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Perturbation theory, the quasiclassical approximation and Bogomolny’s quantum surface of section
method are combined for the first time. With this method, we can quantize the resonances and
chaotic regions generically appearing in classical perturbation theory. As compared with existing
techniques, our results and calculations are relatively simple and in reduced dimension, and they are
readily visualized. We illustrate by applying the method to a class of problems of recent interest.
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Poincaré found that perturbation theory [PT] on an
integrable classical system fails in two or more dimen-
sions due to ‘small denominators’. Kolmogorov-Arnol’d-
Moser [KAM]! theory greatly illuminated the subject and
showed that the breakdown of PT signals chaos, and
leads to new, small, classical actions dependent on the
perturbation parameter . Quantizing such a theory has
been of interest?. The comparison of Planck’s constant h
with these actions is then important to the quantization
procedure, which is naturally carried out in the quasi-
classical approximation, [QCA].

Phase space trajectories of an integrable system lie on
invariant tori [IT]. Perturbation destroys all periodic or-
bits, on ‘rational’ tori, except for one or more stable and
unstable orbits. The dense rational tori are labelled by
rational numbers p/q. The tori near the rational ones
are also destroyed, to a width in action 1/eSp,. Topolog-
ically new IT are formed around the stable orbits while
chaos develops near the unstable orbit and separatrix.
The characteristic action Sp, generically drops off rapidly
with q. The result is usually pictured, as in Fig.1, on a
Poincaré surface of section [SS], a slice through the tori,
where the structure of alternating stable and unstable
orbits is called an ‘island chain’ or ‘resonances’.

Chaos is conceptually important, but the phase space
volume of the chaotic regions is smaller than any power
of €. This allows an order by order transformation of the
Hamiltonian to a series in integrable ‘normal form’, which
if truncated yields approximate IT, which can be quan-
tized by EBK methods. This and related methods have
been extensively used to find approximations to IT even
though it is known that such a series does not converge.
The method can be efficient numerically as well as pro-
viding some insight2.

We here combine for the first time, PT, the QCA,
and the powerful QCA-SS method of Bogomolny®*. We
achieve quite complete and explicit results. Namely, we
are able to find all the energy levels and SS-wavefunctions
in a WKB approximation for small ¢, provided A is not
too small in a sense to be specified. We do not find or
need to know the whole IT, but only its intersection with
the SS. We also give some numerical checks.

Our SS method has the usual advantages. There is
a reduction in dimension, most dramatically at d = 2,
which allows visualisation of the results, and provides a
convenient formulation for general considerations. If the
Poincaré SS map is simple, the calculations are relatively
easy, but if it tedious to obtain the SS map, and numer-

ical results are the main focus, another method may be
preferred. Our method can sometimes also be applied
when the perturbation is not smooth enough or weak
enough to permit a KAM analysis.

Our method based on ref.2, can also be seen as a “re-
summation” of the perturbed Berry-Tabor trace formula
which yields approximations to the energy levels, rather
than just correlations between them?®5.

There has been recent interest in a number of prob-
lems susceptible to our technique®®, and we have also
learned of several ongoing efforts'®l. These problems
are related to a weakly deformed circular billiard. We
adopt the notation of this case. The Helmholtz equa-
tion (V2 + k%) ¥ = 0 is to be solved for eigenfunctions
¥ = ¥, and eigenvalues k = k, with, say, Dirichlet con-
ditions ¥,{r,0) = 0 on the boundary, 8B. The latter is
expressed in polar coordinates by »(6) = Ro + eAR(6).
These and similar boundary perturbations have heretofore
been treated'? by methods valid only for ky/e << 1.

In quantum language, we take units Rp = 1, b = 1,
particle mass = 1/2, so k is the large dimensionless
wavenumber, (equivalent to 1/k). We take 8B as SS.
Then Bogomolny’s unitary operator is®

10,030 = - (50 g ) (L, (1)

where L is the chord distance between two points on 8B,
specified by polar angles. Expanding,

sin o-¢ _20, l (1 + eAR(o) -; AR(GI)) +
=k(Lo+eLa+....) (2)

kL(8,6') = 2k

The levels k, of the system are given in QCA3 by so-
lution of det(1 — T'(k)) = 0, a resummation of the trace
formula. Our seemingly more difficult technique studies

¥(0) = [ 8T 0,05k19(0), 3)

solvable only for k = k. [% &~ 8¥/8n on 6B.]

A rule of thumb is that only phase space structures of
area h or greater are reflected in the quantized system.
Thus, if /S,y << h ordinary quantum perturbation
theory works well. If /€S, > h, ordinary perturbation
theory breaks down as a number /eS,,/h unperturbed

quantum states are strongly mixed by the perturbation?3.



We begin with what is usually the largest resonance,
g = 2, by making a WKB Ansatz 9(0) = exp (iaf(8))
where df/df = f' ~ 1 and k >> & >> ke. This Ansatz
represents a superposition of angular momentum states
Il ~ & << lmax = k, and for & > 1 conveniently
expresses the mix of states of low angular momentum
needed to diagonalize the Hamiltonian
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FIG. 1. S5 [angular momentum vs angle] of orbits for a)
‘stadium’ and b) ‘smoothed stadium’ ¢ = 0.01. Points on
Iwxs(8), for ‘continuum’,©, ‘separatrix’,+, and ‘bound’, =,
values of E,n, respectively. Three orbits, each iterated 1000
times, coalesce into solid lines in b), where KAM applies.
Orbits started at the symbols iterated forward and backward
15 times appear as dots in a) where KAM fails. Only short
time structure is regular. c¢) Husimi plots for exact states of
Fig. 2, as well as a ‘scar’ state 13a2. Square has area h.

According to the stationary phase [S®] method, the
¢ integral of Eq.(3) is dominated by the region §' ~
f+7 where kLo = 2k lsin 1e-¢ )| is stationary. Expand
sin3(0 — 6') ~ 1 — 166%, 60 =6’ — 0 — « to find

S(6,6') = kL ~ 2k — 1k66% + ke(AR(G) + AR(6')) (4)

Regarding S as a classical generating function, we ob-
tain the surface of section maps (I',8') — (,0) found
earlier’ ® by I = 85/96, I' = —9S5/96¢’.

Returning to Eq.(3), expand all functions of & about
0+ 7. Le. f(@)= f(6+m) +80f(0+ =) to order 86,
since a << k, and AR(6') = AR(f + 7), since a >> ke.
Doing the integral reduces Eq.(3) to

exp[iaf(9)]
=iexp [i (2k + (af')?/k + keV(0) + af (6 + )] (5)

where V(8) = AR(8) + AR(8 + «).

For Eq.(5) to hold, the exponents of order & must com-
bine to give a constant ¢, i.e. f(6 +7) = f(6) + e
Now take & = k+/€ so a solution is possible provided
(f)2 + V(8) is a constant, which we call E,,. Thus

é
£6) =+ / 8 \/Br V(@) (6)
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reminiscent of elementary WKB theory. The constant of
integration is irrelevant. Notice V(8) = V(8 + 7) <=
f(0+7) = f(0) +c. We define lwgp () = af'(#), which
is a simple leading order formula for the intersection of
an IT, labelled by E,,, with the SS. The S® procedure
on Eq.(3) is classically equivalent to the requirement that
(lwxs(8'),9') — (lwxs(8),0) under the SS map.
Assuming for now that E,, > V', [a ‘continuum’ state},

we must choose E,, such that kb f: *d8'\/En -V () =

27m where m is integer, b = /€ and so ¢ = mm/kb. The
condition giving the energy is

exp [i (2k + kb* B, + kbe + 7/2)] = 1 = exp(2win) (7)

which has solutions k = kn m. For AR = 0, this reduces
to 2k + m?/k + mm = (n — })2x equivalent to Debye’s
approximation to Bessel’s function, valid for k large and
m/k small. Thus, we find states labelled m,n with m
an integer angular quantum number satisfying |m| <<
kn,m = mn. There may be symmetries, for example time
reversal which allows real wavefunctions. Then the states
are ¥ = cosaf(0), sinaf(f), which are degenerate at
this level of approximation. This result allows an explicit
estimate of 1; [angular momenturm representation] which,
for JI| > k+/€, decays exponentially for smooth V and as
I=* for the stadium case™®.

If E,, —V changes sign there are ‘bound state’ regions
near the minima of V' where E,, > V', which defines a re-
gion B: 8; < § < 6,, where 8 = ;,, are ‘classical turning
points’. Take 6; as the lower limit in Eq.(6). The quanti-
zation condition is now, approximately, sin(a f(6,)) = 0,
or af(6,) = mm and ¥ = 0, § ¢ B. This treatment, which
can be improved?®, for simplicity neglects tunnelling into
the forbidden regions V' > FE,,, effects on the amplitude
of the wavefunctions and Maslov indices.

The bound states quantize the stable resonance is-
lands and the continuum states quantize the unstable
and perturbed KAM regions. A minimum in V is at a
stable periodic orbit, and a maximum at an unstable one.
‘Scars’ of unstable orbits, Fig. 1c, are states with E,, just
greater than the maximum V. Fig. 2 shows a WKB state
and two indistinguishable numerically obtained states, all
with the same value of k+/€, one with ke = 1.8 the other
for ke = 0.18. The state depends dominantly on k+/€ and
no qualitative changes occur at ke ~ 1. Husimi plots of
these states are shown in Fig. lc.

An illustration is the stadium billiard”%° which has
two semicircular endcaps of radius Rp connected by par-
allel straight sides of length 2a. Then ¢ = a/Rp is as-
sumed small and Ry is taken as Ro &~ Rp + 2a/7 while
AR/Ry = |sinf| — 2/=. This ‘stadium’ choice of AR
has a discontinuous first derivative so KAM does not
apply. The classical map deviates from the ‘invariant’
tori [given approximately by Iy kg (8)] after about 1/4/€
iterations, Fig. la. We also show results, Fig. 1b, for
a ‘smoothed stadium’, a truncated Fourier series of the
‘stadium’ AR(f), where the orbit stays on an IT. The lo-
calization in this case was first” thought to be dynamical
localization in the presence of chaos analogous to Ander-
son localization!®, but now®1° [for ke? < 1] is attributed
to Cantori. Our treatment has no need to invoke Cantori.



Classically the stadium is chaotic with no stable or-
bits. Orbits diffuse in angular momentum at long times’.
[Most SS returns follow lwxg, but a fraction ~ /e
of these returns are near the kink at 8 = 0,7, and
‘randomly’ change E,., on an angular momentum scale
Al ~ ke. This leads to a diffusion constant D o Al2y/e =
k2¢5/2] Our ‘integrable’ results are possible because it is
the short time behavior, times up to the mean level sep-
aration of the mixing states which determines the quan-
tization. That time, measured in SS returns, is, in this
case, €~1/2, provided lwxp is approximately correct.

An average localization width in angular momentum,
l,, where, [in effect] 2 = ¥__ |ca|? [ d8 [¢,|? and c, is the
normalized zero angular momentum component of ¢, has
been numerically obtained®. We find the ¢,’s are small
for ‘continuum’ states, [Fig. 2] and the ‘bound’ states
dominate. Then I, ~ ky/e for these states. Agreement
with this result for fixed k and increasing €, until ke? ~ 1
was obtained®. We show below that our theory should
fail at that point. Ref.1® uses a different definition of I,
and averages over different states, including high angu-
lar momentum states. Since classical phase space in this
problem is hardly homogeneous, it is not surprising their
results are different. Fig. 2 shows a high angular mo-
mentum state, away from a resonant torus, which has a
much narrower distribution.
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FIG. 2. ‘Stadium’ potential [sin#| vs angle. States and
potential are symmetric about zero angle. Bound and contin-
uum, WKB and exact states are shown, with zeroes at WKB
‘energy’ parameter Er,. ke'/? = 42.3 is fixed. Inset: Angular
momentum representation of continuum state m = 48 and
exact state near angular momentum m = 168.
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We turn to general angular momenta and higher or-
ders in €. We first look for solutions of the form ¥ =
exp(iG(6')), where G = 10’ + k(ef2 +€?fa+...). The f’s
are 27r-periodic and ! < k is integer. This, if success-
ful, is a usual PT for G. The S® angle is & ~ 0 + ©;
Where ©; = —2sign(l) cos~1(I/k). Expanding as before
the order ke condition is

f2(6 +©1) — f2(8) = La(8). (8)

We use I and L3(6) as the constant and variable parts of

L»(8,6 + ©;). The constant part kel} contributes to the
phase of Eq.(7). Eq.(8) is solved in terms of r # 0 Fourier
components, i.e. fa, = (exp(ir®;) — 1)—1i2,. This a
good solution unless the denominator is excessively small.
It never strictly vanishes since ©;/2x is an irrational
number. However, if ©; is close to ©,, = 27p/q, where
p/q is a rational number, [corresponding to the strongly
perturbed rational tori of classical perturbation theory],
then the denominator will be small if r is a multlple of q.
It will still be a good solution if Lg,- vanishes or is suffi-
ciently small. Generically Lz, decreases rapidly for large
7. If the small denominators are thus compensated by
small numerators, this perturbation theory can be car-
ried to higher orders by the methods described below. If
not, we need to refine the approach along the lines of our
first Ansatz which corresponds to g = 2.
We are thus motivated to consider

P = exp [i (11,49’ +E(bfi+ b2 fa+ 83 fs+.. N O

The [non-integer] angular momentum I, is chosen to
make the stationary point § = 6 + ©,,. Expanding as
before, the order b requirement is f1(6 + Opg) — f1(6) +
Ip¢Opq/kb = ¢ = constant implying fi is g-periodic, i.e.
periodic with period ©p4. At order 4% we have

i (1)’ + La(8) + £2(6 + ©pg) — fa(0) = B (10)

where L3(6) is the variable part of L3(8,0 + Opq), 0pg =
Isin %Opq| and F,, 1s to be determined. We divide
Eq.(10) into g-periodic and non g-periodic parts. The
nonperiodic terms f; and Lz must combine to give a g-
periodic result, thus

F2(6+ Op) — f2(6) + La2(6) = V, (6) (11)

where V,(6) is to be determined. We ‘g-average’ both
sides giving V¢ (8) = £ 327, L3(8 + jOpy). Expressed in
Fourier components, V;(8) = ¥, Lae?" and f,() =
3 1(1—e"®2a)~1 L% 4 f;(8). The prime indicates that
integers I divisible by ¢ are not included in the sum and
f2(8) is an g-periodic function not yet determined. Then

:I:SI/Z/ d8'[Em — 7,(8") (12)

and considerations like those discussed earlier for ¢ = 2
fix the quantization of E,. The size of V, which de-
creases rapidly with g, determines if powers of \/¢ rather
than e are needed.

Order b® is more complicated: L3(6,6') and f; are
expanded to 86, f to 662 and Lo to §6%. The integral of
Eq.(3) is thus

f déf exp [ 3"" Ly'66° + 2’° (Lg + bfy)66% + iF’&G]

(13)

where F/ = kbf} + kb?Fj with F} = f3 + L,. We denote
derivatives evaluated at 8 = @ + ©p, by primes. [This



integral is done over a region near the original stationary
point. The new stationary point coming from 662 is not
meaningful.] The width of contributing angles 60 is of
order k~1/2 which is small. However, the shift of the
center of the contributing region is expressed by a power
series in b whose leading term is —bf{/L{j. If kb% > 1, the
shift cannot be neglected. Thus, to order b we require

(-f\* 1,.,(fa\° H£F
== —-frl2) -2 24
3 \ LY 2 77 Ly

= _f3(9 + @pq) + f3(6) (14)

where c3 is a constant. Let Fj = f5 + A(6), where A has
already been determined by lower order considerations.
Eq.(14) can only be satisfied if the g-average of the left
hand side vanishes. This determines f} by

gc3__1_ nJ1 | Lo’ (ﬁ)2

o=t T R T\

This expression must also have vanishing angular aver-
age, since fj is the derivative of a periodic function, which
determines ¢3. Thus f; is determined up to an irrelevant
integration .constant, and, then as before, f3 is deter-
mined up to an g-periodic function.

If kb << 1, we may stop here. If not, we can
continue finding higher order corrections, expanding to
higher powers of 86 and keeping the terms L4, Lg, ... 1in
the expansion of the phase of the T operator. The series
will be effectively terminated at order » when kb™ << 1.
However, the method may break down sooner, indicating
a change in the fundamental physics.

In the case AR = |sin §|, there are §-function singular-
ities in fi{’” and Lj. These large derivatives invalidate the
expansion. Thus in the Bunimovich problem we expect
our solution to break down when ke? > 1.

In principle, we can use this technique to study pertuz-
bations of any two dimensional integrable system. ‘Sim-
ply’ use action angle coordinates Iy, I, ©1, Oz, and take
as surface of section ©; = 0. The T operator will have
a phase k(S0(©3 — ©}) + €52(02,03) +...) and the rest
is pretty much the same as above. Other coordinates
may be more convenient in practice, however. The circle
is nice because the action-angle coordinates are imme-
diate. On the other hand, harmonic oscillators coupled
perturbatively need special treatment?.

There are other applications of this technique in non-
perturbative settings, in which certain classes of eigen-
states can be found. The germ of the method first ap-
peared in the study of the ray splitting billiard®, and it
can be used to find the well known ‘bouncing ball’ states
in the [large €] stadium billiard.

We have thus produced a fairly general theory allowing
us to find the effect of perturbations on integrable quan-
tum systems which exploits the quasiclassical approxi-
mation and the surface of section technique. If the per-
turbation classically gives rise to resonances big enough
to influence the quantum problem, we must expand in
the square root of the small parameter. If the resonances
are small, a simpler expansion works.
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