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I. INTRODUCTION

The state space of an n-dimensional quantum system is the set of all n x n positive semidefinite complex matrices of
trace 1 called density matrices. The density matrices of rank one (pure states) can be identified with nonzero vectors
in a complex Hilbert space of dimension n. However, one has to take into account that the same state is described
by a vector ¢ and A, where A # 0. Hence pure states are in one-to-one correspondence with rays {M\) : 0 # A € C}.
The rays form a smooth manifold called complex projective space CP™ 1. In the infinite-dimensional case we have
to consider density operators instead of density matrices, and the space of pure states is the complex projective space
over the infinite-dimensional Hilbert space.

The problem of measuring a distance between two quantum states with a suitable metric attracts a lot of attention
in recent years. The Hilbert-Schmidt norm of an operator ||A|jz = 4/Tr(AtA) induces a natural distance between
two density operators dys(p1,p2) = v/ Tr [(p1 — p2)?]. This distance has been recently used to describe the dynamics
of the field in Jaynes—Cummings model [1] and to characterize the distance between certain states used in quantum

optics [2]. Another distance generated by the trace norm ||A||; = Trv At A was used by Hillery [3,4] to measure the
non-classical properties of quantum states.

A concept of statistical distance was introduced by Wootters [5] in the context of measurements which optimally
resolve neighboring pure quantum states. This distance, leading to the Fubini-Study metric in the complex projective
space, wag later generalized to density matrices by Braustein and Caves [6] and its dynamics for a two-state system
was studied by Braunstein and Milburn [7]. It was shown [6] that for neighboring density matrices the statistical
distance is proportional to the distance introduced by Bures in late sixties [8]. The latter was studied by Uhlmann
[9] and Hiibner [10], who found an explicit formula for the Bures distance between two density operators d% (p1, p2) =

21 —tr[(pi/ 2pa pi/ ?)1/2]). Note that various Riemannian metrics on the spaces of quantum states were also considered
by many other authors (see [11-15]).

In the present paper we introduce yet another distance in the space of density operators, which fulfills a following
semiclassical property : the distance between two coherent states |a;) and |ag) localized at points a; and as of the
classical phase space {) endowed with a metric d is equal to the distance of these points

D(|en), laz)) = d(a1, a2). (1.1)

This condition is quite natural in the semiclassical regime, where the quasi-probability distribution of a quantum
state tends to be strongly localized in the vicinity of the corresponding classical point. A motivation to study such
a distance stems from the search for quantum Lyapunov exponent, where a link between distances in Hilbert space
and in the classical phase space is required [16].

In order to find a metric satisfying condition (1.1) it is convenient to represent a quantum state p in the Q-
representation (called also the Husimi function) [17]

Hy(a) := {(alpia), (1.2)

defined with the help of a family of coherent states |a), a € 2, which fulfill the identity resolution I = [, la){a|dm(a),
where m is the natural measure on Q. For a pure state |¢)) one has Hy(a) = |{(¢|a)|?. The choice of coherent states
is somewhat arbitrary and in fact one may work with different systems of coherent states [18]. In the present paper
we use the classical harmonic oscillator (field) coherent states, where = C and dm(a) = d?a/n. For convenience
we will use in the sequel the renormalized version of the Husimi function putting H(a) = {(a|p|a}/m and integrating
over d?a. Note that the Husimi representation of a given density operator determines its uniquely [19]. Since Husimi
distributions are non-negative and normalized, i.e., [, H(a)dm(a) = 1 and H > 0, it follows that a metric in the
space of probability densities @ : ! — R, induces a metric in the state space.

In this work we propose to measure the distance between density operators by the Monge distance between the
corresponding Husimi distributions. The original Monge problem consists in finding an optimal way of transforming
a pile of sand into a new location. The Monge distance between two piles is given by the ‘path’ traveled by all grains
under the optimal transformation [20,21].

This paper is organized as follows. In sect. II we give a definition of the Monge metric, present an explicit solution for
the one—dimensional case and discuss some methods of tackling the two—dimensional problem. Sect. III contains some
examples of computing the Monge distance between certain states often encountered in quantum optics. Concluding
remarks are given in sect. IV. Variational approach to the Monge problem is briefly presented in the Appendix.



II. MONGE METRIC
A. Monge transport problem

The original Monge problem, formulated in 1781 [22], emerged from studying the most efficient way of transporting
soil [20]:

Split two equally large volumes into infinitely small particles and then associate them with each other so that
the sum of products of these paths of the particles to the volume is least. Along what paths must the particles be
transported and what is the smallest transportation cost?

Fig. 1 represents a scheme for this problem. Here we give a general definition-of the Monge distance between two
probability densities @1 and Q- defined in § = R™. Let ©; and (g, determined by ;, describe the initial and the
final location of ‘sand’: Q; = {(z,y) € § x R* : 0 < y < Qi(z)}. Due to normalization of Q; the integral [, d"zdy

is equal to unity. Consider C' maps T : S — S which generate volume preserving transformations £ into Q, i.e.,

Q1 (z) = Q2 (Tz) |T'(z)| (2.1)

for all z € S, where T'(z) denotes the Jacobian of the map 7" at point z. We shall look for a transformation giving
the minimal displacement integral and define the Monge distance [20,21]

Dy(Q1,Q3) := inf/s jz — T(2)|Q1 (z) d"z , (2.2)

where the infimum is taken over all T as above. The optimal transformation (if exists) T is called a Monge plan.
Note that in this formulation of the problem the ”vertical” component of the sand movement is neglected.

It is easy to see that Monge distance fulfills all the axioms of a metric. This allows us to define a ’classical’ distance
between two quantum states p; and ps via the Monge distance between the corresponding Husimi distributions:

Da(p1, p2) := Du (Hi(e), Ha2 (). (2.3)

The Monge distance satisfies the semiclassical property: it is shown below that the distance between two coherent
states, represented by Gaussian Husimi distributions localized at points a; and a2, equals to the classical distance
las — az|.

It is sometimes useful to generalize the notion of the Monge metric and to define a family of distances Dy, labeled
by a continuous index p (0 < p < o) in an analogous way:

(D, (Q1,Q2)F == inf/s lz — T(z)|PQ1 (z) d"z . (2.4)

For p = 1 one recovers the Monge distance Dy, = Dy, while the Fréchet distance Dy, is obtained for p = 2. A
more general approach to the transport problem was proposed by Kantorovitch [23] and further developed by Sudakov
[24]. In contrast with the definition of Monge discussed in this work, the Kantorovitch distance between Q; and Q2
is explicitly symmetric with respect to exchange of both distributions. For a comprehensive review of metrics in the
space of probability measures and other generalizations of the Monge distance see the monograph of Rachev [21].

B. Salvemini solution for 1D problem

For S = R the Monge distance can be expressed explicitly with the help of distribution functions F;(z) =
i o @i(t)dt, i = 1,2. Salvemini [25] and Dall’Aglio [26] obtained the following solution of the problem for p = 1:

+o0

Du(@u Q)= [ IFi(e) - Fa(o)lda, 25)

—0o0

represented schematically in Fig. 2.
This result was generalized in the fifties to all p > 1 by several authors (see [20,21]). We have

1
Datn(Qu, Q)P = / FTA(E) - B ()Pt - (2.6)



C. Poisson-Ampere-Monge equation for 2D case

Consider smooth densities Q;, Q2 : R2 — Rt. We are looking for a transformation field w = (wy,ws) : R2 — R?
fulfilling w(zy, z2) = Ta(z1, z2) — (21, 2), where Ty is an optimal Monge transformation minimizing the right-hand
side of (2.4). Restricting ourselves to smooth transformations 7' we may apply the standard variational search for the
optimal field w. In Appendix it is shown that rot(w) = 0 if p = 2, and the potential ¢ : w = grad(p) satisfies the
following partial differential equation

Qu (21, 2) -1. (2.7)

Pziz1 T Praze + Pri21Prazs — ((P:na:z)z - Qz(-’L'l T Pz, T2+ )
Ty T2

Solving this Laplace—Ampere-Monge (LAM) equation for the potential ¢ we get the Fréchet distance Djy, from (2.4)
computing the minimal displacement

+o0 +co
(D (Q1, @2))? =/_ dm’l/_ dzs (02, + ©2,)Q1(21,%2) - (2.8)

Though it is hardly possible to solve equation (2.7) in a general case, it might be used to check, whether a given
transformation can be a solution of the Monge problem. Let us remark that an optimal transformation field w (if
exists) must not be unique. Moreover, (2.7) provides only a sufficient condition for w being optimal. It is important
to note that the two dimensional Monge problem posed two hundreds years ago has not been solved in a general case
until now [20,21].

D. Estimation of the Monge distance via transport problem

One of major tasks of linear programming is the optimization of the following transport problem. Consider NV sup-
pliers producing a; ({ =1,..., N) pieces of a product per a time period and M customers requiring b; ( =1,..., M)
pieces of the product at the same time. Let (c;;) be a N X M cost matrix, representing for example the distances
between sites. Find the optimal transporting scheme, minimizing the total transport costs C = Zf;l Z;ﬁl CiiTij.
The non-negative elements of the unknown matrix (z;;) denote the number of products moved from i-th supplier to
j-th customer. The optimization problem is subjected to the following constrains: ZJ—A; zij = a; and Zf;l xij = bj.

In the simplest case the total supply equals the total demand and Eﬁ__l a; = E;‘il b;.

The transport problem described above gave, with a related assignment problem, an impulse to develop methods
of linear programming already half a century ago [23], [27]. Since then several algorithms for solving the transport
problem numerically have been proposed. Some of them, as the northwest corner procedure and Vogel’s approximation
[28], are available in specialized software packages. It is worth to add that the transport methods are widely used to
solve a variety of problems in business and economy such as, for instance, market distribution, production planning,
plant location and scheduling problems.

It is easy to see that the transport problem is a discretized version of the Monge problem defined for continuous
distribution functions. One can, therefore, approximate the Monge distance between two distributions @;(z) and
Q2(z) (where z stands for a two dimensional vector), by solving the transport problem for delta peaks approxim-
ation of the continious distributions: ¢; = EfV=1 Q1(z;)0(z — ;) and g5 = Ehil Q2(z;)0(z — z;). The quality of
this approximation depends on the numbers N and M of peaks representing the initial and the final distribution,
respectively, and also on their location with respect to the shape of both distributions. Numerical study performed
with the northwest corner algorithm for some analytically soluble examples of the 2-D Monge problem shows [29] that
for reasonably smooth distributions one obtains Monge distance with fair accuracy for a number of peaks of the order
of hundreds.

III. MONGE DISTANCE BETWEEN SOME STATES OF QUANTUM OPTICS

In this section we compute Monge distances between certain quantum states. Even though our considerations are
valid in the general framework of quantum mechanics, for the sake of concreteness we will use the language of quantum
optics. Let us recall briefly the necessary definitions and properties.

Let @ and af be the annihilation and creation operators satisfying the commutation relation [a, at] = 1. The *vacuum’
state |0) is distinguished by the relation a}0) = 0. Standard harmonic-oscillator coherent states |} can be defined as



the eigenstates of the annihilation operator a|o)) = a|a) or by the Glauber translation operator D(c) = exp(aal —a*a)
as |a) = D(a)|0). Coherent states, determined by an arbitrary complex number a = z; + izs, enjoy a minimum
uncertainty property. They are not orthogonal and do overlap. The Husimi distribution of a coherent state |3) is
Gaussian

Hy(o) = ~|(Ble)]? = — exp(~|a - B?) (31)

Squeezed states |y,a) also minimize the uncertainty relation, however the variances of both canonically coupled
variables are not equal. They are defined as

|7, @) := D(a)S8(7)]0), (3-2)

where the squeezing operator is S(y) = exp[%('y*a2 — va'?)]. The modulus g of the complex number v = ge?¥*
determines the strength of squeezing, s = e? — 1, while the angle 8 orients the squeezing axis. The Husimi distribution
of a squeezed state |y, 3) is a non-symmetric Gaussian localized at point 8 and for @ = 0 reads

1
H,pg(x1,22) = p exp[—(Re(8) — z1)%/(s + 1)? — (Im(B) — z2)?(s + 1)?] (3.3)
Each pure state can be expressed in the Fock basis consisting of n-photon states |n), n = 0,1,2,.... Each coherent
state can be expanded in the Fock basis as
jal?2 g~ "
a)=¢ I* —|n). 34
o) > 7 (34)
The known scalar product (a|n) allows one to write the Husimi function of a Fock state
_ 1 {a|2" _| '2
Hppy(a) = g e, (3.5)

The vacuum state |0) can be thus regarded as the single Fock state being simultaneously coherent.
In contrast to the above mentioned pure states, the thermal mixture of states with the mean number of photon
equal to 7 is represented by the density operator

o= Grprinl (36)

Its Husimi distribution is the Gaussian centered at zero with the width depending on the mean photon number,

1 larf?
Hpﬁ (C!) = mexp <_ﬁ 3 1) . (37)

A. Two coherent states

Let us consider an arbitrary two dimensional distribution function Qi(z1,z2) and a shifted one Qa(z1,z2) =
Qi1 (z1 — z},z2 — z3). It is intuitive to expect that the simple translation given by w(z1,z2) = const = (z},z3) solves
the corresponding Monge problem. Since for the respective potential ¢(z1,z2) = xjz1 + 25z the second derivatives
vanish, the both two sides of the LAM equation (2.7) are equal to zero and the maximization condition is fulfilled.

It follows from this observation that for two coherent states defined on the complex plane the Monge plan reduces
to translation. Integration in (2.2) is trivial and provides the Monge distance between two arbitrary coherent states

|} and |5)
De(la), 18)) = | — B|. (3.8)

This is exactly the semiclassical property we demanded from the metric in the state space. The distance of the
coherent state |a) from the vacuum state |0) is equal to |a|, which simply is the square root of the mean number of
photons in the state |o). The classical property is fulfilled by the generalized Monge metric Dy, for any positive
parameter p.



B. Coherent and squeezed states

We compute the distance between a coherent state |a) and the corresponding state squeezed |7, o). Due to invariance
of the Monge optimization with respect to translations this distance is equal to the distance between vacuum |0) and
the squeezed vacuum |vy,0). For simplicity we will assume that squeezing is performed along the z; axis, i.e., the
complex squeezing parameter is real v = g € R.

The corresponding Monge problem consists in finding the optimal transformation of the symmetric Gaussian
Q1(z1,22) = exp(—z? — 22)/7 into an asymmetric one Qy(z1,z2) = exp(—2z2?/(s + 1)2 — z2(s + 1)?)/x. Consid-
ering contours of the Husimi distribution, often used to represent a state in quantum optics, a circle has to be
transformed into an ellipse. If p = 2 then the following affine transformation T'(z1,22) = (z1/(s + 1),z2(s + 1))
corresponds to the irrotational transport field w(zy, z2) = (—sz1/(s + 1), 522). It can be obtained as the gradient of
the potential p(z;,z2) = —sz?/(2s + 2) + 573 /2, for which both sides of the LAM equation (2.7) vanish. Hence field
w provides a Monge plan for this problem and the distance is given by its length |w| integrated over the volume of @,

s [ &0 s 82+ 2s
Da(lo,0) =2 [~ dos [~ dos expl-a -/ 11 ok = B (Gang) . B9
—o0 —o0

where E(z) stands for the complete elliptic integral of the second kind.
A simpler result may be obtained in this case for the Fréchet distance Dy,

Daa(0l0. 0N =% [ dos [~ daemp(-at - a4 1P 4 a) = FUH o) (G0

Eventually, the ‘Chebyshev’ distance D)y, , characterizing the maximal dislocation length, is equal to s. For large

squeezing all three distances grow proportionally to the squeezing parameter s, with slopes k1 = 1//7, kz = 1//2
and ko = 1 ordered according to the index p. This agrees with an observation that p; < p» implies Dy, < Dy,
[21].

C. Vacuum and thermal states

Since Husimi distributions of both states is rotationally invariant, it is convenient to use radial components of
the distribution R;(r) = 2arH;(r,$). One may then reduce the problem to one dimension and find the Monge
distance via radial distribution functions F;(r) = for R;(r")dr'. Taking Husimi distributions (3.1) and (3.7) we get the
corresponding distribution functions Fi(r) = 1 — exp(—r2) and Fy(r) = 1 — exp(—r2/(f + 1)). Using the Salvemini
formula (2.5) we obtain

Da)0hon) = [ IFi0) - Fa(rldr = YT (VAFT-1) (311)

In the same way we get a more general formula for the Monge distance between two thermal states

— G
Dei(pny, prs) = \/T—|\/ﬁ1+1—\/ﬁ2+1|- (3.12)

D. Two Fock states

As in the previous example the rotational symmetry of the Fock states allows us to use the 1D formula. Integrating
(3.5) for a Fock state |n) we can express the radial distribution function in terms of the incomplete Gamma function

T'(z,r) as

L(n+1,r%)
I'n+1) °

Since for different Fock states the distribution functions do not cross, applying Salvemini formula (2.5) we obtain the

Monge distance

For)=1- (3.13)

Da(m),|n)) = | / " Fa(r)dr — f ” Fn(r)dr| = v/F|Com — G, (3.14)

where the integrals C; can be found analytically: Co = 1/2, C; = 3/4, C; = 15/16, C3 = 35/32, ....



IV. DISCUSSION

We have presented a definition of distance between quantum states (i.e. elements of a Hilbert space) which possesses
a certain classical property, natural for investigation of the semiclassical limit of quantum mechanics. Monge distance
between the corresponding Husimi functions fulfills the axioms of a metric and induces a ’classical’ topology in the
Hilbert space. It is worth to emphasize that the Monge distance between two given density matrices depends on the
topology of the corresponding classical phase space.

Consider a quantum state prepared as a superposition of two coherent states separated in the phase space by z. It is
known [30-32] that such a state interacting with an environment evolves quickly toward a mixture of the two localized
states. The decoherence time decreases with the classical distance z, equal just to the Monge distance between both
coherent states. We expect therefore that the Monge distance between two arbitrary quantum states might be useful
to determine the rate with which the superposition of these two states suffers the decoherence.

It is possible to generalize our approach in several directions. Instead of the standard Husimi distributions used
throughout this paper, one may study Monge distances between generalized Husimi distributions H,(c) = (a|p|a),
where |&) are generalized coherent states [33]. For example, one may use for this purpose squeezed states [34], or the
spin coherent states [35,36), if the classical space is the two-dimensional sphere.

Moreover, our considerations based on the Husimi representation of quantum states, may be in fact extended to the
Wigner function. In spite of the fact that the Wigner function can take on negative values, it is normalized and the
Monge problem of finding an optimal way to transport one Wigner function into another might also be considered.
The concept of the classical distance between two Husimi (Wigner) functions is not only of theoretical interest, since
novel methods of measuring Husimi and Wigner distributions have been recently developed [37-39).
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APPENDIX A: VARIATIONAL APPROACH TO MONGE PROBLEM
1. 1D case

Let @1 and @2 be smooth densities. In 1D case there is only one map 7" fulfilling (2.1). It can be described with the
aid of distribution functions as T(x) = F; !(Fi(z)), where Fy(z) = [*__ Q:(t)dt for z € R. This allows us to express

the generalized Monge distance as an integral (2.4)
[=2]
[Dup(Q1, @2)]° := / Qi(2)|F; [Fi(2)] — z[Pde. (A1)
—00

In the simplest case p = 1 (A1) reduces to the Salvemini formula (2.5) and for p > 1 to formula (2.6).

2. 2D case
Consider two smooth densities @1 (z1,z2) and Q2 (z1,z2). We are looking for a map T'(z1,z2) = (z+wy (21, z2), 22+
ws (21, Z2)) transforming @y into @2 (i.e. such that (2.1) is fulfilled) and minimizing the quantity
—+o0
I,= Q1 (21, z2)|Jwi (21, 22) + wi (1, 22) [P/ 2dz1dzs (A2)

—o

The index p, labeling the generalized distance, is equal to one for the Monge metric and to two for the Fréchet metric.
Introducing a Lagrange factor A we write the Lagrange function in the form

Ly=@: (wf + w%)p/z +A(@1 — Q2(T)) [(1 + Wiz, )(1 + wag,) — wlzzw2z1] . (A3)



The Lagrange-Euler equations for variations of L, allow us to obtain the partial derivatives of A

Az = 2pCp(wi1 (1 + wrg,) + wowas, ) ,
Amz = 2pCp(w2(1 + w2$2) + wlwlzz) ’ (A4)

where Cp = (w} + w3)(P=2)/2, Using the equality Az,z, = As,z, We get
Wia, (wi(p — 1) +w3) — wae, (w3(p— 1) +w}) + (p — 2)(W2e, — Wiy )wr1w2 =0. (A5)

If p = 2 we deduce from (A5) that w;,, = wa,, i.e., rot(w) = 0. Taking the potential ¢ : w = grad(y) we see that
o fulfills (2.7) and formula (2.8) holds.
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FIG. 1. Monge transport problem: How to shovel a pile of sand Q1(z1,%2) into a new location Q2(z1,z2) minimizing the
work done?

FIG. 2. Monge distance between 1D functions @i(z) and Q2(z) may be represented as the area between graphs of the
corresponding distribution functions Fy(z) and Fa(z)
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