On the volume of the set of mixed entangled states
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The question of how many entangled or, respectively, sep-
arable states are there in the set of all quantum states is con-
sidered. We propose a natural measure in the space of density
matrices ¢ describing N—dimensional quantum systems. We
prove that under this measure, the set of separable states pos-
sesses a nonzero volume. Analytical lower and upper bounds
of this volume are also derived for N=2x2,and N=2x3
cases. Finally, numerical Monte Carlo calculations allow to
estimate the volume of separable states providing numerical
evidence that it decreases exponentially with the dimension of
the composite system. We have also analyzed a conditional
measure of separability under the condition of fixed purity.
Our results display a clear dualism between purity and separ-
ability: entanglement is typical for pure states, while separ-
ability is connected with quantum mixtures. In particular,
states of sufficiently low purity are necessarily separable.
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L INTRODUCTION

The question of quantum inseparability and entangle-
ment of mixed states has attracted much attention re-
cently. This problem is, by far, more complicated than
the analogous one for pure states [1] an involves subtle
effects like “hidden nonlocality” [2] or “distillation of en-
tanglement” [3,4]. Generally speaking, one is interested
in inseparable states as the states containing Einstein-
Podolsky-Rosen (EPR) correlations. In fact, all insepar-
able mixed states have nonzero “entanglement of form-
ation” [5] which means that to build them a nonzero
amount of pure entangled states is needed. In particular
if a source emits pairs of particles in unknown pure states,
so that they form a quantum ensemble described by an
inseparable density matrix, then it follows that the source
must emit some entangled pairs with a nonzero probab-
ility. In this sense the inseparable mixed states can be
vieved as entangled in correspondence to the entangled
pure states.

One of the fundamental questions concerning those
subjects is to estimate how many entangled (disen-

tangled) states exist among all quantum states. More
precisely, one can consider the problem of quantum
separability—inseparability from the measure theoretical
point of view, and ask about relative volumes of both
sets. There are three main reasons of importance of
this problem. The first reason, of some philosophical
implications, may be contained in the questions “Is the
world more classical or more quantum? Does it contain
more quantum correlated (entangled) states than clas-
sically correlated ones?”. The second reason has a more
practical origin. Analyzing some features of entangle-
ment one often has to rely on numerical simulations. It
is then important to know, to what extend entangled
quantum states may be considered as typical. Finally,
the third reason has a physical origin. Physical mean-
ing of separability has been recently associated with the
possibility of partial time reversal [6] (see also [7]). Sep-
arable states of composite systems allow time reversal in
one of subsystems, without loosing their physical relev-
ance. However, for a system of a dimension N > 8 the
fact that a state admits partial time reversal is not suf-
ficient to assure separability, and counterexamples have
been found [8]. Moreover, it has been recently shown
that none of those counterexamples can be distilled to
a singlet form [9]. Therefore, it seems pertinent to in-
vestigate how frequently such peculiar states appear. At
first glance it seems quite likely that such states form a
set of measure zero, and that from a measure theoretical
point of view the set of separable states and the states
that admit partial time reversal have equal volumes.

In this paper we make an attempt to answer at least
the two first of the above formulated questions. We also
give a qualitative argument why the last conjecture fails.
To this aim we propose a simple and natural measure on
the set S of density matrices acting on a finite dimen-
sional Hilbert space 7{. Using this measure we estimate
the relative volume of the set of separable states Sgep.
The upper (lower) bound on this volume is obviously the
lower (upper) bound on the relative volume of the set of
inseparable (entangled) states Singep = S\ Ssep-

The paper is organized as follows. Section II contains
our definition of the natural measure in §. In Section
IIT we recall basic definitions of separable states, and



prove that for any compound system &, the volume of
Ssep is nonzero regardless the number of subsystems it
contains and its (finite) dimension. This is achieved by
proving the existence of a topological lower bound of this
volume. Better lower bounds are also calculated analyt-
ically by analyzing the relation between the purity of the
state and its separability. In Section IV analytic upper
bounds on the volume of S, are found. The study of
inseparable states with positive partial transposition is
presented in Section V. In Section VI we present the es-
timates on the volume of separable states obtained by the
Monte Carlo numerical simulations. This section is self-
contained, and includes also a simplified corollary of the
results of Sections II-V, and a discussion of the dualism
between purity and separability. We conjecture that the
volume of separable states decreases exponentially with
the dimension of the Hilbert space. Finally, Section VII
contains our conclusions and open questions.

The reader should note the that the Sections II-V have
a rather formal mathematical character. The results of
these Sections provide a rigorous base for the numerical
calculations of Section VI, but the detailed knowledge of
the proofs is by no means necessary to understand the
main message of the paper. The reader who is not inter-
ested in such rigorous proofs of the presented results, may
well skip Sections ITI-V, and go straight to the Sections
VI and VIL

II. NATURAL MEASURE OF THE SET OF
QUANTUM STATES

Let us consider a set of states in a N—dimensional Hil-

bert space H. In particular, # may describe a compos-
m

ite system with 71 component subsystems: H = Hi,
=1
where []%, N; = N.

An operator p acting on H describes a state if Trg =1
and if o is a positive operator, i.e.

Tr(eP) 20 1)

for any projector P. Any state represented by a dens-
ity matrix ¢ can in turn be represented by its spectral
decomposition:

N
Q=ZAan

n=1

N
S An=1, A >0, 2)
n=1

where P, form a complete set of orthogonal project-
ors. Thus the set of states can be viewed as a Cartesian
product of sets:

S=PxA. (3)

The set P denotes the family of complete sets of or-

thonormal projectors {P;}¥,, ¥ P, = I, where I

is the identity matrix. There exist the unique, uniform

measure ¥ on P induced by the Haar measure on the
group of unitary matrices U(N). Integration over the set
P amounts thus to the integration of the corresponding
angles and phases in N-dimensional complex space that
determine the families of orthonormal projectors (or, al-
ternatively speaking the unitary matrix that diagonalizes
o)
The symbol A in Eq. {3) represents there the set of all
A,’s, which is a subset of the N — 1 dimensional linear
submanifold of real space RY, defined by the trace condi-
tiom, 271?:1 A, = 1. Geometrically, A is defined as a con-
vex hull (i.e. a set of all convex combinations of the edge
points) A = conv{x; € RV : x; = (0, ..., 1i,...,0),% =
1,...,N}. Since the simplex A is a subset of the N —1
dimensional hyperplane, there exist a natural measure on
A which is defined as a usual normalized Lebesgue meas-
ure Lxy_; on R¥N—1. More specifically, any measurable
function f(.) of A;,...,Ax can be integrated with this
measure:

1 1 1 N
V—s/odAl.../; dANf(Al,...,AN)6(ZI:A,.—1)=

1 1 1 N-1
L (YR (R RS TS SRR
s Jo 0 o

where the normalization constant Vg equals to the
volume of the set A in RM~!, whereas §(.) denotes
the Dirac’s delta distribution. The two above discussed
measures induce a natural measure on 8:

H=v X [,N_]_. (5)

III. VOLUME OF THE SET OF SEPARABLE
STATES

A, Preliminaries - separable states

Throughout this paper we shall assume that the Hil-
bert space of the considered quantum system has an ar-
bitrary but finite dimension. To make further consider-
ations more clear, we start from the following notation
and definitions. Recall first that the space A of operators
acting on 7 constitute a new Hilbert space (a so called
Hilbert-Schmidt space) with the scalar product:

(A, B) = Tx(B' A). (6)

It induces a natural norm (a trace norm):

|14]] = 4/ Tr(Al 4). (7)

which, according to the condition dim# < oo is topolo-
gically equivalent to all other norms on .A, in particular
to the norm ||A||" = Tr|A|. Furthermore, let us recall
that:



Definition 1 The state g acting on the Hilbert space
H =M, ® Ha is called separable 1 if it can be approzim-
ated in the trace norm by the states of the form

k

0= pioi®d: (®)

=1
where p; and §; are states on 11 and Ha respectively.

Usually one deals with a finite dimensional Hilbert space
dim# = N. For this case it has been shown [8] that
any separable state can be written as a convex combina-
tion of finite product pure states, i.e. in those cases the
“approximation” part of the definition is redundant.

It has also been shown [11] that the necessary condition
for separability of the state p is positivity of its partial
transposition g72. The latter is defined in an arbitrary
orthonormal product basis |f;) ® |f;) as a matrix with
elements:

Qz‘:m’,nn' = (fml ® <fm'l Tzl ) ® lfn’) = @mn',nm’- (9)

Although the matrix o’ depends on the used basis, its
eigenvalues do not. Consequently, for any state the above
condition can be checked using an arbitrary product or-
thonormal basis2. For systems of dimensions 2 x 2 and
2 x 3 the partial transposition condition is also a sufficient
one [10] and thus the set of separable states is completely
characterized by this condition.

The definition of separable states can be easily general-
ized to systems composed of more than two subsystems:

Definition 2 The state p acting on the Hilbert space
H= g H, is called separable if it can be approrimated
I=1

in the trace norm by the states of the form

o= Epz ® o (10)

i=1
where g} are states on H; .

Straightforward generalization of the proof about decom-
position from Ref. [8] gives us the possibility of omitting
the approximation part in the definition:

Lemma 1 Any separable state ¢ of a system composed
by m subsystems can be writlen as:

k
0= piPiroay k< N? (11)

i=1

1The presented definition of separable states is due to
Werner [1], who called them classically correlated states.

2 As the full transposition of a positive operator is also pos-
itive, positivity of the partial transposition o2 is equivalent
to positivity of the partial transposition g™ (defined in ana-
logous way).

where P}, are pure product states having the m-
m

decomposable form ® P,, where P, are projectors acting
=1

on H;.

It is worth mentioning that minimal decompositions with
k = N can be always found for N = 4 [6,12].

B. Existence of nonzero lower bound for the volume
of separable states

‘We shall prove now that the volume of the set of sep-
arable states is nonzero independently of the dimension
of the Hilbert space and the number of subsystems m
composing it.

For our purposes we first prove the simple lemma:

Lemma 2 If the hermitian operator A € A satisfies
m . m

(4, _®1 P} = 0 for any product projectors _®1 P;, then
= 1=

it is a trivial zero one.

Proof.- Let us consider an arbitrary orthogonal (in the
sense of scalar product (6)) product hermitian basis in
the space of operators A, i.e. a basis such that any of its
elements is a product of hermitian matrices (for instance,
in the 2 x 2 case the basis could consist of products of
Pauli matrices o, ® o, with n,m =0,1,2,3; 50 =1 ).
Hermicity assures that any element of the basis can be
written as a real combination of product projectors. Any
coefficient of the expansion of A in this basis is given
by the scalar product (6) of A and the corresponding
basis element. From the genera.l assumption of vanishing

of formulas of type (4, ® P;) = 0, we obtain immedi-

ately that all expansion coefﬁments must vanish. Hence
A must be equal to the zero operator.
We can now propose the following theorem :

Theorem 1 Let A, be a simplex defined as A, =
conv{y; e RN :yi = ex; + (1 —€)ap;i = 1,...,N; z1 =
(F7+-- 7)) Let define a set Q. = P x A.. Then there
ezists some positive € such that Qe C Sjep, where Ssep
represents the set of separable states.

The meaning of the above theorem is straightforward.
It says that all states in the sufficiently small neighbor-
hood of the maximally mixed state o; = #I (which
is represented in A as a point zy = (4, ..., 7) for any
chosen spectral decomposition of unity) are necessar-
ily separable. Note that by definition, the simplex A,
has edges € times smaller than A, so that its volume
(D) = eV 1u(A) = V1, since according to our nor-
malization p(A) = 1.

Proof .- Suppose, conversely that for any positive € the
set Q. contains some inseparable state gingep. It is easy to
see that then there must exist a sequence of inseparable
states ¢f,,., convergent to the maximally mixed state

1. According to Lemma 1 and Theorem 1 from Ref. [10]



there exist a sequence of operators A, separating the
states of},,., from the state g; in the sense that for any
n it holds: (An, 0f,.c,) < 0 and (4y, or) > 0. Moreover,
from the quoted results it follows that (4,,c0) > 0 for
any 0 € S,ep. Let us normalize the operators A, by
introducing 4, = A./||Az|| (||An]] = /(ATA)). These

operators satisfy:

(fiﬂ, Oinsep) < 0, (fin,a) >0 forany o € Ssep. (12)

In particular it holds (A, g7} > 0. ;From construction
the sequence A, belongs to the sphere in the finite di-
mensional space A. As the latter is a compact set, the
sequence includes some subsequence A,y which is con-
vergent to some nonzero operator A, (||A.|| = 1). ;From
(12) and continuity of scalar product it follows that the
limit operator also satisfies:

(A4,0) >0 for any o € Ssep - (13)

Now using (12) and the Schwarz inequality we obtain:

0 < (Angxy, 01) = (Any, 01 — 9?,52,,) + (Angrys Q.?,ngp)
< (Angrys 01 = 652) < (1 Auiwylller — o5, |
= lier — o550, I (14)
Taking the limit with respect to k£ we obtain:
’I‘I'A-* = (A*, QI) = kli)n:o<jn(k), QI) =0. (15)

Hence A, is traceless, which is _in contradiction with
(13). Indeed, if the operator A. is to be nontrivial
(the construction implies its unit norm) then there must

m .
exist some product state Pproq = & P* such that
i=1

(Ay, Poroa) # 0 (see lemma 2). Since, on the other hand,
one requires the trace of A, to vanish, one obtains that
(Ax, Pprod) = —(A«, I — Pproa). Hence, one of the separ-
able states 0’ = Pprod, 0" = 5 (I — Pproa) violates the
condition (13), which gives the expected contradiction.
The above theorem leads immediately to the following
one:

Theorem 2 The measure ((Ssep) of separable states is
a nonzero one. In particular there exists always some
€ > 0 such that the following ineguality holds

#(Ssep) 2> ,11,(er) =Vl > 0. (16)

As an illustration of the above theorem, let us consider
the 2x2 or 2x 3 cases (N = 4, 6) for which separability is
equivalent to the positivity of the partial transposition.
It is easy to see that the spectrum of the partially trans-
posed density matrix must belong to the interval -, 1].
Hence any state of the form p = (1 — p)% + pg, for an
arbitrary § and p < 2/(2+ N), has a positively defined

partial transposition, and thus is separable for the con-
sidered cases. As the maximal value of p is 1/3, or 1/4,
it means that the value of € in the above theorem can be
estimated just by 3, or  for N = 4,6, respectively. In
the next section we shall show that those bounds can be
significantly improved.

C. Purity and separability

As we have shown, all states in the small enough neigh-
borhood of the totally mixed state gy = I/N are sep-
arable. On the other hand, we know that in the sub-
space of all pure states, the measure of separable states
is equal to zero [2]. It is, therefore, interesting to invest-
igate the relationship between entanglement and mixture
of quantum states. A qualitative characterization of the
degree of mixture is provided by the von Neumann en-
tropy Hy (o) = —Tr(gln p). Another quantity, called par-
ticipation ratio:

R(g) = a7

¥ (@)

is often more convenient for calculations. It varies from
the unity (for pure states) to N (the totally mixed state
gr) and may be interpreted as an effective number of
states in the mixture. This quantity, applied in solid
state physics long time ago [15], is related to the von
Neumann-Renyi entropy of order two, Ha2(g) = In R(p).
The latter, called also purity of the state, together with
other quantum Renyi entropies Hy(¢) = (In[Trg?])/(1—q)
is used, for ¢ # 1, as a measure of how much a given
state is mixed. It has also been applied for the deriva-
tion of some necessary conditions of separability in Ref.
[16]. In Section VI we shall demonstrate, using numerical
simulations, that the participation ratio (and other von
Neumann-Renyi entropies) allows to establish a dualism
between purity and separability of the states of compos-
ite systems. In this subsection we use it to calculate a
natural lower bound on the volume of separable states
for dimensions N = 4, 6.
For this purpose consider the following lemma:

Lemma 3 If the state p satisfies
R(e)>N-1 (18)

where N is the dimension of H, then o' is positive
defined, i.e. its spectrum s(o™2) belongs to the simplex

A.

Proof.- Let us denote by By (r, P) the ball in the space
RY with radius r and center P and by Sy(r, P) its sur-
face. The condition (18) is invariant with respect to the
partial transposition, because Tr(g?) = Tr((072)?). That
ool T : — 1 —
implies that s(¢?) € Bn(r,z1) with r = TN =
(%,.»%). Let define the (N — 1)-dimensional linear
manifold My_, = {x = (ml,...,:cN),vazl z; =1} We



only need to show that its intersection with the ball is
included in the simplex A, i.e. that the new (N — 1)-
dimensional ball By,_, = By(r,z1) N My_; C A. This
can be seen in the following way. It follows from the
high symmetry of the sphere and the invariance of the
simplex under cyclic permutations of coordinates, that
the center of this intersection is again zy. Hence the
radius 7' of By_; can be calculated immediately by tak-
ing the distance from an arbitrary point from the sur-
face .S’N(r, zl) N Mp_1 (say, for example from the point
0, = N Tr e N 1) to the pomt z1). It is elementary to

show that r" =1/4/N(N —1). On the other hand, one
can calculate the ma.xima.l radius " of the ball of the
type By_,(r",2z1) included in A by calculating the min-
imal distance of zy to the boundary of A. To this aim
we have to minimize (r")2 = 3N (z; — 1/N)? with the
constraints Ele z; = 0, and zo = 0. Using Lagrange
multipliers we obtain immediately " = 7', and hence
Bpy_3 belongs to A, which ends the proof.

Now using the explicit expressions for the volume of a
(N — 1)-dimensional ball (Vy (r) = W#TN—I/P(!!;—I)),
and for the volume of the simplex A belonging to the
manifold My_; (Va = vN/(N —1)!), one can obtain
the lower bound of the volume of states with positive
partial transposition,

(N - 1)ir" T

NE(WN - )TN u

T™N =

Recalling that for Hilbert spaces of dimensions N = 2x 2
and N = 2 x 3 the states with positive partial transpos-
ition are the separable states, Eq. (19) leads directly to
the following theorem:

Theorem 3 If the participation ratio satisfies R(g) >
3 (R(g) > 5) for N = 4 (N = 6) then the state g is
separable.

Therefore, the measure p(S;ep) of separable states is re-
stricted from below by the inequality 1(Ssep) > L\/_

8x2 ~
0.302 for N = 4a.nd625\/__0056forN 6.

IV. UPPER BOUNDS ON THE VOLUME OF
SEPARABLE STATES

In this section we seek for upper bounds on the volume
of Viep, or, equivalently, lower bounds on the set of in-
separable states Vjnzep. Several necessary conditions for
separability have been recently established with the aid
of positive maps. We should use them to determine an
upper bound on V,.,. As we shall see, these conditions
are in some way complementary and can be combined to
obtain a better estimate of the upper bound of V..
Our first estimate relies on the positivity of the par-
tial transposition. It is valid for any dimension, but
we shall apply it to composite systems of dimension

2x2. Note that if a state has a partial transposition
which is not positively defined, then the state is neces-
sarily inseparable. Before proceeding further we should
first recall the Schmidt decomposition of a pure state
|‘I’) € H = Hi ® Hg, dimH; = N;, dimHy = N,
N1 x Ny =N,

min(N1 ,Nz)

m= >

i=1

aile;) ® | fi), (20)

where |e;) ® |f;) form a bi-orthogonal basis (e;le;) =
(filf;) = dij, and 0 < a; < 1 denote the coefficients of the
Schmidt decomposition with the condition Y, a? = 1. It

is straightforward to see that P‘I"fz = (|¥){¥|)™2 has ei-
genvalues a? for 4 = 1,...,min(Ny,N2) and *a;a; for
i #J.

We can now state our first lemma:

Lemma 4 If in the range of o state p there exists |¥)
such that

1
1+ maxiz;(aia;)’

A= (T~ E)~ (21)

then g is inseparable.

Proof.- According to Ref. [17], any state ¢ can be ex-
pressed as:

0=APy +(1-4)g, (22)

where Py is a projector onto |¥) and g is a (positively
defined) state. Thus:
o™ = AP + (1 - A)5™. (23)
Recall that for any Ny, N,, the eigenvalues of 372 belong
to the interval [—1/2,1]. Let |{¥,.,) denote the eigen-

vector corresponding to the minimal eigenvalue of Po2:
—maxX;; (aiaj). We have thus

(‘I’neglgTzl'I’ﬂm) < —A(max;z;(aia;)) + 1 - A <0, (24)

because (¥ neg|§T [¥peg) < 1. The above inequality im-
plies that o2 is not positively defined when condition
(21) holds, and therefore g is not separable. Note, that
the lemma (4) can be in particular applied to the eigen-
vectors of p:

Lemma 5 If p has an eigenvector |¥) corresponding to
the eigenvalue A such that the condition (21) holds, then
o 18 inseparable.

The eigenvalue A can fulfill the above condition if and
only if it is the largest eigenvalue, because it must be lar-
ger than 2/3. The corresponding normalized eigenvector,
however, is absolutely arbitrary, and according to invari-
ant measure on the group it can be generated simply by
a uniform probability on the N dimensional unit sphere.



This implies, as we shall see below, that the Schmidt coef-
ficients a; are also absolutely arbitrary and distributed
uniformly on the octant of the v/N-dimensional sphere.

Consider the N; = Ny = K case. Any vector in
N = K?-dimensional space from the unit sphere can
be represented by a row of complex numbers z; with the
condition va |z2| = 1. In any product basis, we can
view it as a K x K matrix Cy; with4,j=1,..., K, and
with the condition Tr(CtC)) = 1. We seek the uniform
distribution on the set of such matrices. But from the
polar decomposition theorem any matrix of such a type
can be represented in the form:

C=U'DU (25)

where U’ and U are some unitary matrices, while D is di-
agonal matrix with nonnegative elements (eigenvalues).
These eigenvalues are nothing else but a;. The reason is
that the above form, which is the analog of the spectral
decomposition of the hermitian matrix, is at the same
time the Schmidt decomposition written in the matrix
notation. In our case (taking into account the above
mentioned trace condition), the spectrum of D is repres-
ented by the point belonging to the octant area of the
sphere. These leads to the measure

' (¥) = v(U'(K)) x v(U(K)) x p(D), (26)

where the first two measures are Haar measures on the
unitary group U(K), and the last one is the uniform
(Lebesgue) measure on the octant of the ball in K di-
mensional space. Similar results can be straightforwardly
generalized for the cases N; # Nj.

If one calculates now the measure (26) for |¥), and
combines it with the uniform measure on the simplex ua,
one could estimate an upper bound of separable states:

P'(Ssep) <1-
/ O(max A; — (1 + maxies (aia;) ™) ' (®)dpa, (27)

where © denotes the Heavyside function. The double
integration over the unitary groups that contains u'(¥)
can be easily performed, since neither A; nor a; depend
on the direction of |¥). This is the first qualitative ar-
gument that the measure of inseparable states does not
vanish.

Moreover, recently [18] a new separability condition
have been introduced with the aid of positive maps con-
dition [10]: if the state g is separable then I ® g1 — o
must be positive, where p; is the reduced density mat-
rix. It implies for any |¥) that Tr((/®g1)Pg) > Tr(oPy).
Straightforward estimation tells us that for any separable
state it must hold that (¥|g|T) < m?,xa?, where a; are

again the Schmidt decomposition coefficients of ¥. That
implies a lemma analogous to lemma (4).

Lemma 6 If in the range of a state o there exists |¥)
such that

A =(¥|e|¥) > max af, (28)

then o is inseparable.

This lemma is neither stronger nor weaker than the
lemma (5). If we apply it to eigenvectors of g, however,
the relevant eigenvalue need not be the maximal. In the
case 2 X 2 we can combine both conditions (Lemma 5-6)
to obtain a better estimate on the upper bound of u(Sep)

4 1 1—A; 1-A1—Ag
1— u(Sse >—/dA/ dA/ dA
p‘( IJ) - VAVact 0 1 0 2 o 3
/ da1/ daz©®(A; — (1+ azaz)™)
a1>0 az>0
O(A; — max(af, a3))6(af + 03 — 1), (29)

Notice that in the above expression the first three integ-
rals are over the eigenvalues of ¢ that are located in the
simplex A, whereas the remaining two integrals are on
the eigenvalues of D from the octant area of the sphere.
The integrals can be calculated analytically but the res-
ulting expressions are very complex. After a tedious, but
straightforward calculation we obtain:

B(Ssep) < 0.863 (30)

In general for an arbitrary dimension N = N3 x Nz and
K = min(N1,N3); 1 — p(Ssep) can be estimated from
below by a bound b(N;, N3) using the above method.
This bound, on the other hand, can be estimated from
above by the volume of the “corners” of the simplex A of
the sides 1 — % regardless the uniform measure on pure
states by putting it equal to unity there. This follows
from the fact that the condition (28) can only then be
fulfilled, when an eigenvalue of g is larger than max a >

1/K. The relative volume of such corners equals N(1 —
L)N—-1_ Keeping in mind the formula (20) the above

K
simple estimation leads to the corollary:

Corollary 1 Consider a quantum system € H; ® Ha,
where dimH, = Ny, dimHs = Na, N = N; x Ny and
K = min(Ny, N»). Then using Lemae {-6 the volume of
separable states is restricted from above by:

F'(Ssep) < 1-b(N1, Nz) (31)

where:

AR (32)

The volume (32), however, converges asymptotically to
the value 1 as Ny, N» grow, so that in the limit of large
N we get a trivial result u(Ssep) < 1. At the same time,
the numerical results which we shall present subsequently
strongly suggest that there should exist an upper bound
for u(Ssep) converging to zero. So far, the rigorous proof
that in the limit of higher dimensions u(Ssep) — 0 re-
mains an open problem.



V. INSEPARABLE STATES WITH POSITIVE
PARTIAL TRANSPOSITION

As it was mentioned in the introduction for N > 8
there are states which are inseparable but have posit-
ive partial transposition [8,10]. Moreover, it has been
recently shown that all states of such type represent
“bound” entanglement in the sense that they cannot be
distilled to the singlet form [9]. The immediate question
that arises is how frequently such peculiar states appear
in the set of all the states of a given composite system.
This question is related to the role of time reversal in the
context of entanglement of mixed states [6,7] Below we
provide a qualitative argument that the volume of the set
of those states is also nonzero:

Lemma 7 For N > 8 the set of inseparable states with
positive partial transposition includes a nonempty ball.

Proof.- Consider the two sets of quantum states for
some composite system: the set of separable states Ssep
and the set of states with positive partial transposition
T. The first of them is convex and compact. The second
one is convex set 3. Since positivity of partial trans-
position is necessary for separability, we have obviously
Ssep € T. Consider any state o belonging to T but not
t0 Ssep (We know that for N > 8 such states exist). Let
us take the ball B(r, p;) around the maximally chaotic
state gy such that the whole B(r, o;) belongs to Ssep (the
ball can be in principle defined in an arbitrary norm as
all norms are topologically equivalent, c.f. section III).
Obviously such a ball exists; otherwise gy would belong
to the boundary of S,ep . It can be shown that the latter
would contradict the fact of a nonzero volume (see sec-
tion III). Consider the sequence of balls obtained from
B(r, or) by a translation of the center 7, and a rescaling:
B, = B(%,(1—1)o+1p;). Some of B,’s have to include
no separable states. Otherwise, if any B,, included some
separable states e.g. 5%, by virtue of compactivity of
Sgsep, the state o would be separable as the limit of a se-
quence of separable states pi?P. Hence, some By, do not
belong to set of separable states. But on the other hand,
any state from B, is a convex combination of elements
of T. Thus the whole ball B,,, belongs to T', as the latter
is a convex set. In this way we have shown that there is
some ball B,,, C T and does not intersect with S;¢p. But
the inseparable states with positive partial transposition
are just the ones belonging to T and not to Ssep. This
ends the proof of the lemma.

3In fact it is also compact but we shall not need this property
here.

VI. NUMERICAL RESULTS

In this section we provide rather precise estimates of
the measure p(Ssep) for N = 4, 6, as well as upper bounds
of such measure for N > 6. Our results are obtained nu-
merically. This section is self-contained, in the sense that
can be read directly without passing though the more
technical sections ITI-V. It also includes the results ob-
tained in these previous sections.

A. Estimation of volume of separable states

Our goal is to estimate the volume of the set of sep-
arable states p(Ssep). For simplicity we discuss states
consisting of 2 subsystems. Any state describing a mix-
ture of N; and No—dimensional subspaces may be repres-
ented by a positive defined (N1 N2) x (N1.Nz) hermitian
matrix p with trace equal to unity. ¢’ denotes, as be-
fore, the matrix partially transposed with respect to the
second subsystem. As mentioned previously, if g is sep-
arable, then necessarily o™ is positive [11]. Moreover,
for the simplest 2 x 2 and 2 x 3 problems this condition is
also a sufficient one [10], which is not true in the general
case N > 8 [8,10]. Therefore, the set of separable states
is a subset of states with positive partial transpositions.
Thus, in order to estimate the volume of separable states
from above, it is sufficient to find the volume of the set
of states with positive partial transpositions.

Let us remind that according to the section IT any state
(any density matrix) can be represented in a family P of
complete sets of orthogonal projectors, and the simplex
A representing all possible spectra,

S=PxA. (33)

On the other hand, any element of P can be represented
by a unitary transformation, and any element of A, as a
diagonal matrix D with the matrix elements A;; = d;; A4,
such that they fulfill Zi1 A; = 1. Such representation
corresponds to the form:

o=UDU". (34)

Thus, a uniform distribution on the set of all density
matrices represented by (33) is constructed naturally by
postulating an uniform distribution on unitary trans-
formations U(N) (the Haar measure), and an uniform
distribution on diagonal matrices D.

We have calculated numerically the volume of the set
of matrices with positive partial transpose, and we have
estimated in such a way the volume of the separable
states. An algorithm to genérate random U(/N) matrices
was recently given in Refs. [13,14]. The random diag-

onal matrix D fulfills that 3%, A; = 1, so the vector

A = (A4,...,An) is localized on the N — 1 dimensional



simplex A (see section II). Physically speaking, no com-
ponent of this vector is distinguished in any sense. Ran-
dom vectors A are thus generated uniformly on this sub-
space according to the simple method described in the
Appendix A.

The numeric algorithm is then straightforward: firstly
we generate random density matrices of any size N =
N; x N, secondly we construct their partial transpos-
itions and finally we diagonalize them and we check
whether their eigenvalues A;;¢ = 1,..., N are all positive.
This procedure has been repeated several millions times
in order to obtain the accuracy of the order of 1/1000.

We should recall that in previous sections we have
obtained rigorous analytical lower and upper bounds of
#(Ssep), i.6. we have proven that 0 < u(Ssep) < 1. The
lower bounds follow from the fact that the states suf-
ficiently close to the totally mixed state are separable
for all N. We have also shown that states which have
sufficiently large participation ratio (i.e. which are suffi-
ciently mixed) have a positive partial transpose, and are
thus separable for V = 4,6. On the other hand, the up-
per bounds come from the fact that matrices with large
eigenvalues corresponding to an entangled eigenvector,
are necessarily inseparable. Let us denote the measure
1#(Ssep) in the N7 x N3 case by P, xn,. Our analytical
bounds for the cases 2 x 2 and 2 x 3 are summarize below:

0.302 < Py < 0.863,
0.056 < Pyx3. (35)

Our numerical results agree with these bounds but to our
surprise the probability that a mixed state p € Ha X Ha
is separable exceeds 50%. The results are

Pyys ~0.632+0.002 and Pry3 ~ 0.384 +0.002. (36)

For higher dimensions our results are summarized in Fig-
ure 1. This figure displays the probability Py that the
partially transposed matrix o”2 is positive as a function
of N=N; x Na. For N =4 and N = 6 this is just the
required probability of encountering a separable state,
while for N > 6 it gives an upper bound for this quant-
ity:

Due to symmetry of the problem Py, x v, must be equal
to Pn,xn,- Numerical results strongly suggest that this
quantity depends only on the product N = N; x N,
eg. Poxg = Psxsa. Moreover, the dependence can be
well reproduced by an exponential decay. The best fit
gives Py ~ 1.8¢7 928N, We conjecture, therefore, that
the measure of separable states decreases exponentially
with the size of the system in consideration.

B. Purity versus separability

Here we would like to illustrate the physical connection
between the participation ratio and entanglement, which
was already discussed in Section III.C. Recalling that the

participation ratio: R(g) = 1/Tr{g?), gives a characteriz-
ation of the degree of mixture and can be interpreted as
the effective number of states on the mixture. We have
demonstrated that if the state p has a sufficiently large
participation ratio, or equivalently a sufficiently low von
Neuman—Renyi entropy Ha(g) = In R(p), then it partial
tranposed is always positive. This holds for any arbitrary
N, so in particular it means it is separable for N = 4, 6.
A more precise estimate can be performed numerically.

For example consider the N = 4-dimensional Hilbert
space. A manifold of the constant participation ratio R
is given by the ellipsoid in the space of eigenvalues:

A%+A§+A§+(1—A1—A2—A3)2=1/R.

The probability distribution P(R) obtained numerically
using the natural uniform measure on the 3-dimensional
simplex is plotted in Fig 2(a). It corresponds to the re-
lative volume of the cross-section of a 3D hypersphere
of radius R~/ centered at (0,0,0,0) with the simplex
defined by a condition, A; + Ay +As+As=1. For N =4
and R > 3 we obtain P(R) = 6mrR~2,/1/R - 1/4.

We have generated randomly a million points in the
3D simplex, computed the corresponding participation
ratio, rotated the corresponding state by a random unit-
ary matrix U and checked, whether the generated state
is separable. This procedure allows us to investigate the
dependence of the probability of the separable states on
the participation ratio. Our numerical results are sum-
marized in Fig 2 (b), and again, are fully compatible
with the theorems and lemmas obtained in the previous
sections.

Similar results and compatibility are obtained for the
case N = 6. In this case we deal with a 5D simplex. Nu-
merical data, displayed in Fig.3, support the general fact
that the quantum states with R(p) > N — 1 have pos-
itive partial transpose (i.e. are separable for N = 4,6)
in the N-dimensional Hilbert space. It is interesting to
note that the relative amount of separable states un-
ambiguously increases as the participation ratio grows.
Moreover, the mean 'degree of entanglement’ (z), defined
in the Appendix B, decreases monotonically with B. This
illustrates that for composite systems there exist a dual-
ism between the two quantities: purity and separability
of the state. The purest a quantum state is, the smal-
lest its probability of being separable. This conclusion is
supported by Fig. 4 where we plot the dependence of the
probability of finding a separable state P, on the values
of several quantum Renyi entropies Hy(g). For g # 1 the
Renyi entropy is defined as: H,(g) := (In[Tre?])/(1 — q),
while in the limit ¢ — 1 it tends to the standard von Neu-
mann entropy H;(g) = —Trplnp. We have not been able
to generalize the rigorous the results for ¢ = 2, for which
large entropy implies necessarily positivity of the partial
transpose. Nevertheless, the numerical results suggest
that similar result holds for arbitrary values of the Renyi
parameter g. All states with sufficiently large H,(g) are
separable as shown in figure 4a. Can this fact be used to



obtain a better lower bound for Py, «n,? Fig. 4b sug-
gests that it is not the case: the cumulative probability
P of H,(p) attains more or less the same value for all ¢
at the point at which Py, becomes ~ 1.

VII. CONCLUSIONS

Summarizing, we have developed a measure theoretical
approach to the separability—inseparability problem. To
this aim, we have proposed a natural measure in the space
of density matrices p on the N—dimensional space. We
have proven that, under this measure, the set of separable
states has a nonzero volume although this volume is not
maximal in the set of all states. Analytical lower and
upper bounds of this volume have been found for N =
2x 2, and N = 2 x 3 cases. We have also provided
qualitative evidence that for N > 8 the peculiar set of
inseparable states with positive partial transposition has,
under this measure, a nonzero volume.

We have used Monte Carlo simulations to estimate
with much higher precision the volume of separable
states. Our numerical simulations give strong evidence
that this volume decreases exponentially with the dimen-
sion of the composite quantum system. Finally, we have
also discussed the dualism between purity and separab-
ility, and have shown that while entanglement is typ-
ical of pure states, separability is rather connected with
quantum mixtures.

Several questions concerning this subject remain still
as open problems and so far, we have not been able to
prove them rigorously. Particularly challenging are the
two following related questions:

¢ Does the volume of the set of separable states goes
really to zero as the dimension of the composite
system N grows, and how fast?

o Has the set of separable states really a volume
strictly smaller than the volume of the set of states
with a positive partial transpose?

Acknowledgments

We thank Guifré Vidal for very illuminating ideas con-
cerning Section V. It is also a pleasure to thank D. DiVin-
cenzo, M. Horodecki, S. Popescu and W.H. Zurek for
fruitful discussions. One of us (K.Z) would like to thank
for the hospitality to Isaac Newton Institute for Math-
ematical Science in Cambridge where a part of this work
has been done. P.H. is grateful to Fundacja Nauki Pol-
skiej for a financial support and A.S. kindly acknowldges
a support from CEE and DGICYT (Spain) under a con-
tract number PB95-0778-C02-02.

APPENDIX A: GENERATION OF UNIFORM
DISTRIBUTION ON THE SIMPLEX

Our aim is to construct the uniform distribution of the
points on the manifold given by Zil A; =1, where each
component A; is non negative. Let &;i=1,...,N -1
be independent random numbers generated uniformly in
the interval (0,1). We start with a uniform distributions
inside the N — 1 dimensional simplex A,_; defined by
Ef;}l A; < 1. Tts volume is proportional to the product
N el *dgy, = Hsz_ll d[zY ~¥], what enables us to
find the required densities for each component. Since
the vertex of the simplex Ay_, is situated at {0,...,0},
the largest weight corresponds to the small values of z;.
Therefore:

1

A =1 —-le_l,

Ao =[1-€F7](1- Ay),

. k—1
Ap=[1-§7F1(1-> Ay,
i=1

N-2

An_1=[1-én-1](1- Z A;).

i=1

Eventually the last component Ay is already determined
as:

N-1
Ay=1- ZA,-.

i=1

The vector A = {A;,...,An} constructed in this way
is distributed uniformly in the requested subspace. An
alternative procedure, albeit more time consuming, is to
take any vector of an N x N auxiliary random unitary
matrix V' and obtain the random vector as Ay = |Vj;|?
with arbitrary j.

APPENDIX B: THE AVERAGED "DEGREE OF
ENTANGLEMENT?”

The problem of defining a quantity capable to measure
a "degree of entanglement” is a subject of several recent
studies [19-22]. Let us define for a given density matrix
o the quantity

N
t:= Z A -1,
=1



where A],i =1,..., N denote the eigenvalues of the par-
tially transposed matrix p?*. For any separable matrix
all eigenvalues are positive, its trace is equal to unity and
t equals to zero. On the other hand, for the maximally
entangled states belonging to 2 x 2 system the spectrum
of eigenvalues A’ consists of {—1/2,1/2,1/2,1/2}, so that
t = 1. Moreover, for the often studied 2 x 2 Werner
states [1] depending on the parameter z, the quantity
t vanishes for z < 2/3 (separable states) and equals to
t = (3z — 2)/(4 — 3z) for entangled states (2/3 <z < 1).
We could not resist the temptation to investigate the
mean value of ¢ averaged over random density matrices
generated as described above. For the 2 x 2 problem the
mean value {t) equals to 0.057 and increases to 0.076 for
the 2 x 3 problem. For large systems this quantity seems
to saturate at ¢ ~ 0.10, as the ratio of the matrices with
positive values of ¢ (some eigenvalues of 97 are negative)
tends to unity. Moreover, as shown in Fig.2b and Fig 3b,
the average degree of entanglement (t) decreases mono-
tonically with the participation ratio R, what provides
a quantitative characterization of the relation between
entanglement and purity of mixed quantum states.
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FIG. 1. Probability of finding a state with positive partial
transpose as a function of the dimension of the problem N;
For N > 6 it gives an upper bound only of the relative volume
of the separable states. Different symbols distinguish different
sizes of one subsystem (k = 2(0), 3(A) and 4(x)), while the
solid line represents the exponential fit.

FIG. 2. Purity and separability in N=4-dimensional Hil-
bert space: a) probability of finding quantum state with a par-
ticipation ratio R; b) probability of finding a separable state
Py as a function of the participation ratio R (crosses). All
states beyond the dashed vertical line placed at R = N —1
are separable. Circles show the mean entanglement (¢), as
defined in Appendix B.

FIG. 3. Same as in Fig. 2 for N = 6.

FIG. 4. (a) Probability of separable states Pzxa for N = 4
vs von Neumann-Renyi entropies H, € [0,1n(4)] for ¢ = 1(x),
2(o), 3(A), and 10(c). (b) Integrated distribution function
D(H,). Vertical line drawn at D ~ 0.7 corresponds to these
values of H, for which Psep = 1.
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