$

$$= \int_{k_{v}} \widehat{g_{v}}(\xi_{v}) e_{v}(-\xi_{v}z_{v}) d\xi_{v}.$$

Mais si $\xi \in \mathcal{O}_v$, on a, en-dehors d'un nombre fini de places,

$$\hat{g}_{v}(\xi) = \int_{\mathcal{T}_{X}(k_{v}) \cap \widehat{\mathscr{T}_{X}}(\mathcal{O}_{v})} \omega_{\mathcal{T}_{X}}
= L_{v}(T_{NS}, C_{\text{eff}}(\overline{V}), \omega_{X}^{-1}) L_{v}(1, \text{Pic } \overline{V})^{-1} \omega_{\mathbf{H}(\omega_{X}^{-1}), v}(X(k_{v}))$$

où la deuxième égalité résulte de [Pe2, démonstration du théorème 5.3.1]. Il résulte alors de la convention 3.1.3 et de [Dr, proposition 3] que

$$|L_v(T_{\rm NS},C_{\rm eff}(\overline{V}),\omega_V^{-1})-1|\leqslant C_1q_v^{-2}$$

et [Pe1, page 117] que

$$\left| \frac{\omega_{\mathbf{H}(\omega_X^{-1}),v}(X(k_v))}{L_v(1,\operatorname{Pic}\overline{V})} - 1 \right| < C_2 q_v^{-3/2}.$$

Par conséquent $\hat{g}_v(\xi)$ est constant pour $\xi \in \mathcal{O}_v$ et vérifie sur cet ensemble

$$|\hat{g}_v(\xi) - 1| < Cq_v^{-3/2}.$$

On en déduit les inégalités

$$|g_v(z_v) - 1| \leqslant Cq_v^{-3/2} + \int_{k_v - \mathcal{O}_v} |\xi_v|^{-\sigma} d\xi_v$$

$$\leqslant Cq_v^{-3/2} + (1 - 2^{-(\sigma - 1)})^{-1}q_v^{-(\sigma - 1)}$$

où la dernière inégalité est donnée par [Ig2, page 164].

4.7. Transformation adélique et encerclement de la constante. — Nous pouvons maintenant énoncer un des principaux résultats de ce texte.

Théorème 4.7.1. — Soit X une variété presque de Fano vérifiant la convention 3.1.3 ainsi que la condition (G). Soit V une hypersurface de X vérifiant également ces conditions et telle qu'en outre la restriction induise un isomorphisme

$$\operatorname{Pic} \overline{X} \to \operatorname{Pic} \overline{V}$$

envoyant le cône effectif de X sur celui de V. Soit T_V un torseur universel au-dessus de V ayant un point rationnel et s'inscrivant dans un diagramme

$$\begin{array}{ccc}
\mathcal{T}_V & \longrightarrow & \mathcal{T}_X \\
\downarrow & & \downarrow \\
V & \stackrel{j}{\longrightarrow} & X.
\end{array}$$

On suppose que la paire (X,V) vérifie (A). On fixe en outre une fonction continue $\rho_S:\prod_{v\in S}k_v\to \mathbf{R}$ envoyant 0 sur 1 et telle que l'application

$$(y_v)_{v \in S \cap M_f} \mapsto \left(egin{array}{ccc}
ho_\infty^{m x} : \prod\limits_{v \in S \cap M_\infty} k_v & o & {f R} \ v \in S \cap M_\infty & o &
ho(m y, m x) \end{array}
ight)$$

soit localement constante à valeurs dans les fonctions C^{∞} . On note $\rho: A_k \to \mathbf{R}$ la fonction induite. Alors pour toute fonction

$$\Phi = \Phi_{\infty} . \prod_{v \in M_f} \Phi_v : \mathcal{T}_{X_{C_{\operatorname{eff}}}(\overline{X})}(A_k) \to \mathbf{R}$$

où Φ_{∞} est C^{∞} à support compact dans $\prod_{v \in M_{\infty}} \widehat{T_X}(k_v)$, et Φ_v localement constante pour v finie et coïncide avec la fonction caractéristique de $T_X(k_v) \cap \widehat{\mathcal{T}_X}(\mathbb{O}_v)$ pour presque toute place finie, on a la relation

$$(4.7.1) \int_{\mathcal{T}_{V_{C_{\text{eff}}}(\overline{V})}(A_k)} \Phi(y) \omega_{\mathcal{T}_{V}}(y) = \int_{A_k} \int_{\mathcal{T}_{X_{C_{\text{eff}}}(\overline{X})}(A_k)} \Phi(y) \rho(f(y)) e(\xi f(y)) \omega_{\mathcal{T}_{X}}(y) d\xi.$$

Démonstration. — On considère la fonction

$$\begin{array}{ccc} g: \boldsymbol{A_k} & \to & \mathbf{R} \\ \boldsymbol{z} & \mapsto & \rho(\boldsymbol{z}) \int_{\mathcal{T}_{\boldsymbol{X}}^{\boldsymbol{z}}(\boldsymbol{A_k})} \Phi(\boldsymbol{y}) \boldsymbol{\omega_{\boldsymbol{z}}}(\boldsymbol{y}). \end{array}$$

La fonction g est à support compact et donc a fortiori $g \in L^1(A_k)$. Il résulte de la proposition 4.3.3 et de la démonstration de la convergence de ω_z que la fonction g est continue.

Sa transformée de Fourier est donnée par la formule

$$\begin{split} \hat{g}(\boldsymbol{\xi}) &= \int_{\mathcal{T}_{X_{C_{\text{eff}}}(\overline{X})}(A_k)} \rho(f(y)) \Phi(y) \mathbf{e}(\langle \boldsymbol{\xi}, f(y) \rangle) \omega_{\mathcal{T}_X}(y) \\ &= \prod_{v \in M_f - S} \int_{\mathcal{T}_X(k_v)} \Phi_v(y) \mathbf{e}_v(\xi_v f(y)) \omega_{\mathcal{T}_X, v}(y) \\ &\times \int_{\prod_{v \in S} \mathcal{T}_X(k_v)} \rho_S(f(y)) \Phi_S(y) \mathbf{e}_S(\xi_S f(y)) \prod_{v \in S} \omega_{\mathcal{T}_X, v}(y) \end{split}$$

où Φ_S et \mathbf{e}_S sont définis par produit sur les places de S. Il en résulte que

$$|\hat{g}(\boldsymbol{\xi})| \leqslant C' \left(\prod_{|\boldsymbol{\xi}_v|_v > 1} |\boldsymbol{\xi}_v|_v^{-\sigma} \right) \left(\prod_{v \in M_f} (1 + C \# \mathbf{F}_v^{-3/2}) \right)$$

et donc \hat{g} est une fonction L^1 . En appliquant le formule d'inversion de Fourier, on obtient (4.7.1)

Théorème 4.7.2. — On suppose que X, V et ρ vérifient les hypothèses du théorème précédent, et on considère les fonctions $\Phi_{\mathcal{T}_X}^{\mathbf{H}_X}(H, \mathbf{b}, .)$ définies au paragraphe 4.2. On suppose en outre que les métriques choisies aux places réelles sont C^{∞} et telles que la fonction définie sur $X(k_v)$ par l'application

$$ilde{f_v}: y \mapsto rac{|f(y)|_v}{\|y\|_v^L}$$

pour v archimédienne ne soit constante sur aucun ouvert non vide de $X(k_v)$. Alors pour tout \mathbf{H} de $\mathbf{R}_{>0}$ et tout \mathbf{b} de $\bigoplus_{v \in M_f - S} X_*(T_{NS})_v$, on a

$$(4.7.2) \int_{\mathcal{T}_{V_{C_{\text{eff}}}(\overline{V})}(A_{k})} \Phi_{\mathcal{T}_{V}}^{\mathbf{H}_{V}}(H, \mathfrak{b}, y) \omega_{\mathcal{T}_{V}}(y)$$

$$= \int_{A_{k}} \int_{\mathcal{T}_{X_{C_{\text{eff}}}(\overline{X})}(A_{k})} \Phi_{\mathcal{T}_{X}}^{\mathbf{H}_{X}}(H, \mathfrak{b}, y) \rho(f(y)) e(\langle \xi, f(y) \rangle) \omega_{\mathcal{T}_{X}}(y) d\xi.$$

Démonstration. — Rappelons que la fonction $\Phi_{T_{\mathbf{x}}}^{\mathbf{H}_{\mathbf{x}}}(H, \mathfrak{b}, .)$ est la fonction indicatrice de l'ensemble & défini par

$$(4.7.3) \qquad \forall v \in S, \quad \pi_X(y_v) \in U_X(k_v),$$

$$(4.7.4) (y_v)_{v \in S} \in \Delta_{\mathbf{H}_K}(\mathcal{T}_X),$$

$$(4.7.5) \forall L \in C_{\text{eff}}(V), \quad \prod_{v \in S} \|y_v\|_v^L \leqslant 1,$$

(4.7.6)
$$\prod_{v \in S} (\|y_v\|_v^{\omega_V^{-1}})^{-1} \leqslant H,$$

$$\mathbf{y} \in \mathfrak{b}.\mathcal{T}_{X_{C_{\text{eff}}}(\overline{V}),S}(\mathbf{A}_k).$$

$$(4.7.7) y \in \mathfrak{b}.\mathcal{T}_{X_{C_{\text{eff}}}(\overline{V}),S}(A_k).$$

Elles s'écrivent donc

$$\Phi_S imes \prod_{v
ot\in S} \Phi_v$$

où les fonctions Φ_v sont localement constantes, à support compact et coïncident pour presque toute place v avec la fonction caractéristique de $\mathcal{T}_X(k_v) \cap \widehat{\mathscr{T}}_X(\mathcal{O}_v)$. D'autre part, la fonction Φ_S est à support compact dans $\prod_{v \in S} \widehat{\mathcal{T}_X}(k_v)$. En outre il résulte des conditions (4.7.4), (4.7.5) et (4.7.6) qui précèdent que l'image par $\prod_{v \in S} \tilde{\mathbf{H}}_{\mathcal{T}x,v}^{\log}$ du domaine & est bornée dans

$$\prod_{v \in S} X^*(T_{\rm NS})_v^{\vee} \otimes \mathbf{R}.$$

Il en résulte que la fonction

$$(x_v)_{v \in M_f \cap S} \mapsto \Phi^x_{\infty} = ((y_v)_{v \in M_{\infty}} \mapsto \Phi_S(y, x))$$

est localement constante. Compte tenu de la démonstration du théorème précédent, il suffit de montrer que pour $x = (x_v)_{v \in M_f \cap S}$ fixé la fonction

$$egin{array}{lll} g_{\infty}: \prod_{v \in \infty} k_v &
ightarrow & \mathbf{R} \ & m{z} = (z_v)_{v \in M_{\infty}} & \mapsto & \int_{\prod\limits_{v \in M_{\infty}} \mathcal{T}_X^{z_v}(k_v)} \Phi_{\infty}^x(y)
ho_{\infty}^x(f(y)) m{\omega}_{\mathcal{T}_X, \infty}(y) \end{array}$$

est $C^{1+[k:\mathbf{Q}]}$ ce qui entraînera que sa transformée de Fourier admet une majoration de la forme $C\|\xi\|^{-(1+[k:\mathbf{Q}])}$ et donc que la fonction \hat{g} définie dans la démonstration précédente appartient à $L^1(\mathbf{A}_k)$.

Mais il résulte des hypothèses faites sur les métriques réelles que \mathscr{E}^{x}_{∞} défini par les conditions (4.7.4), (4.7.5) et (4.7.6) peut être décrit comme

$$\mathscr{E}_{\infty}^{x} = \coprod_{i=0}^{\dim\left(\prod_{v \in M_{\infty}} \mathcal{T}_{X}(k_{v})\right)} \coprod_{i \in I_{i}} F_{i,j}$$

où les $F_{i,j}$ sont des variétés C^{∞} de $\prod_{v \in M_{\infty}} \mathcal{T}_X(k_v)$ de codimension i et telles qu'en outre on ait

$$\dim_{\mathbf{R}} \prod_{v \in M_{\infty}} \mathcal{T}_{X}^{z_{v}}(k_{v}) \cap F_{i,j} = \dim_{\mathbf{R}} \prod_{v \in M_{\infty}} \mathcal{T}_{X}^{z_{v}}(k_{v}) - i$$

si $i \le 1 + [k:\mathbf{Q}]$. En effet, il suffit de considérer le cas où $i = 1 + [k:\mathbf{Q}]$. mais l'image par l'application

$$\prod_{v \in M_{\infty}} \tilde{\mathbf{H}}_{T_X,v}^{\log} \times \prod_{v \in M_{\infty}} \tilde{f}_v : \prod_{v \in M_{\infty}} \mathcal{T}_X(k_v) \to \prod_{v \in M_{\infty}} X^*(T_{\mathrm{NS}})_v \otimes \mathbf{R} \times \prod_{v \in M_{\infty}} \mathbf{R}$$

d'une telle intersection est de codimension $1+2[k:\mathbf{Q}]$ alors que, par l'hypothèse faite sur les métriques, tout point de l'image est adhérent à un ouvert contenu dans l'image de $\prod_{v\in M_\infty} \mathcal{T}_X(k_v)$.

En utilisant des paramétrisations C^{∞} adéquates de \mathscr{E}^{x}_{∞} , on peut se ramener à un calcul de surface d'une intersection d'un espace affine avec un simplexe pour lequel le résultat de dérivabilité est élémentaire compte-tenu de l'assertion sur les dimensions des intersections.

On obtient donc que \hat{g} est L^1 et la fin de la démonstration est similaire à celle du théorème précédent.

Corollaire 4.7.3. — Sous les hypothèses du théorème précédent, on a les relations

$$(4.7.8) \quad \begin{aligned} \#W(T_{\mathrm{NS}})n_{U,\mathbf{H}}(H) \\ &= \sum_{\substack{i \in I \\ \mathfrak{b} \in \bigoplus_{x \in X_{s}}(T_{\mathrm{NS}})_{v}}} \mu(\mathfrak{b}) \int_{A_{k}/k} \sum_{y \in \mathcal{T}_{i,X}(k)} \Phi_{\mathcal{T}_{i,X}}^{\mathbf{H}_{X}}(H,\mathfrak{b},y) \rho(f(y)) \mathbf{e}(\langle \boldsymbol{\xi}, f(y) \rangle) \mathrm{d}\boldsymbol{\xi} \end{aligned}$$

$$(4.7.9)$$

$$\#W(T_{\rm NS})\alpha(V)\beta(V)\tau_{\mathbf{h}}(V)\int_{0}^{\log H}u^{t-1}e^{u}du$$

$$=\sum_{\substack{i\in I\\\mathfrak{b}\in\bigoplus\limits_{v\in M_{f}-S}X_{*}(T_{\rm NS})_{v}}}\mu(\mathfrak{b})\int_{A_{k}}\int_{\mathcal{T}_{i,X}}\Phi_{\mathcal{T}_{i,X}}^{\mathrm{H}_{X}}(H,\mathfrak{b},y)\rho(f(y))\mathrm{e}(\langle\xi,f(y)\rangle)\omega_{\mathcal{T}_{i,X}}(y)d\xi.$$

Corollaire 4.7.4. — Si $X = \prod_{i=1}^m \mathbf{P}_{\mathbf{Q}}^{n_i}$ et f est donnée par un polynôme homogène de degré total d de sorte que

$$\inf_{1\leqslant i\leqslant m}n_i\geqslant 2^dd,$$

si V est lisse de dimension supérieure ou égale à 4 et si les métriques sont choisies de manière à vérifier les conditions ci-dessus, alors on pose $N=\sum_{i=1}^m n_i+1$ et on a les relations

$$n_{U\!,\mathbf{H}}(H) = \frac{1}{2^m_{\substack{\mathfrak{b} \in \bigoplus \\ v \in M_f - S}}} \underset{\mathbf{Z}^m}{\boldsymbol{\mu}}(\mathfrak{b}) \int_{\boldsymbol{A}_{\mathbf{Q}}/\mathbf{Q}} \sum_{y \in \mathbf{Q}^N} \boldsymbol{\Phi}_{\boldsymbol{A}_{\mathbf{Q}}^N}^{\mathbf{H}_X}(H,\mathfrak{b},y) \rho(f(y)) \mathbf{e}(\langle \boldsymbol{\xi}, f(y) \rangle) \mathrm{d}\boldsymbol{\xi}$$

$$(4.7.11) \quad \alpha(V)\beta(V)\tau_{\mathbf{h}}(V) \int_{0}^{\log H} u^{t-1}e^{u} du$$

$$= \frac{1}{2^{m}} \sum_{\substack{\mathfrak{b} \in \bigoplus \\ v \in M_{f}-S}} \mu(\mathfrak{b}) \int_{A_{\mathbf{Q}}} \int_{A_{\mathbf{Q}}^{N}} \Phi_{A_{\mathbf{Q}}^{N}}^{\mathbf{H}_{X}}(H,\mathfrak{b},y)\rho(f(y)) \mathbf{e}(\langle \boldsymbol{\xi}, f(y) \rangle) dy d\boldsymbol{\xi}.$$

Démonstration. — Par la remarque 2.1.2, le cône des diviseurs effectifs de V est donné par celui de X. Il résulte de le proposition 4.4.2 que la paire (X, V) vérifie la condition (A). La condition (G) est automatique dans ce cas.

5. Conclusion

Les deux derniers corollaires du paragraphe précédent permettent de se réduire à des majorations de différences de la forme

(5.1)
$$\left| \int_{\mathbf{A}_{k}/k} \sum_{y \in \mathcal{T}_{X}(k)} \Phi_{\mathcal{T}_{X}}^{\mathbf{H}_{X}}(H, \mathfrak{b}, y) \rho(f(y)) \mathbf{e}(\langle \xi, f(y) \rangle) d\xi \right|$$

$$- \int_{\mathbf{A}_{k}} \int_{\mathcal{T}_{X_{C_{\text{eff}}}(\overline{X})}(\mathbf{A}_{k})} \Phi_{\mathcal{T}_{X}}^{\mathbf{H}_{X}}(H, \mathfrak{b}, y) \rho(f(y)) \mathbf{e}(\langle \xi, f(y) \rangle) \omega_{\mathcal{T}_{X}}(y) d\xi$$

En s'inspirant de la méthode du cercle, on est alors amené à décomposer le quotient $\prod_{v \in M_f} \mathcal{O}_v \backslash A_k / k$, qui est homéomorphe à un produit de cercles, en arcs majeurs et arcs mineurs puis à majorer sur les arcs mineurs chacun des deux termes obtenus ce qui passe par des majorations de sommes d'exponentielles comme celles qui sont au cœur de la méthode du cercle, et sur les arcs majeurs la différence entre ces termes.

A ce propos il convient de noter que pour $\xi = 0$ et $\rho = 1$, majorer la différence

(5.2)
$$\left| \sum_{y \in \mathcal{T}_{X}(k)} \Phi_{\mathcal{T}_{X}}^{\mathbf{H}_{X}}(H, \mathfrak{b}, y) \rho(f(y)) \mathbf{e}(\langle \xi, f(y) \rangle) - \int_{\mathcal{T}_{X_{C_{\text{eff}}(\overline{X})}}(A_{k})} \Phi_{\mathcal{T}_{X}}^{\mathbf{H}_{X}}(H, \mathfrak{b}, y) \rho(f(y)) \mathbf{e}(\langle \xi, f(y) \rangle) \boldsymbol{\omega}_{\mathcal{T}_{X}}(y) \right|.$$

revient à comparer $n_{U,\mathbf{H}_X(\omega_V^{-1})}$ avec une formule intégrale. On ne peut donc espérer que cette différence ne soit négligeable que si U_X est fortement saturé pour ω_V^{-1} au sens de Batyrev et Tschinkel [BT4, definition S_2], c'est à dire si pour tout fermé strict W de U_X , on a :

En particulier si V est une hypersurface de produits d'espaces projectifs, cela implique $L \in \mathbf{Q}\omega_X^{-1}$. Il est toutefois envisageable que ce problème puisse être évité par un choix judicieux de la fonction auxiliaire ρ .

Notons par contre que si $L \in \mathbf{Q}\omega_X^{-1}$, alors l'équivalence des deux termes de (5.2) pour $\xi = 0$ résulte de la conjecture pour X.

Références

- [BM] V. V. Batyrev et Y. I. Manin, Sur le nombre des points rationnels de hauteur bornée des variétés algébriques, Math. Ann. 286 (1990), 27-43.
- [BT1] V. V. Batyrev and Y. Tschinkel, Rational points of bounded height on compactifications of anisotropic tori, Internat. Math. Res. Notices 12 (1995), 591-635.
- [BT2] _____, Height zeta functions for toric varieties, Prépublication 96-9, LMENS, 1996.
- [BT3] _____, Manin's conjecture for toric varieties, J. Algebraic Geom. 7 (1998), nº 1, 15-53.
- [BT4] ______, Tamagawa numbers of polarized algebraic varieties, Nombre et répartition des points de hauteur bornée, Astérisque, vol. à paraître, SMF, Paris, 1998.
- [Bi] B. J. Birch, Forms in many variables, Proc. Roy. Soc. London 265A (1962), 245–263.
- [BR] M. Borovoi and Z. Rudnick, *Hardy-Littlewood varieties and semi-simple groups*, Invent. math. **119** (1995), 37-66.
- [BGS] J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), 903-1027.
- [Br] J.-L. Brylinski, Décomposition simpliciale d'un réseau, invariante par un groupe fini d'automorphismes, C. R. Acad. Sci. Paris Sér. I Math. 288 (1979), 137–139.

- [CTS1] J.-L. Colliot-Thélène et J.-J. Sansuc, La descente sur les variétés rationnelles, Journées de géométrie algébrique d'Angers (1979) (A. Beauville, ed.), Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 223-237.
- [CTS2] _____, La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), nº 2, 375-492.
- [Da] V. I. Danilov, *The geometry of toric varieties*, Uspekhi. Mat. Nauk 33 (1978), n^o 2, 85–134; English transl. in Russian Math. Surveys 33 (1978), n^o 2, 97–154.
- [Dr] P. K. J. Draxl, L-Funktionen algebraischer Tori, J. Number Theory 3 (1971), 444–467.
- [FMT] J. Franke, Y. I. Manin, and Y. Tschinkel, Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), 421-435.
- [GH] P. Griffiths and J. Harris, *Principles of algebraic geometry*, Wiley-Interscience, New-York, 1978.
- [Ha] R. Hartshorne, *Algebraic geometry*, Graduate Texts in Math., vol. 52, Springer-Verlag, Berlin, Heidelberg and New York, 1977.
- [Ig1] J.-I. Igusa, Criteria for the validity of a certain Poisson formula, Algebraic number theory (Kyoto, 1976) (S. Iyanaga, ed.), Japan society for the promotion of science, Tokio, 1977, pp. 43–65.
- [Ig2] _____, Lectures on forms of higher degree, Tata institute of fundamental research, Bombay and Springer-Verlag, Berlin, 1978.
- [Mi] J. S. Milne, *Étale cohomology*, Princeton Math. Series, vol. 33, Princeton University Press, 1980.
- [Oda] T. Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 15, Springer-Verlag, Berlin, Heidelberg and New York, 1988.
- [Ono1] T. Ono, On some arithmetic properties of linear algebraic groups, Ann. of Math. (2) 70 (1959), no 2, 266–290.
- [Ono2] _____, Arithmetic of algebraic tori, Ann. of Math. (2) 74 (1961), no 1, 101–139.
- [Pe1] E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), nº 1, 101-218.
- [Pe2] ______, Terme principal de la fonction zêta des hauteurs et torseurs universels, Nombre et répartition des points de hauteur bornée, Astérisque, vol. à paraître, SMF, Paris, 1998.
- [Sa] P. Salberger, Tamagawa measures on universal torsors and points of bounded height on Fano varieties, Nombre et répartition des points de hauteur bornée, Astérisque, vol. à paraître, SMF, Paris, 1998.
- [ST] M. Strauch and Y. Tschinkel, Height zeta functions of twisted products, Preprint, Max-Planck-Institut für Mathematik, 1997.
- [Ta] J. T. Tate, Fourier analysis in number fields and Hecke's zeta functions, Algebraic number theoy (J. W. S. Cassels and A. Fröhlich, eds.), Academic press, London, 1967, pp. 305–347.

[We] A. Weil, Adèles and algebraic groups, Progress in Mathematics, vol. 23, Birkhaüser, Boston, Basel, Stuttgart, 1982.

22 Avril 1998

Institut de Recherche Mathématique Avancée Université Louis Pasteur et C.N.R.S. 7 rue René-Descartes 67084 Strasbourg France

Adresse actuelle:
Isaac Newton institute for mathematical sciences
20 Clarkson road
Cambridge CB3 0EH
U.K
URL: http://www-irma.u-strasbg.fr/~peyre
Adresse électronique: peyre@irma.u-strasbg.fr

Recent Newton Institute Preprints

NI97016-NQF	O Bärwald, RW Gebert and H Nicolai On the imaginary simple roots of the Borcherds algebra g _{H_{9,1}} hep-th/9705144; Nuclear Physics B510 [PM] (1998) 721-738
NI97017-NQF	A Sen and S Sethi The mirror transform of type I vacua in six dimensions hep-th/9703157; Nucl.Phys. B499 (1997) 45-54
NI97018-NQF	I Halperin and A Zhitnitsky Polarized intrinsic charm as a possible solution to the proton spin problem hep-ph/9706251
NI97019-NQF	N Dorey, VV Khoze and MP Mattis Instantons, three-dimensional gauge theory and the Atiyah-Hitchin manifold hep-th/9703228; Phys.Lett. B408 (1997) 213-221
NI97020-NQF	N Dorey, VV Khoze, MP Mattis et al Multi-instantons, three-dimensional guage theory, and the Gauss-Bonnet-Chern theorem hep-th/9704197; Nucl.Phys. B502 (1997) 94-106
NI97021-NQF	JM Figueroa-O'Farrill, C Köhl and B Spence Supersymmetry and the cohomology of (hyper) Kähler manifolds hep-th/9705161; Nucl.Phys. B503 (1997) 614-626
NI97022-NQF	JP Gauntlett Duality and supersymmetric monopoles hep-th/9705025; Nucl.Phys.Proc.Suppl. 61A (1998) 137-148
NI97023-NQF	JP Gauntlett Intersecting branes hep-th/9705011
NI97024-RAG	J Rickard Triangulated categories in the modular representation theory of finite groups
NI97025-NQF	P van Baal Intermediate volumes and the role of instantons
NI97026-NQF	CJ Houghton, NS Manton and PM Sutcliffe Rational maps, monopoles and skyrmions hep-th/9705151; Nuclear Physics B510 [PM] (1998) 507-537
NI97027-NQF	PS Howe, E Sezgin and PC West Aspects of superembeddings hep-th/9705903
NI97028-NQF	CM Hull Gravitational duality, branes and charges hep-th/9705162; Nucl.Phys. B509 (1998) 216-251
NI97029-NQF	M Abou Zeid and CM Hull Instrinsic geometry of D-branes hep-th/9704021; Phys.Lett. B404 (1997) 264-270
NI97030-NQF	CP Bachas, MR Douglas and MB Green Anomalous creation of branes hep-th/9705074
NI97031-RAG	M Broué, G Malle and J Michel Complex reflection groups, braid groups, Hecke algebras
NI97032-NQF	D Zwanziger Renormalization in the Coulomb gauge and order parameter for confinement in QCD
NI97033-NQF	E Shuryak and A Zhitnisky The gluon/charm content of the η meson and instantons hep-ph/9706316; Phys.Rev. D57 (1998) 2001-2004

NI97035-RAC	G K Magaard and G Malle Irreducibility of alternating and symmetric squares
NI97036-STA	N Linden and S Popescu On multi-particle entanglement
NI97037-NNI	M Studeny and RR Bouckaert On chain graph models for description of conditional independence structures
NI97038-RAC	M Geck and G Malle On special pieces in the unipotent variety
NI97039-NNI	A SP Luttrell A unified theory of density models and auto-encoders DERA report DERA/CIS/CIS5/651/FUN/STIT/5-4 31 October 1997
NI97040-NNI	A CKI Williams and D Barber Bayesian Classification with Gaussian Processes
NI97041-NNI	I TS Richardson Chain graphs and symmetric associations
NI97042-NNI	A Roverato and J Whittaker An importance sampler for graphical Gaussian model inference
NI97043-DQ	MR. Haggerty, JB Delos, N Spellmeyer et al Extracting classical trajectories from atomic spectra
NI97044-DQC	S Zelditch Large level spacings for quantum maps in genus zero
N197045-DQC	U Smilansky Semiclassical quantization of maps and spectral correlations
NI97046-DQ0	IY Goldscheid and BA Khoruzhenko Distribution of Eigenvalues in non-Hermitian Anderson models Phys. Rev. Lett. 80 (1998) No.13, 2897-2900
NI97047-DQ	G Casati, G Maspero and DL Shepelyansky Quantum fractal Eigenstates
NI98001-STA	N Linden and S Popescu Non-local properties of multi-particle density matrices
NI98002-AM	J-L Colliot-Thélène Un principe local-global pour les zéro-cycles sur les surfaces fibrés en coniques au-dessus d'une courbe de genre quelconque
NI98003-AM	RGE Pinch and HPF Swinnerton-Dyer Arithmetic of diagonal quartic surfaces, II
NI98004-AM0	G DR Heath-Brown The solubility of diagonal cubic diophantine equations
NI98005-AM	B Poonen and M Stoll The Cassels-Tate pairing on polarized Abelian varieties
NI98006-AM0	P Parimala and V Suresh Isotropy of quadratic forms over function fields of curves over p-adic fields
NI98007-AM	
NI98008-AM0	

Torseurs universels et méthode du cercle