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Nonlinear processes concerned with different aspects of nonlinear dynamics of astrophysical
disks — structures, flows, turbulence — are reviewed. The special attention is paid to the

influence of the three dimentionality of the disks on their nonlinear behaviour.

INTRODUCTION
Among different astrophysical objects disks have the most various dynamical structures and
different kind of turbulence. So far the origin of many observed structures in disks is puzzle
as well as turbulence mechanisms of different kinds of disks. The problem of the galactic
spiral structure is waiting for own solution more than one and a half century. The origin
of narrow Uranian rings and Cassini division with its complex inner structure, the cause of

the turbulent viscosity many orders greater than the molecular one in the accretion disks,
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T. Gottesman, J. H. Hunter, and Henry E. Kandrup in late 1998 or early 1999.
*This work was performed under the partial support of RFBR grant N 96-02-17792, grant

” Leading Scientific Schools” N 96-15-96648, and the grant ” Fundamental Space Researches.
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non-Kolmogorov turbulence spectrum of the Milky Way and the problem of double galactic
nuclei not connected with merging are still unsolved problems.

In the present paper we review several aspects of nonlinear dynamics of astrophysical
disks with the special emphasis on the crucial role of the three dimentionality of disks. In
the most detail we consider two cases when small but finite disk thickness can be never
neglected. It is convenient to split the non-linear dynamics of astrophysical disks onto
the wave and vortex dynamics, which in turn could be subdivided onto structures and

turbulence. The main topics of the paper are summarized in the Table 1.

Nonlinear Dynamics of Stationary Structures | Turbulence

Astrophysical Disks

wave dynamics solitons turbulence of Rossby waves

application spiral arms observed spectrum of turbulence

vortex dynamics stationary vortices: turbulence of Rossby vortices
solitary and double

application single vortices, enhanced star formation in areas
double objects with solid—body rotation

non-linear wave-medium | dissipativeless large—scale convection

interaction dissipative inflow-outflow processes

Table 1: Brief summary of the main topics of the paper.

NONLINEAR DYNAMICS OF MARGINALLY
UNSTABLE SELF-GRAVITATING DISK

Special investigations! have shown that the gaseous disks of galaxies are near the boundary
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of own gravitational instability. This fact is an expected one as the instability increases the
velocity dispersion and the disk is coming to the boundary of the instability.

If a rotation velocity curve of the gaseous disk has jump or kink then hydrodynamical
instability can be developed®3. In this case disc also lies near the boundary of own hydro-
dynamical instability®. The reason is similar. As a result of the instability the smearing of
the jump begins to grow until the disk reaches the marginal stability.

The nonlinear dynamics of the marginally unstable self-gravitating disk was analyzed in
works of Mikhailovskii, Petviashvili and Fridman® 67 (see also Fridman and Polyachenko?).
As the eigen frequency of marginally unstable disk in co-rotating system of reference @ is
small (& < ), the consideration of the problem in 2D approximation is valid (see below
conditions (10) and discussion therein). Under condition that only the small region of wave
vectors is unstable Ak < kg, where kg is the wave vector of the most unstable perturbations,
the non-linear dynamical equation was derived:

&

3 5
o5 = e+ 32— (15— 5) lePe. 1)

3
Here ¢ is the dimentionless amplitude of the wave, 7 is non-dimensional time,

2 (vGao/c)? — K2
VO = 92
0

<1 (2)

determines the dimensionless grow rate of the most unstable perturbations, G —gravitational
constant, og — unperturbed surface density of the disk, x — epicyclic frequency, {2y — unper-
turbed angular velocity of the disk. Eq. (1) leads to the non-linear dispertion relation in

the form

3 5
2 = ug + 5(2—')'5) (’Ys—g) |e|2. (3)

It is easyly seen that this relation describes either a soliton propagation or explosive in-

stability depending on the value of the "surface” polytropic index «yg.
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According to Hunter® the surface polytropic index for self-gravitating disk can be ex-

pressed trough the real 3D polytropic index vy as v = 3 — 2/4y. Thus in the region
5/3 < vs < 2, (4)

which is equivalent to 3/2 < vy < 2, the nonlinear stabilization of the instability is possible

at the certain level of the wave amplitude

2 _ 2”3
T 32—7s)(vs —5/3)

(5)

Under condition of marginally unstable disk (¥ < 1) the stabilization is achieved at low
wave amplitude. The soliton solution is possible in the region (4) in the form of envelope
soliton (FIGURE 1). In absence of the viscosity the soliton has a classical symmetrical
form likes a normal distribution function (FIGURE 1la). But in the presence of the small
viscosity a soliton transforms into the shock wave with oscillating front!? (FIGURE 1b).
The shock wave which was predicted in the rotating stellar disk — collisionless shock wave
— has a similar form!?.

If v¢ < 5/3 — 4y < 3/2 — then the explosive instability occurs:

£ 1

{r=0) ~ T 1/(4e(0))’ (©)

where A2 = 3(2 — v5)(5/3 — vs)/4.

SPECTRUM OF TURBULENCE OF CLOUDY
POPULATION OF THE MILKY WAY

Up to now there are numerous investigations devoted to measurements of the turbulent
spectrum of cloudy population of the Milky Way in both the every gaseous cloud and of the
ensemble of clouds. Kaplan in 1955 found the correlation function B,, ~ r%7! what is very

close to the Kolmogorov spectrum. The systematic observations and the construction of
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correlation functions began from 1964. Larson result!? was close to that of Kaplan: Av ~
1038, But later more accurate investigations resulted in more steeper spectrum. Mayers!?,
Henriksen & Turner'4, and Vereschagin & Solov’ev!® obtained the spectrum Av ~ [0
Sanders, Scovill and Solomon!® obtained Av ~ 1962, These spectrums are different from
the Kolmogorov one and to explain them we should take into account the anisotropy.

The attempt to explain the observed spectrum as a result of the turbulence of the Rossby
waves in galactic gaseous disk was made in the work by Dolotin and Fridman'? (see also!®).

As the basis observed correlations it was adopted: 1) correlation for the velocity fluc-
tuations Av ~ 193; 2) correlation for the density fluctuations!® p ~ I=1; and 3) correlation
for mass spectrum!® N(m)/N(mg) ~ (m/mg)~®. These correlations mutually agree if we
adopt the assumption of virial equilibrium on all scales.

The following general nonlinear equation can be derived in the low-frequency approx-

imation, w < €, for the solid body rotating selfgravitating cloud!":

3] 1 - = W - (wd)18%

Here wi = 4nGpy, (W) = d(wd)/dr; x = P + ¥, ¥ is the gravitational potential; P is the

‘presure’ function determined by relation

P = [ar/p (8)

Py is the usual 'volume’ pressure, p is the volume density.
For the small-scale perturbations corresponding to the case ¥ < P when Eq.(7) can be

reduced to

a1 " . ph10P :
(ﬁ + 300 [VJ_P,VJ_]Z) ALP - 20500 50 =0. (9)

The latter equation is similar to well known in hydrodynamics Charney-Obukhov’s

equation?® 21,22 and in plasma physics Hasegava-Mima equation?3. This analogy allows to
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use results from the well elaborated fields to describe the dynamics of the perturbations in
gravitating molecular clouds. Particularly in accordance with Sazontov?* and Mikhailovskii
et al.2® the nonstationary solution of Eq.(9) describes Rossby waves turbulence with energy
spectrums wfcl) ~ ky 3/ zk; 2 and 'w,(f) ~ ky 8/ 21{:; 2l

At the limit of the theory application, k; ~ k, ~ k,, and taking into account char-

acteristic property of the Rossby waves k; =~ k we have w}cl) ~ k=35 and w,(az) ~ k45,

According to Hasegawa et al.numerical result?® wy ~ k™%. The last relation gives?” v ~
[i° Exdk = [i° wpk?dk ~ k™1 ~ ), that is 1) vy ~ A%3. On the other hand ¥Vv ~ V¥
that is v2/A ~ ¥/X ~ MnGp,. This gives for the density spectrum 2) px ~ A~l. Finally
as P ~ nAmAvf\ ~ p)‘vﬁ = const and my =~ pxA3 =~ A2 one obtains ny ~ m;lvgz. This
gives for the mass spectrum 3) ny ~ m;1'5. We see that the obtained turbulent spectrums

corresponds to the observed spectrums what is the evidence of a week turbulence of the

Rossby waves in cloudy population of the Milky Way.

ON THE POSSIBILITY TO STUDY THE DYNAMICS
OF THIN DISKS IN 2D APPROXIMATION

Before the consideration of some essentially 3D nonlinear effects in thin astrophysical disks
let us discuss the problem of 2D approximation and clarify, why in some cases we should

take into account finite — while small — disk thickness.

Traditional conditions for 2D description of

the dynamics of astrophysical disks

The seldom cases of the use of the 3D description of astrophysical disk dynamics are restric-
ted by the study of the processes of bending and warping of the disk and by the formation
of bars and bulges.

Due to the fact that the semithickness H of the majority of astrophysical disks is much
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less than their radius R, H <« R, the dynamical processes and structures in the disks were
as a rule studied in the frame of 2D approximation. In doing so two conditions assumed to
be fulfilled.

First: the structures and processes are symmetric about the disk plane.

Second: the typical scales of the processes and structures L are much greater than the
semithickness of the disk, L > H.

But these conditions were never obtained in a rigorous manner as a complete set of suf-
ficient conditions. Consequently our first question is: What is the complete set of sufficient

conditions to describe the dynamics of astrophysical disks by 2D dynamical equations?

What are the initial equations we have to write?
The 2D dynamical equations for astrophysical disks should be derived from general 3D
equations. Analysis of this problem results in the following conclusions®3.

If the equation of state of the gaseous disk has

1) the general form, P, = P,(p,S), where P, p and § are pressure, density and entropy,
respectively,, then the derivation of 2D equations is problematic;

2) the barotropic form, P, = P,(p), then we come to the closed 2D set of integro-
differential equations, the solution of which is complicated,

3) the polytropié form, P, = A- p", where A and ~ are constants, - is polytropic index,

then we come to the system of 2D partial differential equations, but with additional terms,

which were not written before.

On the sufficient conditions of the correctness of 2D approximation

These conditions can be written in the following simple form?®2°:



2 2

H 2 c
<Lt amp

L2
Here L and { are typical radial and azimuthal scales of perturbations; w is the typical
frequency of the process.

First two strong inequalities are well-known conditions of large-scale approximation.

The third condition was not used before. In most cases this condition is reduced to
W & 0 (11)

where 2 is the angular velocity of a disk. As a rule this condition was not fulfilled in
previous 2D studies of the disk dynamics. Particularly, as it is easy to see, the majority of

2D theories of spiral structure do not fit this condition!

Typical mistakes in works devoted to 2D dynamics of disks
Schematically the reason of ¢ mistake can be illustrated by the simplest ezample. Let us

consider the 3D equations of motion

dvy

el Vix, (12)
dv, 0

a -7 5;)(, (13)

where the notations are given in previous Section.

For low-frequency perturbations (11) the term dv,/dt in equation (13) may be omitted,
and the x does not depend on z. Hence the right-hand side of equation (12) does not depend
on z also. As a result the left-hand side does not depend on z and the equation of motion
(12) can be reduced to the 2D form.

The latter argumentation is not true for the high-frequency perturbations, w ~ Q. In

this case 2D approximation can be correct only in some special cases??:
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1) isothermal disk in a strong outer gravitational field, and

2) self-gravitating disk with polytropic index v = 2.

The case of low-frequency perturbations, w < 2

In this case 2D approximation is correct if the 2D equations are derived from 3D ones. Yet
as a rule the incorrect 2D dynamical equations are used where all functions are integrated
over z. Let us illustrate it by the simplest example of 2D equation of motion.

A polytropic disk in outer gravitational field

a) Traditional form

% = - %VP,, — V¥, = — Ap,0" Ve — VI, (14)
where P, = A;0" is "flat” pressure, VU, is gravitational potential in the plane z = 0, A,
and ~, are constants, v, is a "flat” polytropic index.
b) Correct form3°
Substituting in (8) the expression for the 3D polytropic equation of state P, = v, are
constants, 7, is a ”volume” polytropic index, we obtain P = A,p" 1v,/(v, — 1). Finding
hence p and integrating it over z from — oo to + oo, we obtain the expression for the surface

density

1

o(r,0,8) = (VA;I)ﬁ _Zo[x(r,tp,t)—\Il(r, 0,2,)] 7T da. (15)

The condition of the infinitesimal thickness of a disk lets to write a relationship between
o and x for an arbitrary function ¥, using its expansion in the neighborhood of the plane

z2=0:

1
U(r,p,2,t) = Ve(r,p,t) + Tl(r,p,t)z + —Z-\I'Z(r,cp,t)zz. (16)
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Substituting (16) to (15) and integrating over z we obtain

_ e (Tw-1yw T(3)

+1
. [(‘I’_'c)z + ————2("_‘1'“)]#7‘"%15. (17)
7 7
Whence
(%e)
x = Co? + ¥, — & (18)
© 7 Tou
where A = (v, —1)/(7 + 1), T is gamma-function,
A
g I (,y—;h’_— + %) Ay \ 2w t1)
C= o= ( - 1) ’ (19)
T (%_1) Yo

As the C depends on the external parameter (¥") the actual "surface” equation of state is
of more general class than the pure 2D equation of state, which is adopted as a rule.
Eq.(12) after the substitution in it (18) has a desired form of 2D equation of motion for

2D functions

dv
dt

N2
= — 20" Vs - V¥, — sPVC - V l(‘l\l'j ] , (20)
[+

The terms in (20) different from (14) are underlined.

A self-gravitating disk

In this case 2D dynamics can be described by the equation similar to (14). The difference
lies in the form of expression for A,.

a) Traditional form®

7B3/2-1/%)1 (2 — 1/,)
2C-T/T (5/2 - 1/%)

(A)m = Al G-t/ (21)

b) Correct form3?

10



21/70 71-(1_1/')'11)

(‘A,s)co”n = 3 — 2/7 A']-,/'Yu Gl—l/')'u, (22)
v
Their ratio is not equal to unity:
(As)corr 2 I(v/2) ' Yo

The reason of the demonstrated difference is very simple: in right-hand side of the
correct 2D equation of motion stands the gradient of the function of the volume pressure,
VP = V [dP,/p, but not the gradient of a "flat” pressure, c~'VP, = 01V [ P,dz, as in
equation (14). The latter term has not the physical sense of the force.

Let us consider a tube of a conic section. Let be P, = const. Then a gas in the tube
must be unmoved. But P; in different sections is different. If we compare two positions

with different cross-sections z; > 25 we obtain

P (z1) = 2 / Py(z1)dz > Ps,(z3) = 2 / P,(x2)dz. (24)
0

Hence, according to equation (14) the gas must move from the section S; to the section Sa!

We come to the nonsense.

SOLITARY VORTICES IN ASTROPHYSICAL DISKS
Using above-written vector equation of motion (20) for disk in outer gravitational field for
slow—frequency perturbations (11) we derive®® the following nonlinear dynamical equation

for a solid-body rotating part of a disk, £ = const,

d /. o 8% (InC), 082
at(x - aRA%) + URa - 893 40 dy

= 0. (25)

Here ¥ is perturbation of x (see (18)); ag = ¢;/2Q is Rossby radius; Ug = —2a%Q- (Inay)),
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is Rossby velocity; ¢, is the sound speed determined by the ”flat” functions

ox
2 = — .
¢, = 0(60)0’ (26)

0A0B _ 0A9B

J(A,B) = (27)

is Jacobian; z, y are Cartesian coordinates with z along radius and y along azimuth; the
function C is determined above in (19).

Equation (25) contains the vector, the third term, and scalar, the last term, nonlinearit-
ies. It should be emphesised that the scalar nonlinearity is a consequence of the dependence
of the ”surface” equation of state from the external parameter (through the dependence on
external gravitational potential ¥.). If we start from the usual pure 2D hydrodynamical
equations this term would be overlooked.

Derived for astrophysical disks nonlinear dynamical equation (25) is similar to well-

known in hydrodynamics the Charney-Obukhov equation?®21:22,

In plasma physics the
similar equation was derived by Hasegawa and Mima?3. The use of well worked out theory
and laboratory modelling of these equations in hydrodynamics and plasma physics leads to
the following results®C.

Equation (25) has two kinds of stationary solutions, which describes, respectively, two
types of solitary vortices: single and double vortices. 1 < a/H < (R/H)/3, where H is the

disk thickness, R is the typical scale of the density inhomogeneity.

Single vortices: cyclones and anticyclones

Due to the presence of the scalar nonlinearity the existence of single Rossby vortices
in galactic disks is possible. Under the definite sign of the scalar nonlinearity ((InC)}) it
is possible to form only one kind of solitary vortices: cyclones or anticyclones. Cyclone

((In C), < 0) is characterized by a minimum of the surface density. Anticyclone ((InC), >
12



0) is characterized by a maximum of the surface density.

Double vortices: modons

Due to the presence of the vector nonlinearity the existence of double Rossby vortices in
galactic disks is possible. Double vortex — modon represents the cyclone-anticyclone pair
and has one minimum and one maximum of perturbed surface density!”. The astronom-
ical application can be connected, for example, with the problem of double galactic nuclei
formation and, may be, other pairs of nearby objects scale of which is extremely different
from the galactic nuclei.

On the strong vortex turbulence

" Generation of several modons results in their interaction and in the formation of vortex
turbulence®!. The vortex turbulence is distinct from the wave one in principle. The wave
turbulence is strong if the amplitude of perturbed value A is closed to the stationary one Ag
or more. The vortex turbulence can be strong under the condition as the time of vortex—
vortex interaction is much longer than that for wave-wave interaction.

On the connection of enhanced SFR with large areas of solid—body rotation

Enhanced star formation is found by Keel3? for interacting galaxies with large areas
of solid-body rotation. The paired Seyfert galaxies show specially a striking number of
solid-body One of the conclusions of Keel’s work?? is: ” The frequent presence of large areas
of solid-body rotation, extending to a medial radius of 2.1 kpc, is not closely linked to the
presence of optical bars.”

It can be assumed that the reason of the dynamical activity of a gaseous disk in the
absence of a bar, but with a large solid-body rotation area is the development of strong

vortex turbulence.
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NONLINEAR RADIAL LAMINATED FLOW AS A MANIFESTATION
OF 3D DYNAMICS OF ASTROPHYSICAL DISKS

In this section we will show that in presence of the spiral density wave there is an observable
manifestation of the three dimensional nature of astrophysical disks in the form of a large—
scale quasi-stationary radial flow laminated in z direction. The flow velocity has an opposite
direction in the central plane of the disk, z = 0, and on the disk periphery, near the planes
z = +H. The streamlines are closed by the vertical motions of less magnitude, v, ~ v, H/r.
As a whole, the flow has a form of four vortices separated by the vertical surface r = r,,
where 7, is a corotation radius, and the central plane of the disk (FIGURE 2). Therefore,
the observation of this flow could provide a direct indication of the position of corotation
circle.

The characteristic velocity in the flow is about the velocity in the density wave. For the
galactic disks it can be as much as several tens kilometers per second. The characteristic
scale of the flow is about the disk radius. Therefore the existence of such kind of the
convection can play a significant role in the overall dynamics of a disk.

By its nature the flow discussed above is a special kind of an acoustic streaming. It is
caused by the quasi-stationary component of nonlinear Reynolds stresses induced by the
density wave. Classical acoustic streaming is caused by the Reynolds stresses in strong
acoustic waves (for a review see e. ¢.3%). It is the phenomenon observed in up to hun-
dreds different laboratory experiments starting with Faraday’s discovery®® and described in
numerous theoretical papers, starting with the pioneer work by Rayleigh3.

The main difference in comparison with classical case is a drift nature of any quasi-
stationary flow in a rotating disk. It is a consequence of the dominant role of the Coriolis

forces, and means that the direction of the flow is perpendicular to the direction of the
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applied force. If the system is two—dimensional or uniform in z direction, the conservation
of the orbital momentum in absence of dissipation should require the mutual annihilation
of separate nonlinear azimuthal forces such as (div(pv,?)), (p0®/rdy), etc. But in the
disk, which is nonuniform in z direction, the annihilation is possible on the average only. It
means that locally the azimuthal force does not vanish and gives zero only after integration
over disk thickness. As a result the radial flow with zero averaged over disk thickness mass

flux is generated.

The method
The method used (for details see3”) is based on the subdivision of each value and the system

of dynamical equations as a whole onto two parts
¢ "slow” quasi-stationary part;
e "fast” pulsating part.

The former represents the dynamics of the system ”on the average” over time period much
longer than the period of pulsations. The latter represents the short—time dynamics of the
system, but it vanishes after averaging over time. This approach is well known in the theory
of the turbulence, in the nonlinear optics and acoustics, but it was never used earlier to
analyze the nonlinear self-action of the astrophysical density waves.

Particularly this approach implies the following representations. For each value (physical

parameter) f we can write:

with
1 A
(fy =5 [fit, T <A b, (29)
0
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where T is a characteristic period of pulsations, ., is a characteristic time of the ”slow”
evolution, and
() =0. (30)

For the product of two values one has

fg = ({9} + (fig) + (flar + filg)- (31)

In the case of the wave of a small but finite amplitude we can restrict our consideration
to the quadratic nonlinearities only. Simultaneously we can use the representation of the

pulsations as a monochromatic wave
fl('r1 ¥, 2, t) = .fl(r) 2, t) exp[i(mcp - Wt)] +

f1*(”', Z, t) exP[_Z(m‘P - Wt)] . (32)
with the amplitude f(r, z, t) being a slow function of the time.

Consequently quasi-stationary part of any nonlinear term has a form
(i;)) = hgt + fia. (33)

It is independent of the azimuth. As a result all effects described below are axisymmetrical.

Nonlinear quasi-stationary response of the disk on the density wave

The total nonlinear quasi-stationary response of the disk on the density wave can be sub-

divided onto the following three effects. Below we presented the final results only — their

derivation is a subject of the separate paper3®.

1. Nonlinear additives to the potential function (enthalpy plus gravitational potential) of

the disk. They are similar to the well known "high frequency pressure” in plasma physics.
% = - % (17z117;1 + a%ﬁrﬂ—f:l + % Xlﬁ) =
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2 (22, @0

Here

D = &* —&2. (35)

i
S
|
3
2

w

Functions {x) and x; are determined according to (28).

Nonlinear additives to (x) could influence on the vertical equilibrium and rotation curve
of the gaseous disk. The former influence can be significant only for short-wave perturba-
tions with kh ~ 1. The contribution to the rotation law is of the order of the contribution
of the gaseous pressure.

2. Nonlinear corrections to the rotation law.

2
P~ 20 4 52y 2 () o)) +
,02
+ %%(r(pﬂvfl)) - (p)(T"’l) (36)

All nonlinear corrections to the rotation law are of the order of the gaseous pressure term.
The calculation of the total effect requires the account for the additives to (x) and thus can
be performed in the frame of the 3D problem only.
3. The excitation of the quasi-stationary ”acoustic streaming”.

From the theory of a classical acoustic streaming it is well known that the time-average

flow of the medium is characterized by average values of the mass flux components

I; = <P’Ui); (37)

instead of the average value of the velocity itself.
The radial II, and vertical IT, components of the nonlinear quasi-stationary flow are the

most interesting for the description of the overall dynamics of a disk. It can be shown that
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the components of the quasi-stationary flow obeys the continuity equation

- 19(rIl,) + o1,

divil = . 5 = 0. (38)

It means that the flow has closed streamlines.
Our analysis shows that the exact expression for the radial flow can be obtained only

taking into account the real three-dimensional structure of the disk and density wave:

L__2 {z‘(p) Pud oo
r 8z |wD |L 8z or 8z Or
BELLYL P
rQ (Bz X1 Oz X1
_ _ 90 (i < %»
” (a? oz /) (39)

The same is valid for the vertical flow:

m, = — / [1/r8(rIL,)/0r)dz =
0

10 (10 ()

It should be noted that in two—dimensional and cylindrical systems the effect vanishes.

In former case 8/8z = 0. In the latter case the perturbations are proportional to exp(ikz).

As a result terms like f1g{ do not depend on z, and II, is equal to zero..

The method of the iteration
For the accurate analysis of the vertical structure of the density waves the iteration method
was proposed?®. It is based on the reduction of the system of the linearized dynamical

equations to equation for potential function x; of integro—differential type:

a) = k=0 - o [16)%, ()
0
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where

_ . 2 m?pxa 0 (rpdxi 2m d (Qp
I(z) = —w/; [ﬁf—pl - 11‘5 (Ew)ﬁ'ﬁa—r' (3‘) X1 dz . (42)

We use as a first approximation the solution obtained neglecting motion in the z-
direction, which is equivalent to I(z) = 0, as v, ~ I. Determining in this way the functions
x1(r, z) and pi(r, z) of the first approximation we can substitute them into the integral
(42) and from (41) obtain these functions in the second approximation, and so on.

It can be shown that the iterations are converged if the dispertion relation I(c0) = 0 is
fulfilled.

The rate of the convergence is determined by the parameter3?
N = &*h?/c. (43)

It characterizes the relation between time—scale of the wave 1/@ and the time of the vertical
equilibrium establishment h/c. The greater will be the value N the more complicated will
be the vertical structure of the density wave.

If N is much less then unity, that is for the thin disks, combining the expressions above

one can obtain

I = (p1(z = 0)vr1(2 = 0))

1 18 (rpdxa\ m’pxa 2md (Qp
* pi(z =0) [P1 T ror (D or ) r2 D rodr (3) X1| - (44)

In such representation the first factor characterizes the magnitude of the flow and the second
factor its dependence on z.

It is easily seen that the mass flux averaged over disk thickness is zero

h
/m:m (45)
0
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and the characteristic velocity in the radial direction is about the peculiar velocity in the

wave.

Structure of the flow

The method described allows to determine the vertical structure of the density wave and to
calculate the structure of the nonlinear laminated flow. To illustrate the phenomenon let
us consider a particular case of the tightly wound spiral density wave generated in a disk
with the Toomre parameter®? Q > 1.

In this case the expression for the radial flow has a form

v+1 22 ’2'_:} 22 ¥—1
H,. = - (p1111-1)z=0 ) 1-— EE ﬁ = m y (46)
and
@
(plvrl)z=o = A? PO k_' (47)

<

Here A = p1(z = 0)/po is dimentionless amplitude of the density wave.

Consequently the flow has a form of four vortices separated by the vertical cylindrical
surface r = r. and the central plane of the disk z = 0 (FIGURE 2).

For trailing spirals the radial velocity in the central plane of the disk is negative inside
the corotation circle and is positive outside. For leading spirals the situation is opposite.
Therefore the observational discovery of this flow could provide also an indication of the
position of the corotation circle and the type of the spiral.

Finally we would like to note that the situation described above corresponds to the
dissipativeless disk. In the presence of the dissipation the additional nonlinear accretion —
accretion drift — is caused by the density wave. This flow has a nonzero mass flux and can
plays a significant role in the redistribution of the surface density of a disk.

Particularly in Fridman, Khoruzhii and Gor’kavyi*! it was shown that the excitation
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of such flow can give a reasonable explanation of the formation of gaps and ringlets in
planetary rings. The radial mass flux in this accretion is negative inside the corotation and
positive outside. Therefore, the accretion drift can also explain the secular flows found in

majority of numerical simulations of gaseous galactic disks (see e. g.42).
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FIGURE CAPTIONS

FIGS. 1 Schematic view of the envelope solitones generating in a marginally unstable disks.

(a) The case of dissipativeless disk; (b) Disk with small viscosity.

FIGS. 2 Schematic view of nonlinear radial flow induced by a quasi-stationary density
wave. The radial cut of the disk is presented. The radial scale is squeezed. The flow is
azimutally symmetrical and has a form of four tori. (a) Structure of streamlines in the flow;

(b) The vertical profile of the flow radial velocity.
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