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  Discrete series characters for GL(n,q) 
 
 
    James A. Green1  
 
  119 Cumnor Hill, Oxford OX2 9JA, England 

 
Introduction 
 

 An ordinary, irreducible character χ  of the finite general linear group GL(n,q) is said 

to belong to the “discrete series” if it is not a constituent of the permutation character induced 

from the radical U  of any proper parabolic subgroup P = L.U  of GL(n,q). Such a character 

χ  cannot be obtained by “Harish-Chandra induction” from characters of GL( ′ n , q) for ′ n < n , 

in fact χ  cannot be expressed as a linear combination of induced characters from proper 

parabolic subgroups of GL(n,q).  

 Three different methods have been used to calculate the discrete series characters for 

GL(n,q). 

(1) In [GL], they are constructed using the “Brauer lifts” of natural modular characters of 

GL(n,q). 

(2) In [L], G. Lusztig constructs a module D(V ) which affords a discrete series character for 

GL(V) = GL(n, q) (V  is an n –dimensional vector space over a field of q  elements), as an 

eigenspace of a homology module for a certain simplicial complex made out of affine flags on 

V. 

(3) In their fundamental work [DL], Deligne and Lusztig use the étale cohomology of certain 

varieties related to a reductive group G to construct (generalized) characters of finite 

subgroups G = G F  of G. Taking G = GLn, the discrete series characters of GL(n,q) are (up 

to a sign) Deligne–Lusztig’s RT
ψ , where T  is a maximal torus of G such that T = TF  is of 

order qn −1, and ψ  is a character of T  in general position. 

                                                 
1 A part of this paper was written at the Isaac Newton Insitute, Cambridge. I should like to thank the Institute 
and the organizers of the meeting “Representation theory of algebraic groups and related finite groups” (1997) 
for their hospitality and support. 
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 It is the purpose of the present work to present the discrete series characters of 

GL(n,q) in a rather simpler way, namely as Z –linear combinations of characters induced 

from linear characters on certain subgroups of GL(n,q). Of course, R. Brauer’s theorem ([B], 

theorem A) shows that it is possible to express any character of any finite group G  as Z –

linear combination of characters induced from linear characters on “elementary” subgroups of 

G . But we are able, in our special situation, to achieve our goal much more economically 

than would be possible by invoking Brauer’s general theorem. 

 Let k  be a field of q  elements. The discrete series characters χ  are determined by 

certain class-functions Jn (ψ)  on G  = GL(n,q) described in section 1 (the parameter ψ  is 

equivalent to a character of Deligne–Lusztig’s maximal torus T ). Jn (ψ)  has “degree” 

(1 − q)(1− q2 )…(1 − qn−1), and has primary support , i.e. Jn (ψ)  (g ) ≠ 0 only if the 

characteristic polynomial det(tIn − g) is a power of an irreducible polynomial in k [t ]. We 

describe in section 2 a family   F (n) of subgroups Hd,n (k ) of G , one for each divisor d  of n . 

For example H1,n (k ) is the product of the centre Z  of G  with the group P  of all upper 

unitriangular matrices in G , while Hn,n(k) is a maximal torus T  of order qn −1. Each 

element g  of each Hd,n (k ) is primary, and between them, the Hd,n (k ) meet all the primary 

conjugacy classes of G . In section 3 we define, for each d and for each partition λ  of n /d , a 

character Xd ,n (ψ ,λ )  of G , which is induced from a linear character of Hd,n (k ). Our main 

theorem (theorem 3.2) states that there exists a family of polynomials rλ (T)  ∈ Z[T ], indexed 

by the set of all partitions λ  (of all positive integers), such that for all n , all ψ  and all fields 

k  of order q , 
 
(3.3)  Jn (ψ)  = rλ (qd )Xd,n(ψ, λ )

λ |− n /d
∑

d|n
∑ . 

Section 4 states without proof some rather technical propositions on the Xd ,n (ψ ,λ )   and in 

section 5, the theorem 3.2 is proved on the assumption that these propositions are true. The 

proofs of the propositions in section 4 require some formulae on the Gelfand–Graev character 

for G  = GL(n,q); these are given in sections 6 and 8 (section 6 is essentially due to Deligne–

Lusztig) and may have some interest in their own right. The proofs which were deferred from 
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section 4 are given in sections 7 and 9. An appendix at the end of the paper gives the 

polynomials rλ (T)  for all partitions λ |– n ≤ 5.. 

 

1 Notation. The class function Jn(ψ )   

  n  is a positive integer, q  is a power of a prime p , and k  is an algebraically closed 

field of characteristic p . For each positive integer d , kd  is the unique subfield of k  of order 

qd . Write k = k1 .  

 Md  = kd
×   and ˆ M d  = Hom(Md ,C× ) are the multiplicative group of kd , and the 

character group of Md , respectively.  

 From now on, we denote the group GL(n,q) as Gn (k ); similarly GL(n,qd ) = Gn (kd ), 

etc. For any group G , the set of all conjugacy classes of G  is denoted cclG . 

 t , T  are indeterminates over k , Z , respectively. 

 A sequence of positive integers λ = (λ1,…,λb )  is called a composition of n  if 

λ1+…+λ b  = n  (notations λ ||= n  and |λ | = n ). If λ1 ≥…≥ λb , then λ  is a partition of n  

(notation λ |− n ). We sometimes use the other standard notation λ  = 1l12l2 … for a partition 

λ , to indicate that λ  has l1  parts equal to 1, l2  parts equal to 2, etc. Finally  if s  is a positive 

integer, λ ⋅ s  will denote the partition 1l1s2l2s…  of n s .2  

 

 If d  and r  are positive integers and X ∈GLd (k) , then Xr  denotes the matrix 

 

1.1   Xr  = 

X X 0 ⋅ ⋅ 0 0
0 X X ⋅ ⋅ 0 0
0 0 X ⋅ ⋅ 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 0 ⋅ ⋅ X X
0 0 0 ⋅ ⋅ 0 X

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 (r  diagonal blocks X ), 

 

which is an element of Gdr (k) . If σ  = (σ1,…,σb )  is a partition of a positive integer e , 

then X(σ)  denotes the matrix  

                                                 
2 This should not be confused with the partition  s ⋅ π = s p1 (2s)p2 …  defined in [GL], p.435. 
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1.2   X(σ)  = Xσ1

⊕…⊕ Xσb
 

 

(⊕  means “diagonal sum” of matrices); X(σ)  is an element of Gde (k ). 
 

 Let Φ(k)  be the set of all monic irreducible polynomials f (t) over k , excepting  f (t) 

= t . The degree of f = f (t) is denoted d( f ).  

 For any f  ∈ Φ(k) , C( f )  denotes a matrix in GLd( f )(k)  having characteristic 

polynomial f . This determines C( f )  only up to conjugacy in Gd ( f )(k), but this will be 

sufficient for our purposes. 

 

Definition If d( f ) = d  divides n , and if σ = (σ1,…,σb ) is a partition of e  = n / d , let 

f σ  be the conjugacy class of Gn (k ) which contains the matrix C( f )(σ) . Every element g  of 

f σ  is primary, and conjugacy classes of form f σ  are called primary classes.  Every 

conjugacy class of Gn (k ) can be written uniquely as ⊕ f ∈Φ(k) f σ ( f ) , where the partitions 

σ( f )  satisfy d( f )|σ ( f )|f ∈Φ(k)∑  = n . In this work we deal only with primary classes. 

 

Jordan factorization  An element g ∈Gn (k ) is unipotent  of type  σ |− n  if it is conjugate in 

Gn (k ) to the matrix (1)(σ ) . Notice that g  is unipotent if and only if it has p -power order, i.e. 

is a p -element.  An element g  is semisimple if it has order prime to p , i.e. is a ′ p -element.. A 

primary element g ∈Gn (k ) is semisimple if and only if it is conjugate in Gn (k ) to an element 

of the form C( f )(1n d )  for some f ∈Φ(k)  of degree d  dividing n . Each element g ∈Gn (k ) 

has a unique factorization g = gpg ′ p = g ′ p gp  as commuting product of a semisimple element 

g ′ p  and a unipotent element gp  (see [St], p.25). We call g = g ′ p gp  the Jordan factorization of 

g , and call g ′ p and gp  the semisimple and unipotent parts, respectively, of g . The semisimple 

and unipotent parts of g  are both powers of g . The Jordan factorization of the element 
C( f )(σ)  in the definition above is C( f )(σ) = C( f )(1n d ) (Id )(σ) , notice that the matrix (Id )(σ)  

is unipotent, because it is conjugate to (1)σ⋅d .  
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Definition of Jn (ψ)  Let ψ  be any element of ˆ M n ; this will be fixed from now on. If d  is a 
divisor of n , we often identify ψ  with the element ψ |Md

  of ˆ M d . Define the class-function 

Jn (ψ)  on Gn (k ) as follows. If c  ∈ cclGn (k ) is not primary, then Jn (ψ) {c } = 03. If f σ
 is 

the primary class described above, with d = d( f )  and σ  a partition of e = n / d , then  

 

1.3  Jn (ψ) { f σ } = ψ ( f ).k(σ : qd ),  

 

where the symbols ψ ( f ) and k(σ :T )  have the following meanings. If y ∈kd  is a zero of 

f (t), so that f (t)= (t − y)(t − yq )…(t − yqd −1
) , then we define ψ ( f ) := 

ψ (y) + ψ (yq )+…+ψ (yq d−1
). If σ = (σ1,…,σb ) is any partition, then the polynomial 

k(σ :T ) ∈ Z[T ] is defined to be (1 − T )(1 − T 2)…(1 − Tb−1) if σ  has b  > 1 parts, and to be 1 

if b  = 1. 

  

 Jn (ψ)  is a generalized character of Gn (k ) for any ψ ∈ ˆ M n , and if ψ  is primitive  (or 

is in general position; this means that ψ ,ψ q ,…,ψ qn−1
 are distinct elements of ˆ M n ) then 

(−1)n−1 Jn (ψ)  is irreducible [GL, pp.431, 433, 430]. The distinct irreducible characters which 

you get by taking all primitive ψ ∈ ˆ M n  comprise the discrete series for Gn (k ). However in 

the rest of this paper ψ  will be an arbitrary element of ˆ M n . 

 

2  The subgroups Hd ,n(k )  of Gn (k)  

 A class-function F  on Gn (k ) is said to have primary support if F{c} ≠ 0  implies that 

the class c  is primary. A primary subgroup H  of Gn (k ) is one whose elements all lie in 

primary classes of Gn (k ). Clearly Jn (ψ)  has primary support, and any character of Gn (k ), 

which is induced from a character of a primary subgroup H , has primary support. In this 

section we define a family   F (n) of primary subgroups of Gn (k ), and we show later that 

Jn (ψ)  can be expressed as a Z-linear combination of characters induced from groups H  of 

  F (n). 

                                                 
3To avoid a confusing forest of parentheses, the value of a class-function F at a class c is given as F{c}; or 
sometimes as F{g}, where g is an element of c. 
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 Let d  be a positive integer. The field kd  may be regarded as a k –algebra. It becomes 

a (simple) left kd –module by multiplication (a ∈ kd  acts on v  ∈ kd  to give a v ).Then each 

k –basis {v1,…,vd} of kd   provides a k –algebra monomorphism jd :kd → Matd (k ), which 

takes a ∈ kd   to the k –matrix (ai j ) given by the equations av j =  ai jvii∑ . If we use a 

different basis of kd , then jd  is replaced by  γ o jd :kd → Matd (k), where γ  is conjugation by 

some element of Gd (k). 

 Now let e  be a positive integer. The map jd :kd → Matd (k ) induces a group 

monomorphism Ge(kd ) ∅Gde (k ) which takes (bi j ) → ( jd (bi j )) ; we denote this also by jd .  

  For any field K , let Ze (K)  and Pe(K)  denote, respectively, the centre of Ge(K)  and 

the upper unitriangular subgroup of Ge(K) . Let He(K)  be the group Ze (K)Pe(K) (this is, of 

course, the direct product of Ze (K)  and Pe(K) ). 

 Now suppose that d |n , and that e  = nd  . Then we define Zd,n (k ), Pd,n (k ) , Hd,n (k ) 

and Gd ,n (k)  to be the images under the map jd :Ge(kd ) ∅Gn (k ) of Ze (kd ), Pe(kd ), He(kd ) 

and Ge(kd )  respectively. 

 

Examples  If d  = 1, e = n  we take the monomorphism j1 :Gn (k ) ∅ Gn (k ) to be the 

identity map, so that Z1,n (k ) = Zn (k), P1,n (k ) = Pn (k) and H1,n (k ) = Hn (k). If d  = n , e  = 1 

then Pn,n(k) = {1}, and Zn,n(k) = Hn,n(k) is the image of jn :kn
×  ∅Gn (k ), which is a 

“maximal torus” of Gn (k ) (see [M], p.273), and has order |kn
× | =  qn −1. 

 

Definition Let   F (n) = { Hd,n (k )| d  any positive divisor of n }. 

 

 The set   F (n) has the following virtues, proved in the lemma below: (i) each member 

Hd,n (k ) of   F (n) is a primary subgroup of Gn (k ), and (ii) every primary class of Gn (k ) 

meets Hd,n (k ) for at least one divisor d  of n . 

 
2.1 Lemma  (i) Let d  be a divisor of n , e  = n

d    and let h ∈Hd,n (k ) . Then the conjugacy 

class c  of Gn (k )  which contains h  has the form c  = f σ , where  
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2.1a  m  = d( f )  divides d , and 

2.1b  There exists a partition π |− e  such that σ = π ⋅ d
m  (for notation, see section 1). 

(ii) Each primary class f σ  of Gn (k )  contains an element of Hd,n (k ) , for d  = d( f ) . 
 

Proof of ( i )  Each element of He(kd ) has the form x  = ζIe .u, where ζ ∈kd
×  and 

u ∈Pe(kd ) . Let X  = (ζ )∈G1(kd ) . Then (using the Jordan normal form) x  is conjugate in  

Ge(kd )  to an element of the form X(π ) , where π = (π1,…,π b ) is some partition of e  (we use 

here the notation 1.1, 1.2 of section 1). Therefore h  = jd (x)  is conjugate in Gn (k ) to 

jd (ζ )(π ) .  

 Now let m  be the degree of ζ  over k , and let f ∈Φ(k)  be the minimal polynomial of 

ζ  over k . Then m =d( f ) divides d , and the k –subfield k(ζ ) of kd  which is generated by ζ  

is isomorphic to km , hence is equal to km  (because this is the only subfield of kd  of order 

qm ). As left km –module, kd   may be written as direct sum of  d
m   submodules, each 

isomorphic to km . Therefore if we take a k –basis {v1,…,vd} of kd  adapted to this direct sum 

decomposition, we can arrange that 

 

2.2  jd (ζ ) = 

C( f ) 0 … 0
0 C( f ) … 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 … C( f )

 

 

 
 
 

 

 

 
 
 

 ∈Gd (k), 

 

where C( f ) ∈Gm (k ) has characteristic polynomial equal to f , and there are d
m   diagonal 

blocks C( f ) . The reader will now be able to see that jd (ζ )(π )  is conjugate in Gn (k ), by an 

element which permutes suitably the rows and columns of jd (ζ )(π ) , to a diagonal sum of d m   

copies of the matrix C( f )(π ) . This clearly lies in the conjugacy class f σ , where σ = π ⋅ d
m . 

This proves part (i) of the lemma. 

 

Proof of ( i i )  This comes very easily from what has just been proved. If f σ  is a primary 

class of Gn (k ), then d  = d( f ) divides n , and σ |− e = nd   . Let ζ  be a zero of f . Then ζ ∈kd  

and f  is the minimum polynomial of ζ  over k . Let X = (ζ ) ∈G1(kd ) and let x  = X(σ) . This 
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is an element of He(kd ). The proof of (i), where we now have m =d  and π = σ , shows that 

the class in Gn (k ) of jd ( x ) is f σ⋅1= f σ . Hence this class meets Hd,n (k ). 

 

3  The characters Xd ,n (ψ ,λ )  of Gn (k)  There is a bijection λ ↔ J (λ )  between the set 

of all compositions λ = (n1,…,nb ) of n , and the set of all subsets of the set I  = {1,…,n −1} 

(if n  = 1, take I = ∅), as follows: if λ  = (n ), then J(λ ) = I , otherwise  

 

  J(λ ) = I  \ {n1,n1 + n2 ,…,n1 + n2 +…+nb−1}.  

 

Notice that J((1n )) = �. 

 For any field K  and any λ ||= n  let θλ : Pn (K) → C×  denote the linear character of 

Pn (K) which takes each (upper unitriangular) matrix (ai j ) ∈Pn (K) to 

ω1(a12 )…ωn−1(an−1,n ), where ω1 ,…,ωn−1  are elements of the character group ˆ K +  = 

Hom(K + ,C×) which satisfy the condition  

 

3.1  ω j ≠ 1 if and only if j  ∈ J(λ ) . 

 

Examples θ(n)  is a non-degenerate character of Pn (K), i.e. ω j ≠ 1 for all j ∈ I . The 

induced character IndPn(K )
Gn (K )(θ(n))  is called the Gelfand–Graev character of Gn (K) (see 

section 6, also [DL], p.155 or [Ca], p.254). θ(1n )  is the trivial (unit) character of Pn (K). 

 
 Now let d  be a divisor of n , and let e  = n

d  .  Recall that ψ :Mn → C×  is a fixed 

character of Mn = kn
× . For each λ ||= e  we define a linear character ψ .λ  of He(kd ) = 

Ze (kd ) Pe(kd )  as follows: if z = ζ .Id  ∈ Ze (kd ) (so that ζ ∈kd
× ), and if a ∈ Pe(kd ), let 

(ψ .λ )(za) = ψ (ζ) θλ (a). Composing ψ .λ  with the inverse of the map jd : He(kd ) 

∅ Hd,n (k ) we get a linear character of the subgroup Hd,n (k ) of Gn (k ), also denoted ψ .λ . 

Finally we make the 

 
Definition Xd ,n (ψ ,λ )  := IndHd , n(k )

Gn (k ) (ψ .λ ). 
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Remarks (1) Xd ,n (ψ ,λ )  is independent of the choice of the ω j , provided that these satisfy 

3.1 (see section 6). 

(2) If λ  and ′ λ  are compositions of the same integer, write λ  ≈  ′ λ  to mean that ′ λ  can be 

obtained from λ  by permuting its components. Each ≈ -class contains exactly one partition. It 

will turn out that Xd ,n (ψ ,λ )  = Xd ,n (ψ , ′ λ ) if ′ λ  ≈ λ  (see section 7). Therefore we may 

confine ourselves to Xd ,n (ψ ,λ )  for which λ |− n . 

 

 The main result of this paper is that Jn (ψ)  is a Z-linear combination of these induced 

characters Xd ,n (ψ ,λ )  of Gn (k ). More precisely, we have the following theorem, whose proof 

will occupy the rest of this paper. 

 

3.2  Theorem  There exist polynomials rλ (T)  ∈ Z[T ], one for each partition λ , such that 

for each positive integer n , for each field k  of finite order q , and for each ψ ∈ ˆ M n  = 

Hom(Mn ,C×)  there holds 

 
3.3  Jn (ψ)  = rλ (qd )

λ |− n d
∑

d|n
∑ Xd ,n (ψ ,λ ) . 

 
The polynomials rλ (T)  are determined uniquely by the equations (3.3) 

 

. 

4 Some properties of the characters Xd ,n (ψ ,λ )  

 Since Xd ,n (ψ ,λ )  is an induced character from the subgroup Hd,n (k ) of Gn (k ), its 

value at a class c  of Gn (k ) is zero unless c  contains an element of Hd,n (k ), i.e. unless c  has 

the form f σ , where f  and σ  satisfy conditions 2.1a, 2.1b (see lemma 2.1). This proves 

statement (i) in the next proposition; the proof of statement (ii) and the definition of the 

polynomials xλ ,π ,l(T ) will be deferred to section 7. 
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4.1  Proposition  For each pair λ , π  of partitions for which |λ |=|π |, and for each positive 

integer l , there exists a polynomial xλ ,π ,l(T )  ∈ Z[T ], such that for all positive integers d , n  

with d |n , for all partitions λ |− e = n
d  and for all c  ∈ cclGn (k ) , there hold 

(i)  Xd ,n (ψ ,λ ) {c } = 0 unless c = f σ , where f ,σ  satisfy conditions 2.1a and 2.1b, and 

(ii)  If f ,σ  satisfy conditions 2.1a and 2.1b, so that m =d( f )  divides d , and there exists 

π |− e  such that σ =π ·d
m , then Xd ,n (ψ ,λ ) { f σ } = ψ ( f ) . xλ ,π ,d /m (qm ). 

 

 It is sometimes convenient to augment the definition of xλ ,π ,l(T ) by making the 

convention: for any partitions λ ,σ  and any l ∈ Q, xλ ,σ /l,l (T ) is zero unless l ∈ Z  and there 

exists π  such that σ =π ⋅l , in which case xλ ,σ /l,l (T ) := xλ ,π , l(T ). Then we have a “short” 

version of proposition 4.1, namely 
 

4.1a If d |n , λ |− n
d  and f σ  ∈ cclGn (k )  then Xd ,n (ψ ,λ ) { f σ } =ψ ( f ) . xλ ,σ /l,l (q

d( f )) , 

where l = d
d( f ) . 

 

 In particular we see that X1,n (ψ ,λ ) { f σ } = 0 if d( f ) ≠ 1, while if d( f ) = 1, i.e. if 

f (t) = t − x  for some x ∈k× , then 
 

4.2  X1,n (ψ ,λ ) {(t − x)σ } = ψ ( x ). xλ ,σ,1(q), for all λ ,σ |− n  and all x ∈k × . 
 

We shall see later (section 7) that the polynomials xλ ,π , l(T ) are determined in a simple way 

by the xλ ,π ,1(T ). If we take ψ  = 1 in 4.2 we get  
 

4.3  X1,n (1,λ ){(t − x)σ } = xλ ,σ,1(q), for all λ ,σ |− n  and all x ∈k × . 
 

 For each µ |− n  there is an irreducible character Iµ  of Gn (k ), denoted I1
0[µ]  in [GL], 

p.437, and first discovered by R. Steinberg (see [S], p. 275. In Steinberg’s notation, Iµ  = 

Γ(ν), where ν = (µn,µn−1,…,µ1)). We have the following important relation between the 

X1,n (1,λ ) and the Iµ . Let •  ,    denote the usual scalar product on class-functions on Gn (k )  

(see 8.3). 
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4.4 Proposition  Let W(λ ,µ )  = • X1,n (1,λ ) , Iµ , for any λ ,µ |− n . Then W(λ ,µ )  ∈ Z  is 

independent of k  (i.e. of q ), and the matrix W(λ ,µ )( )λ ,µ |− n  is unimodular. 
 

 It will be useful to record here some information about the character Iµ . From its 

definition as Iµ  = I1
0[µ], using [GL] , p.441, lemma 8.2 together with [GL], p.423, definition 

(18), we may verify the first equality in 

 

4.5  Iµ {(t − x)π } = 
1
zρρ|_ n

∑ .Qρ
π(q).χρ

µ  = qn(π )Kµπ(q−1 ), 

 

where the Qρ
π[T] ∈ Z [T ] are certain polynomials introduced in [GL]—some of whose 

properties we shall recall in section 8—and χρ
µ  is standard notation (see e.g. [Le] or [M]) for 

the value at class ρ  of the irreducible character χ µ  of the symmetric group S (n ). The second 

equality in 4.5 comes by applying [M], p.248, (7.11), and using the orthogonality relations for 

the characters of S (n ). The polynomials Kµσ (T ) ∈ Z [T ] are defined in [M], p.239; the 

expression Tn(σ )Kµσ (T−1) is also a polynomial in Z [T ], see [M], p.248. 
 
4.6  Proposition  With n  given, {Xd,n (1,λ ) |d |n,λ |− n

d} is a linearly independent set of class-

functions on Gn (k ). 
 

 Propositions 4.4 and 4.6 will be proved in section 9. 

 

 

5 Proof of theorem 3.2 

 In this section we prove theorem 3.2, on the assumption that the propositions in 

section 4 are true. It is clear that equation 3.3 holds for n  = 1 in any case, by taking r(1)(T ) = 

1. For we have G1(k)= k ×  = M1 and J1(ψ ) = ψ |M1
= X1,1(ψ,(1)). 

 We proceed by induction  on n . Suppose that n >1, and that we have already defined 

polynomials rλ (T) ∈ Z[T ] for all λ |− n  and all n <n  in such a way that 3.3 holds, for any 

appropriate ψ  and k , with n  replaced by any n <n . To prove theorem 3.2 for n , we must 
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show that there exist rλ (T) ∈ Z[T ] for all λ |− n  so that 3.3 holds using these new rλ (T)  

(together, of course, with the rλ (T)  already defined).  

 

 Let s  be a divisor of n . Then we define the class-function Rs(k)  on Gn (k ) by  

 
5.1  Rs(k) = Jn (ψ)  – rλ (qd )Xd,n (ψ,

λ |− n d
∑

s|d|n
∑ λ ), 

where the first sum is over all divisors d  of n  which are divisible by s . Notice that theorem 

3.2 is equivalent to the statement that polynomials rλ (T)  exist, such that R1(k)  = 0 for all n , 

ψ  and k  . 

 

5.2  Lemma Let s ≠ 1 be a divisor of n . Then Rs(k){ f σ } = 0 for all class-functions f σ  of 

Gn (k )  such that s |d( f ) . 

 

Proof Let f σ  be a class of Gn (k ) as described, and let m  = d( f ). By 1.3 and 4.1a, 

Rs(k){ f σ } = ψ ( f ) Us (k), where 

 
5.3 Us (k) = k(σ : qm )  – rλ (q

λ |− n d
∑

s|d|n
∑ d

)xλ ,σ /(d/ m),d/ m (qm ). 

 

Notice that s  divides all the integers n , m , d  appearing in 5.3. Write n = n
s , m  = m

s , d  = 

d
s . Take any f ∈ Φ(ks )  of degree d( f ) = m  (for example, we could take f  to be the 

minimal polynomial over ks , of an element η ∈kd  whose minimum polynomial over k  is f ), 

and consider the class f σ  of Gn (ks ) . The class-function R1(ks )  on Gn (ks )  is zero by our 

induction hypothesis. On the other hand, the analogue of 5.3 gives us, writing q = qs =|ks| , 

 

5.4  U1(ks )  = k(σ : q m ) – rλ (q 
λ |− n /d 
∑

d |n 
∑ d 

)xλ ,σ / (d /m ),d / m (q m ). 
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But it is clear that U1(ks )  = Us (k). Since 0 = R1(ks )  = ψ ( f ) .U1(ks )  holds for any ψ ∈ ˆ M n  

(including ψ  = 1) we have 0 = U1(ks )  = Us (k), and so Rs(k){ f σ } = ψ ( f ) Us (k) is zero, 

which proves the lemma.  
 

 Next we define a class-function Bn (ψ )  on Gn (k ) by 

 
5.5  Bn (ψ )  = Jn (ψ)  – rλ (qd )Xd,n(ψ, λ )

λ |− n/d
∑

d|n,d≠1
∑ . 

 

5.6  Lemma Bn (ψ )  is zero on all classes f σ  of Gn (k )  for which d( f )  ≠ 1 . 
 

Proof  Suppose f σ  is a class on Gn (k ) for which d( f )  = s ≠ 1 . Then by proposition 4.1(i), 

Xd ,n (ψ ,λ ) { f σ } = 0, for all d |n  and λ |− n
d  such that s  does not divide d . Therefore 

Bn (ψ ) { f σ } = Rs(k){ f σ }, which is zero by lemma 5.2. 

 

  In order to complete the proof of theorem 3.2, we must construct polynomials rλ (T)   

∈Z [T ] such that 

 
5.7  Bn (ψ )  = rλ (q)X1,n (ψ ,λ )

λ |− n
∑  

 

for all ψ ∈ ˆ M n . It is enough that 5.7 should hold for ψ =1. For by 1.3 and 4.1, we have 

Bn (ψ ) {(t − x)σ } = ψ ( x ). Bn (1){(t − 1)σ } and X1,n (ψ ,λ ) {(t − x)σ } = 

ψ ( x ). X1,n (1,λ ){(t − 1)σ }, for all x  and σ , and both sides of 5.7 are zero on all classes f σ   

of Gn (k ) with d( f ) ≠ 1 (see proposition 4.1(i)). Define the class function B  = Bn (1) . From 

1.3 and 4.1a we get, for all x∈k ×  and σ |− n , 

 
5.8  B{(t − x)σ} = B{(t −1)σ } = k(σ :q) − rλ (qd )xλ ,σ / d,d (q)

λ |− n d
∑

d |n,d≠1
∑ , 

 

 Using the notation •   ,    for the scalar product on class-functions on Gn (k ) (see 8.3) 

we have by 8.4 the following lemma. 
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5.9  Lemma If the class-function F on Gn (k )  is zero on all classes f σ  with d( f ) ≠ 1, and 

satisfies F{(t − x)σ} = F{(t −1)σ } for all x ∈ k ×  and σ |− n , then 
 
5.10  • F, Iµ  = (q −1)

1
aσ (q)σ |_ n

∑ .F{(t −1)σ}.Iµ {(t −1)σ} ,  

for all µ |− n . 

 

5.11  Corollary If F  is as above, and if • F, Iµ  = 0  for all µ |− n , then F  = 0. 
 
Proof   By [M], p.239 the matrix qn(σ )Kµ ,σ (q−1)( )µ ,σ |− n

 is non-singular, hence by 4.5 the 

matrix Iµ{(t −1)σ}( )µ ,σ |− n
 is non-singular. So • F, Iµ  = 0 for all µ |− n  � F{(t −1)σ } = 0 for 

all σ |− n  (see 5.10) � F  = 0. 

 

 Now we define, for each λ |− n , 
 
5.12  rλ (k) = 

µ |− n
∑ • B , Iµ V(µ, λ ), 

where V(λ ,µ)( ) is the inverse of the matrix W(λ ,µ )( ) of proposition 4.4. 

 
 
5.13  Lemma B  = rλ (k)X1,n (1,λ )

λ |− n
∑ . 

Proof  Let S  denote the right side of the equation above. We check immediately from 4.4 that 

•S , Iτ  = • B , Iτ  for all τ |− n . Hence S  = B  by corollary 5.11. 
 

 We must now show that each coefficient rλ (k)  defined by 5.12 “belongs to Z [q ]” in 

the sense that there exists a polynomial rλ (T)  ∈ Z [T ] such rλ (k) = rλ (q), for each field k  

of order q . By 5.12 and 4.4, it will be enough to prove that each • B , Iµ  “belongs to Z [q ]” 

in this sense. We may apply lemma 5.9 to F  = B . Then 5.10 gives 
 

5.14  • B , Iµ  = (q −1)
1

aσ (q)σ |_ n
∑ .B{( t −1)σ}. Iµ{(t −1)σ}, 

 for all µ |− n . But 5.8 shows that B{(t −1)σ} “belongs to Z [q ]”, because k σ :T( ), rλ (Td ) 

and xλ ,σ / d,d (T ) all belong to Z [T ], for all divisors d  ≠ 1 of n  and all λ |− n
d . Also 
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Iµ{(t −1)σ} = qn(σ )Kµσ (q−1 ) “belongs to  Z [q ]”, see the end of section 4. Of course we 

have in 5.14 denominators aσ (q) . But the polynomials aσ (T ) lie in Z [T ] and are monic (see 

section 8), and we know that • B , Iµ  ∈ Z  for fields k  of all p –power orders q , because B  

is a generalized character of Gn (k ) (see 5.5) and Iµ  is a character of Gn (k ). Therefore we 

deduce that • B , Iµ  “belongs to Z [q ]” from 5.14 and the following elementary lemma 

(whose proof we leave to the reader). 
 

5.15  Lemma Let α (T )  and β (T )  belong to Z [T ], with β (T )  monic. Let 
κ (T ) = α (T )

β (T ) , and suppose that κ (q)  ∈ Z  for infinitely many distinct integers q . Then 

κ (T )  ∈ Z [T ]. 
 

 We have now proved 5.7, hence that equations 3.3 hold. It remains to prove that the 

rλ (T)  are determined uniquely by these equations. But this follows from the case ψ  = 1 of 

3.3, together with proposition 4.6. 

 

Remark We can prove that • B , Iµ  ∈ Z  for all k , without appealing to fact that Jn (ψ)  (and 

in particular Jn (1)) is a generalized character. For it is easy to check that  • Jn (ψ) , Iµ  ∈ Z  

by direct calculation, using the definition 1.3 of Jn (ψ) . Of course • Xd ,n (1,λ ), Iµ  ∈ Z  for 

all d |n  and λ |− n
d , because the Xd ,n (1,λ ) are characters of  

Gn (k ) by definition. We then have • B , Iµ  ∈ Z   as before, from the definition 5.5 of 

Bn (ψ ) . 

 Therefore theorem 3.2 provides a proof (even if rather indirect!) that the functions 

Jn (ψ)  are generalized characters. But, as Robert Steinberg has remarked, this could be 

proved by a direct application to Jn (ψ)  of Brauer’s characterization of characters. 

 

6 Gelfand-Graev character for Gn (k) , I 

 The Gelfand–Graev character Γn   of Gn (k ) is by definition the induced character 

IndP
G (θ(n)) , where G  = Gn (k ), P  = Pn (k), and θ(n)  is any non-degenerate linear character 

of P , see 3.1. (Γn  is independent of the characters ω j ∈ ˆ k + , provided these are all ≠ 1; see 
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[C], p.254.) Clearly Γn {c } is zero, unless the conjugacy class c  meets P , i.e. unless c  = 

(t − 1)π  for some π |− n . For brevity, we shall henceforth write F{π} for F{(t −1)π}, for any 

class-function F  on G . 

 Deligne and Lusztig have discovered an important property of Γn  , which they prove 

for a large class of finite reductive groups ([DL], p. 155, Prop. 10.3). In our case, Deligne–

Lusztig’s result may be written 

 
6.1 (−1)| J|

J⊂I
∑ .ΓJ  = ∆ n , 

 

where the class-function ∆ n  on G   is given by 
 

6.2 ∆ n {c } = 0 unless c = (t − 1)(n) , and ∆ n ((t − 1)(n) ) =  ∆ n ((n )) = qn−1(q −1) . 

 

 To define Γ J , we recall (section 3) that to each subset J  of I  = {1,…,n −1} is  

associated a composition λ  of n , which we shall here denote λ  = (n1,…,nb ). To this is 

associated the parabolic subgroup P(J ) of G  consisting of all matrices 

 

  A =

A11 A12 … A1b

0 A22 … A2b

⋅ ⋅ ⋅ ⋅ … ⋅ ⋅
0 0 … Abb

 

 

 
 
 

 

 

 
 
 

 

 
of G = Gn (k )  such that Aj j ∈Gn j

(k ) ( j =1,…,b ). If χ j  is a character on Gn j
(k) 

( j =1,…,b ), define the character   χ1 o … oχb  on G  to be IndP(J )
G (χ) , where χ  is the 

character χ (A) = χ1( A11)…χb (Abb ) on P(J ). We recall from [GL], p. 411 that this “circle-

product”   o  is multilinear, associative and commutative. It is easy to see that the character 
denoted IndP(J )F

GF
(ΓL (J ))  in [DL], (10.3.1), is in our notation, 

 

6.3 
  
Γ J := Γn1

o … oΓnb
. 

 

 To calculate  o  products like this, we have the formula (see [GL], p.410): 
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if Fj  is a class-function on Gn j
(k) ( j =1,…,b ) then for all π |− n  = n1 +…+nb  

 

6.4 (  F1 o … oFb ){π } = gπ1…π b
π (q)F1{π1}…Fb{πb}∑ , 

 

where the sum is over all rows π1,…,πb  of partitions of n1,…,nb  respectively, and the  

integer gπ1…π b
π (q)  is the value at T  = q  of Hall’s polynomial gπ1…π b

π (T ) ∈ Z [T ] (see [M], 

p.188). 

  

6.5  Lemma  For each J ⊂ I = {1,…,n −1} and each π |− n  there exists a polynomial 

cJ ,π (T ) ∈ Z [T ] such that Γ J{π}= (q −1) cJ ,π (q) for all fields k of order q. 
 

Proof  Deligne and Lusztig ([DL], p. 155, 10.4) give the following formula, a “dual” to 6.1, 
  
 
6.6  Γn = (−1)|J |

J⊂ I
∑ ∆ J , 

 
where 

  
∆ J = ∆n1

o…o∆nb
. By 6.2, there is, for each positive integer n , a polynomial dπ (T ) ∈ 

Z [T ] such that ∆ n{π} = (q −1) dπ (q) for all fields k  of order q . Therefore by 6.4 there is, 

for each  J ⊂ I  and each π |− n , a polynomial dJ ,π (T )  such that 
 
∆ J{π} = (∆n1

o…o∆ nb
){π} = 

(q − 1) dJ ,π (q) for all fields k  of order q . Then 6.6 shows that cπ (T )  = (−1)| J|dJ ,π (T )
J⊂I
∑  ∈ 

Z [T ] has the property that Γn{π} = (q −1) cπ (q), and we may use this, together with 6.4 

again, to construct the polynomials cJ ,π (T )  required by the lemma.  
 

Remark  We often write cJ ,π (T )  = cλ ,π (T ) , if J  and λ  are related as in section 3.  

It is clear that the property Γ J{π}= (q −1) cJ ,π (q), i.e. 
 
6.7  cλ ,π (q)  = 

  

1
q −1

(Γn1
o … o Γnb

){π}, 

 

defines the polynomial cλ ,π (T )  uniquely. Because the  o  product is commutative, cλ ,π (T )  = 

c ′ λ ,π (T ) whenever ′ λ  ≈ λ  (see section 3, remark (2)). 
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7 Proof of proposition 4.1(ii) 
 
 We want to calculate the values of the character Xd ,n (ψ ,λ )  = IndHd, n(k )

Gn (k ) (ψ .λ ) 

defined in section 3, and we start with the special case d  = 1. According to the definitions in 

section 2, H1,n (k ) = Hn (k) , Z1,n (k ) = Zn (k)  and P1,n (k ) = Pn (k)  (we identify Mat1(k)  with 

k , so that j1  is the identity map). Write these groups H , Z  and P  for short, and write 

Gn (k ) = G . Observe that H = ZP  has order (q −1)| P| . 

 

7.1 Lemma  For all partitions λ , π |− n  and for all x  ∈ k ×  
 

7.2  X1,n (ψ ,λ ){(t − x)π} = ψ (x).cλ ,π(q) . 
 

Proof  Let u  be an element of the class (t − 1)π . Then g  = xIn .u  is an element of the 

class (t − x)π , and we have X1,n (ψ ,λ ){(t − x)π} = IndZP
G (ψ .λ ){g} = 

1
|ZP|

(ψ .λ )(s −1gs)
s∈G,s −1gs∈H

∑  = 
ψ (x)
q −1

IndP
G (θλ ){(t −1)π}, because s −1gs = xIn .s−1us , hence 

s −1gs ∈H  if and only if s −1us ∈P , and in that case (ψ .λ )(s −1gs) = ψ(x).θλ (s−1us) . 

 To calculate IndP
G (θλ ){(t −1)π}, notice that from the definition of θλ  (section 3), and 

in the notation of section 6, IndP
P(J )(θλ )  takes A ∈P(J )  to Γn1

( A11)…Γnb
(Abb). Therefore  

 

7.3  IndP
G (θλ ) = 

  
Γn1

o…o Γnb
, 

 

and now lemma 7.1 follows from 6.7. 

 

 Now consider the situation of proposition 4.1(ii). We have a divisor d  of n , partitions 

λ , π  of e  = n d , and a polynomial f ∈Φ  of degree m  which divides d . Let σ = π ⋅ d
m , so 

that σ |− n m  and f σ  is a conjugacy class of Gn (k ). From the proof of 2.1(i) we know that 

f σ  contains an element h = jd (ζ)(π )  ∈ Hd,n (k ), where ζ ∈km
×  is a zero of 

f (t) = (t −ζ )(t − ζq )…(t − ζq m−1
). The semisimple part of (ζ)(π )  is (ζ)(1n d ) , and its unipotent 

part is (1)(π ) . The following lemma is an elementary consequence of this, together with the 

discussion following 2.2. 
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7.4 Lemma If h = h ′ p hp  is the Jordan decomposition of h , then (i) h ′ p  = jd ((ζ )1n d )  = 

C( f )(1n m )  satisfies the equation f (h ′ p ) = 0 , and the k–algebra generated by h ′ p  (in 

Matn (k)) is a field; (ii) hp  = jd (1)(π )  is unipotent of type σ ⋅ m = π ⋅ d . 

 
 It is clear that 
 
7.5  Xd ,n (ψ ,λ ) { f σ } = IndGd ,n (k )

Gn (k ) ( Υ ){h }, 

where 
 
7.6  Υ:= IndHd,n (k )

Gd ,n (k )(ψ.λ ). 

 

 From the standard definition of induced character we have 
 

7.7  IndGd ,n (k )
Gn (k ) ( Υ ){h } = 

1
|Gd,n (k)|

Υ(s−1hs)
s∈Θ
∑ , 

 

where 
 

7.8  Θ = {s ∈Gn (k) |s−1hs ∈Gd,n (k )}. 

 

7.9  Lemma  If s ∈Θ , then (s −1hs) ′ p  = (h ′ p )
q j

 for some j ∈{0,…,m −1}. 

Proof Since s −1hs ∈Gd,n (k ), then also (s −1hs) ′ p ∈Gd,n (k) . Let z ∈Ge(kd )  be such that 

(s −1hs) ′ p = s−1h ′ p s = jd (z). By 7.4(i), z  satisfies f (z) = 0 , and the k -subalgebra (of 

Mate(kd )) generated by z  is a field. But this means that the minimum polynomial of z  over 

kd  is irreducible, and it divides f (t) = (t −ζ )(t − ζq )…(t − ζq m−1
). It follows that z = a.ζq j

, 

for some a ∈kd
×  and some j ∈{0,…,m −1}. But since jd (z) has the same eigenvalues as 

h ′ p = jd (ζ )1n d , we must have a  = 1.  

 

 Since the elements ζq j
( j = 0,…, m −1)  are distinct, we deduce from this lemma that 

Θ = Θ0 ∪…∪Θm−1  (disjoint union), where 
 

7.10  Θ j ={s ∈Gn(k) |s−1hs ∈Gd,n (k),(s−1hs) ′ p = h ′ p 
q j

}. 
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7.11  Lemma Let F  denote the Frobenius endomorphism (ai j ) → ai j

q( ) on Ge(kd ) . Then 

there exists a matrix M ∈Gn (k )  such that 
 

7.12  M. jd (a). M−1 = jd (aF)  for all a ∈Ge(kd )  
 

Proof Let {v1,…vd} be the k -basis of kd  which was used to define the k -algebra map 

jd :kd → Matd (k )(section 2). Then it is easy to verify that the matrix M0 = (mi j ) ∈ Gd (k) 
defined by the equations v j

q = mi jvi
i

∑  ( j =1,…,d ) has the property: M0. jd (α ).(M0 )−1  = 

jd (α q )  for all α ∈ kd . Therefore the matrix M  = (M0 )(1n d )  ∈ Gn (k ) (i.e. M  is the diagonal 

sum of n d  copies of M0 ) has the property 7.12.  
 

7.13  Corollary  Θ0 M− j = Θ j , for all j = 0,…,m − 1. 

Proof  7.12 implies that M  normalizes Gd ,n (k) ), and also that M jh ′ p M
− j  = h ′ p 

q j
, because 

h ′ p = jd ((ζ )(1n d ) )  by 7.4. The corollary now follows from the definition 7.10.  

 

 Now suppose that s ∈Θ0 . Then s −1h ′ p s = h ′ p . But by 7.4(i) we know that h ′ p  is the 

diagonal sum of n m  copies of C( f ) , and C( f )  is the image of ζ  ∈km  under the k -algebra 

map jm: km → Matm (k)  determined by the part {v1,…,vm} of the k -basis {v1,…,vd} of kd  

which was used to obtain 2.2. So the centralizer of h ′ p  in Gn (k ) consists of all non-singular 

matrices B = (Br s )r,s =1,…,n m , in which each Br s  is an m × m  matrix belonging to the 

centralizer of C( f )  in Mat m(k). But this latter centralizer is exactly Im jm  (it consists of 

those matrices which correspond to elements of the km -endomorphism algebra of the left km -

module km ; but since km  is commutative, this is the same as the algebra of all left 

multiplications by elements of km ). This proves that 
 

7.14 The centralizer of h ′ p  in Gn (k )  is Gm,n(k) . 
 

The groups which we are dealing with are shown in the diagram below.  
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Gn (k)

Gd ,n (k)

Hd,n (k )

Ge(kd ) →

He(kd ) →

jd

jd

,Gm,n(k)

 

 

 Let R  denote the conjugacy class of Gn,d (k)  which  contains hp = jd ((1)π ); this 

consists of all unipotent elements of Gn,d (k)  of type π ⋅ d . Clearly R  = jd (S) , where S  is the 

conjugacy class of Ge(kd )  which contains (1)(π ) . 

 Let ρ |− N . We shall recall in section 8 that there is a monic polynomial aρ(T) ∈ 

Z [T ], such that the order of the centralizer in GN (K)  of the unipotent element (1)(ρ )  is 

aρ(Q) , for any field K   of finite order Q  (see [GL], p.409, or [M], p.181).  

   
7.15  Lemma  (i) The order of Θ0  is aπ⋅d m

(qm ) aπ(qd )  times  |Gn,d (k) |. 

(ii) For each s ∈Θ0 , s −1hs  lies in the class jd ((t −ζ )π )  of Gn,d (k) . Hence 
 

7.16  
1

|Gd,n (k)|
Υ(s−1hs)

s∈Θ 0

∑  = ψ (ζ) . 
aπ ⋅d m

(qm )

aπ (qd )
.cλ ,π (qd ) . 

 

Proof (i) From the definition 7.10 of Θ0 , together with 7.14, we see that Θ0  consists of all 

s ∈Gm,n (k) such that s −1hps ∈Gd,n(k), i.e such that s −1hps ∈R . The order of R is the same as 

that of S , i.e. |Ge(kd )| aπ (qd )  = |Gd,n (k)| aπ (qd ). But the number of s ∈Gm,n (k) for which 

s −1hps  has a given value, is the order of the centralizer in Gm,n(k) of hp . Since hp  = jd ((1)π )  
is conjugate to jm ((1)π ⋅d m

, this order is aπ ⋅d m
(qm ) . This proves (i). 
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(ii) If s ∈Θ0  then s −1hs  has semisimple part h ′ p = jd (ζ ), and unipotent part in jd (S) . This 

proves the first statement of (ii). But Υ = IndHd,n (k )
Gd,n (k ) (ψ.λ )  maps { jd ((t −ζ )π )  to 

IndHe(kd )
Ge (kd ) (ψ .λ ){( t − ζ)π}, which equals ψ (ζ) .cλ ,π (qd ) , by 7.2. From this, 7.16 follows.   

 
 It is now easy to prove, using 7.13, that 7.16 remains true, if we replace Θ0  by Θ j  
and ζ  by ζ j , for any j ∈{0,…,m −1}. Add the m  equations which result; we get the  
 

7.17 Proposition  Suppose d   divides n , and λ , π  |− e  = n d , and f ∈Φ   has degree m  

which divides d . Let σ = π ⋅ d
m , so that σ |− n m , and f σ  is a conjugacy class of Gn (k ) . 

Then for any ψ ∈ ˆ M n  

 

7.18  Xd ,n (ψ ,λ ){ f σ} = ψ ( f ).
aσ (qm )
aπ(qd )

.cλ ,π (qd )  

 

7.19  Lemma    
aπ ⋅l (T )
aπ(Tl )

 ∈ Z[T ], for all partitions π   and all positive integers l . 

Proof  With the notation of lemma 7.17, aσ (qm), aπ (qd )  are the orders of the centralizers of 

hp  in Gm,n(k), Gd ,n (k) , respectively. Since  Gd ,n (k)  is a subgroup of Gm,n(k), it follows that 

aσ (qm) aπ(qd ) ∈ Z  for all prime-powers q . Now take m  = 1, and write l  for d . Since 

σ = π ⋅ d
m = π ⋅ l , this shows that aπ⋅l (q) aπ (ql ) ∈ Z  for all prime-powers q . Now lemma 

7.19 follows from lemma 5.15. 

 

 Thus 7.18 proves proposition 4.4(ii); the polynomials xλ ,π , l(T ) are given by 

 

7.20  xλ ,π ,l(T ) = 
aπ⋅l (T )
aπ(Tl )

.cλ ,π (Tl ) . 

 

 

 

8 Gelfand–Graev character for Gn (k), II.  

 To prove propositions 4.4 and 4.6 (and hence complete the proof of theorem 3.2) we 

need an explicit formula for the polynomials cλ ,π (T ) , which were defined rather indirectly in 
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section 6. For this purpose we shall make use of the polynomials Qρ
λ (T )  which were 

introduced in [GL, p.420], and later defined in a different way by D.E. Littlewood ([Li]; see 

[M], p.246).  
 The polynomials Qρ

λ (T )  ∈ Z [T ] are defined for all partitions λ ,ρ  of n , and satisfy 

the following orthogonality relations: 

 

8.1 
1

aπ (T )
Qρ

π(T )Qσ
π(T) = δρ ,σ

zρ

cρ(T )π |– n
∑ , f or all ρ,σ |− n ,  

and 

 

8.2 
cρ(T )

zρ
Qρ

π (T )Qρ
τ (T ) = δπ ,τaπ (T )

ρ|– n
∑ ,  for all π ,τ |− n . 

 

The coefficients appearing in 8.1 and 8.2 are defined as follows. 

 
  aρ(T)  = T |ρ|+2n(ρ ) (1 −

1
Ti

∏ )(1−
1

T 2 )…(1−
1

Tri
), 

  cρ(T ) = (Ti −1)ri

i
∏ , 

and        zρ  = iriri !
i

∏ , 

 
for any partition ρ = 1r1 2r2 …  of n . Notice that aρ(T)  ∈ Z [T ] and is monic; we have already 

used the fact that aρ(q)  is the order of the centralizer in Gn (k ) of a element of the class 

(t − 1)ρ  ([GL], p.409; [M], p. 181). 

 The scalar product •  ,   on the space of class-functions on Gn (k ) is defined by 
 
8.3  • F , ′ F  = 

1
a(c)

F{c} ′ F 
c

∑ {c }, 

where the sum is over all classes c  of Gn (k ), a(c)  denotes the order of the centralizer in 

Gn (k ) of an element of c , and c = c−1.  Define Un   to be the space of all class-functions F  of 

unipotent support , i.e. such that F{c} ≠ 0  � c = (t − 1)π  for some π |– n . As in section 6, we 

write F{(t −1)π} = F{π}. Then 8.3 becomes, when at least one of F , ′ F  belongs to Un , 
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8.4  • F , ′ F  = 
1

a(π)
F{π} ′ F 

π |− n
∑ {π}. 

 
8.5  Lemma  For each ρ |– n  define Qρ ∈Un  by setting Qρ {π } = Qρ

π (q) . Then for any 

F ∈Un  there holds 
 

8.6  F  = 
cρ q( )

zρρ|_ n
∑  • F ,Qρ  Qρ . 

Proof Use 8.2 to evaluate the right-hand side of 8.4.   

 

 The following proposition provides convenient rules for calculating the coefficients 
• F ,Qρ  of the “Fourier expansion” 8.6 of F  in terms of the Qρ . Let ρ = 1r1 2r2 … , 

σ = 1s12s2 …  and τ =1t12 t2 … be partitions, and recall the definition ρ + σ =1r1 +s12r2 +s2 …. 

  
 
8.7  Proposition   (i) If ρ |– l , σ |– m  then 

 
Qρ o Qσ = Qρ+σ . 

(ii) If ρ,σ |– n  then •Qρ ,Qσ  = δρ,σ .
zρ

cρ (q)
. 

(iii) If f ∈Ul  and g ∈Um  then for any τ |– l  + m  
 

8.8  •  f o g, Qτ  = 
τ

ρ,σ
 
  

 
  

ρ+σ=τ
∑ • f ,Qρ  •g ,Qσ , 

where the sum is over all pairs (ρ,σ)  such that ρ |– l , σ |– m  and ρ  + σ  = τ , and 
 

8.9  
τ

ρ,σ
 
  

 
   = 

ti !
ri !si !i

∏ . 

Proof (i) Use 6.4, together with lemma 4.4 of [GL], p.420. 

(ii) Follows at once from 8.4 and 8.1. 

(iii) Since both sides of 8.8 are linear in both f  and g , it is enough verify that 8.8 holds when 

f  = Qλ  and g = Qµ , where λ |– l  and µ |– m . This is a routine calculation using (i) and (ii). 

 

 



Final Version 5 March 1998 

25

 The next proposition shows the connection between the Gelfand-Graev character Γn  , 

the Qλ
ρ(q), and the characters of S(n) . 

 
8.10  Proposition  (i) •∆ n,Qρ  = 1, for all ρ |– n . 

(ii) •Γn ,Qρ  =  ερ , where ερ   = (−1)r2 +r4 +…  is the value of the alternating character ε  of 

S(n)  at the conjugacy class ρ  of S(n) . 
 
Proof (i)  By 8.4 •∆ n,Qρ   = 

1
aπ(q)π |_ n

∑ .∆n{π}.Qρ
π (q) . Using 6.2, this reduces to 

1
a(n)(q)

.qn −1(q −1).Qρ
(n) (q) , which equals 1, because a(n)(q) = qn−1(q −1), and Qρ

(n)(q)    

= 1 for all ρ |– n  ([GL], p.445, or [M] , p.248, Ex. 1). 

(ii) Let λ = (n1,…,nb ) be the composition of n  associated to a subset J   of I  = {1,…,n −1}. 

We consider the function ∆ J  = 
  
∆ n1

o … o ∆nb
, as in section 6. Using the evident extension of 

8.8 to several factors, together with (i), we find that •∆ J ,Qρ  = H( J ,ρ ).where 
 

8.11  H( J ,ρ ) = 
ri !

ri (1)!…ri (b)!i
∏

ρ
∑ , 

 

the sum being over all vectors ρ  = (ρ(1),…,ρ(b)) such that ρ( j) =1r1( j)2r2 ( j)… |– nj  for all 

j =1,…,b , and   ρ(1) + L+ρ (b) = ρ . Frobenius showed, in his classic paper [F] on the 

characters of S(n) , that H( J ,ρ ) is the value at class ρ  (of S(n) ) of the character χ J  = 

IndS(J )
S(n)(1S(J )) , where S(J) is the subgroup of S(n)  consisting of all permutations of {1,…,n} 

which leave fixed each of the subsets {1,…,n1}, {n1 + 1,…,n2}, …, {n1+…+nb−1 + 1,…,n}  

(see [F], p.149, or [Le], p.103). L. Solomon has proved a formula ([S], theorem 2), which 

gives as special case the following equation on characters of S(n)  
 
8.12  (−1)| J| χJ

J⊂I
∑  = ε . 

 

If we combine 8.12 with Deligne–Lusztig’s formula 6.6 for Γn , we get 
•Γn ,Qρ  = (−1)| J|

J⊂I
∑ •∆ J ,Qρ  = (−1)| J| H(J,ρ)

J⊂I
∑  = (−1)| J| χJ{ρ}

J⊂I
∑  = ερ .  

 

8.13  Corollary   For any J ⊂ I  and ρ |– n  there holds 
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  •Γ J ,Qρ  = •
  
Γn1

o…o Γnb
,Qρ  = H(J,ρ).ερ . 

 
Proof  This follows from 8.10(ii) and 8.8.  
 

 From now on we shall always write Fλ , H(λ , π)  and cλ ,π  instead of FJ , H(J,π )  

and cJ ,π , when λ |= n  is the composition associated to J . Notice that each of these is 

unchanged if λ  is replaced by any ′ λ ≈ λ , so we lose nothing if we assumed that λ |– n . 

From 8.13 and 8.6 we have  

 
 

8.14  Γλ {π} = 
cρ(q)

zρρ|_ n
∑ .H(λ ,ρ ).ερ .Qρ

π (q), 

 
for all λ ,π |– n . Notice that all the polynomials cρ(T ) are divisible by T  – 1. Therefore, if 

we write ˆ c ρ(T ) = 
1

T −1
.cρ(T) , we have from 8.14  and 6.7 

 

8.15  cλ ,π (T )  = 
ˆ c ρ(T )

zρρ|_ n
∑ .H (λ ,ρ).ερ .Qρ

π (T ) . 

 

  

 

9  Proof of propositions 4.4 and 4.6  

 We need to connect the numbers H(λ , π)  with the characters χ λ  of S(n) . Using 

Macdonald’s notation for symmetric functions (see [M]), we have equations 
 
 pρ(x) = H (λ ,ρ)mλ (x)

λ |_ n
∑  (see [F], p.149, or [Le], p.103). If we combine these with 

pρ(x) = χρ
λ

λ |_ n
∑ sλ (x) and sλ (x) = Kλµ

µ |_ n
∑ mµ (x)   (see [M], p.101; the Kτ λ  are the “Kostka 

numbers”) we get 

 
9.1  H(λ , π)  = χρ

τ

τ |_ n
∑ Kτ λ . 
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9.2  Proof of proposition 4.4  We want to calculate W(λ ,µ ) = • X1,n (1,λ ), Iµ . From 7.2, 

X1,n (1,λ ) is zero on all classes except the classes (t − x)π , x ∈M1 = k× , π |– n . Moreover, for 

fixed π , X1,n (1,λ ){(t − x)π } = cλ ,π (q), for all x ∈M1 . From 4.5, Iµ {(t − x)π } = 
1
zρρ|_ n

∑ .Qρ
π(q).χρ

µ  for all x ∈M1 . Then it follows easily from 8.15 that 

 

9.3 • X1,n (1,λ ), Iµ  = (q –1)•
ˆ c ρ(q)

zρρ|_ n
∑ .ερ . H(λ ,ρ ).Qρ , 

1
zσσ |_ n

∑ .χσ
µ .Qσ , 

 

and by 8.7(ii) this reduces to 
1
zρ

.ερ .H(λ ,ρ). χρ
µ .

ρ|_ n
∑  Since ερχρ

µ = χρ
˜ µ , where ˜ µ  is the 

conjugate of µ  ([Le], p.135), we get from 9.3 
 

9.4  W(λ ,µ ) = 
1
zρ

. Kτ λ .χρ
τχρ

˜ µ 

ρ,τ |_ n
∑   = K ˜ µ λ . 

But the matrix (Kλ µ )  has integer coefficients and is unimodular ([M], p.101), and therefore 

the same  is true of the matrix (W(λ ,µ )) = ( K ˜ µ λ ).  

 

9.5  Proof of proposition 4.6   If this proposition is false, there exist complex numbers hd,λ , 

not all zero, such that 
 
9.6  hd,λ Xd,n (1,λ )

λ |− n /d
∑

d|n
∑  = 0. 

 Let d0  be the largest divisor of n  such that hd0 ,λ  ≠ 0 for some λ |–
n

d0
. Now take any  

f  ∈ Φ(k)  such that d( f ) = d0 , and any σ |–
n
d0

.  

 Let d  be any divisor of n . If d >d0 , then hd,λ  = 0, by the definition of d0 . If d <d0 , 

then d( f ) = d0  does not divide d , hence Xd ,n (1,λ ){ f σ } = 0 by 4.1(i). Therefore if we 

evaluate 9.6 at the class f σ , we get 
 

9.7  hd0 ,λ Xd,n (1,λ )
λ |− n /d0

∑ { f σ } = 0,  for all σ |–
n
d0

. 

 

But 7.18 tells us that Xd0 ,n(1,λ ){ f σ} = cλ ,σ (qd0 )  (notice that d( f ) = m = d0 , hence σ = π ), 

and by 8.16 the matrix cλ ,σ (qd0 )( ) is non-singular. Thus 9.7 implies that hd0 ,λ  = 0 for all λ . 

This contradiction proves proposition 4.6.  
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Appendix: some rλ (T)   These are found by the inductive construction in section 5. Values 
of the characters Xd ,n (ψ ,λ )  are calculated from formulae 7.18 and 8.15 . 

 
λ    (1)  (2) (12)  (3)  (21) (13)  (4) (31) (22) (212) (14) 
rλ (T)     1   –1   0 2–T   –1   0 T –2   1   0    0   0 

 
λ                    (5)                    (41) 
rλ (T)       4–3T –T 3+2T 5–T 6       –3+2T –T 2+T 3+T 4–T 5 

 
λ                  (32)         (312)      (221) (213)  (15) 
rλ (T)     -3+T +T 2+T 3–T 4   2–T +T 2–T 3      2–T 2   –1    0 
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