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Abstract

The model of lattice fermions in 2+1 dimensional space is formulated, the critical
states of which are lying in the basis of such physical problems, as 3D Ising Model(3DIM)
and the edge excitations in the Hall effect. The action for this exitations coincides with
the action of so called sign-factor model in 3DIM at one values of its parameters, and
represent a model for the edge excitations, which are responsible for the plato transitions
in the Hall effect, at other values. The model can be formulated also as a loop gas
models in 2D, but unlikely the O(n) models, where the loop fugacity is real, here we have
directed (clochwise and conterclochwise) loops and phase factors "¢ for them. The line
of phase transitions in the parametric space will be found and corresponding continuum
limits of this models will be constructed. It appears, that besides the ordinary critical
line, which separates the dense and diluted phases of the models(like in ordinary O(n)
models), there is a line, which corresponds to the full covering of the space by curves. The
N = 2 twisted superconformal models with SU(2)/U(1) coset model coupling constant

k= g — 2 describes this states.
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1 Introduction

It is well known that in most of important problems of modern physics, such as quark
confinement in Quantum Chromodynamics (QCD) or high temperature superconductiv-
ity, the understanding and description of ground state is crucial for the construction of
the theory of corresponding phenomena. For a systems in the strong coupling regime the
ground state is far from trivial vacuum, as we have in the perturbative theories, being
essentially structured. Hence, the important step in developing such theories should be
the understanding of the ground state.

The aim of this article is the formulation of the lattice model in 2+1 dimensional
space and investigation of its critical states, which,as it seems to us, is lying in the basis
of such physical problems as 3D- Ising model (3DIM) [1, 2, 3] and edge excitations,
responsible for the plato transitions in the Hall effect [4, 6, 7).

In the presented model we have used the essential ingredients of the model for so-called
sign-factor, formulated in the string representation if the 3DIM [3], namely, the chiral
fermions, which are hopping along the arrows on the Manhattan lattice (ML) (Fig.1) in
the presence of some external SU(2) gauge field.

The external gauge field in [3] was induced by the random surface in the 3D regular
lattice and consists on background fluxes per plaquette, which takes values in the Z,
center of the SU(2) group.

Now, simplifying the sitﬁation, we will consider the tight-binding model for electrons,
which are hopping along the arrows of ML in the external U(1) field, which formed by
+27p/q fluxes per plaquette, arranged in a chess-like order. The model describes the
motion of electrons in a regular lattice of magnetic vortices with the staggered directions
of fluxes, which are placed in the middle points of plaquettes.

Being interested in a low lying ( £ ~ 0) critical excitations of the model we are
changing the creation and annihilation operators of electrons in the proposed Hamiltonian
by Grassmann valued fields in two dimensional space and obtain the action for them.

By taking functional integral over this Grassmann variables we will find an alternative



formulation for the partition function as loop gas model, expressed as a statistical sum
of random non self-intersecting curves (due to ML structure), which appeared with the
usual Boltzmann weights as e™F and fugacities equal to phase factor 7 = —e*?"%*. One
should not mix this models with the usual loop-gas (O(n) or Q-Potts) models [18, 19],
where the fugacities are real and contours are not oriented.

In this article we will consider the limit %t — 0, where m is the chemical potential
and t is the hopping parameters of electrons, when the contours in loop gas formulation
of the model fully cover the 2d space (or random surface in general case). The limits
m — 0 and ¢ — oo are equivalent after corresponding rescaling of the partition function
"~ and we will refer it as fully packed phase. It will be shown that in this limit the model
of low lying states is equivalent to twisted NV = 2 superconformal field theory [24, 25],
the characteristic SU(2)/U(1) coset model coupling constant of which is k = £ — 2. As
it is well known (8, 9] this twisted models are topological [10, 11], so we have a statistical
physics models corresponding to them.

For sign-factor of the 3DIM (3] it is necessary to consider fermions in fully packed
phase and in the ® = m-flux background, which means that fugacities of the electronic
paths are equal to one. But for the full construction of sign factor it is necessary to add
to the action a pair of vertex operators, which corresponds to the creation of additional
impurity fluxes ® = 7 at some points. This fluxes are induced by the Whitney singu-
larities [12] of the immersed with the defects 2D manifolds into the 3D Euclidean space,
* which appeared in sign-factors construction of the 3DIM [3]. Here we will not consider
impurity fluxes, trying first to construct the continuum limit of the model without them,
but proceeding in this way we hope to have a topological description of the sign-factor
in terms of the geometry of surfaces.

Another interesting application of our model is Hall effect, which corresponds to an-
other point of parametric space (m,t) The main characteristics of the Hall effect is the
fact that the states in the bulk are forming incompressible liquid of localized electrons [5],
while there is delocalized states near the edges of the sample, which at the appropriate

density of electrons (or at some external magnetic fields) becomes occupied as a Fermi



level and, hence, is responsible for the longitudinal conductivity at the plato transition
points. It appears, that our model demonstrates similar future. Moreover, by construct-
ing the transfer matrix for the low lying excitations in our model, one can recognize
the transfer matrix, proposed by Chalker and Coddington in [13] for scattering of the
edge excitations. It will be shown [14], this long range excitations can be described as a
(0,1)-spin fermionic system with the central charge c = —2.

In the Section 2 we present the description of the model and calculate the spectrum
of excitations.

In the Section 3 we construct the transfer matrix and calculate the spectrum of the
model on ML in the absence of the background fluxes. In the appropriate scaling limit
of the parameters of the model we will have a massless (0,1)-spin fermionic system with
the central charge ¢ = —2.

Section 4 intended for the analyze of critical states and on representation of back-
ground U(1) fluxes via vertex operators of two fluctuating scalar fields with opposite
statistics. The construction of the continuum limit of the whole model for the low lying
excitations will be completed in the Section 5.

It is worth to mention now, that proposed in [3] and here Hamiltonian is non-
Hermitian. Recently non-Hermitian Hamiltonians have attracted much attention in re-
spect with vortex pinning problem in superconductors [31], directed quantum chaos [32]

and in study of sliding of charge density waves in disorder systems [33}.

2 Description of the Model

The Manhattan lattice (ML) is the lattice, where there are continuous arrows on the
links with the opposite directions on the neighbor parallel lines (Fig.1). The arrows form
a set of vectors fi;; € S. ML originally was defined by Kasteleyn [15] in connection with
the problem of single Hamiltonian walk (HW).
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The multiple HW problem was considered and solved by Duplantie and David [17].
Here we will consider flat M L, though the random scarface with the M L structure, which
is necessary to have for 3DIM, also can be defined easily [3, 19].

The plaquettes of ML are divided into four groups, A, and B, (a=1,2), destinated in
the chess like order. The A-plaquettes differ from B-plaquettes by the fact, that arrows
are circulating around them, while there is no circulation for B-plaquettes. A;(Az) has
clockwise(counterclockwise) circulation, while B; differs from the B; by rotation on /4
(see fig.1). We will organize the walk of the fermions along the arrows with hopping para-
meters, which are invariant on double lattice spacings translations, simultaneously being
in the disordered U(1) (magnetic) field. The magnetic field is defined as follows. There
is U(1) flux & = 2wp/q in the A-plaquettes and ® = —27 p/q, in the B-plaquettes (p and
q are mutually prime integer numbers). On the random ML only the A-type plaquettes
can be deformed into n-angles, while B-type plaquettes will stay as quadrangles.

We will consider one fermionic degree of freedom per lattice site. Because of ML
structure the translational invariance occur only for double lattice spacing translations in

both directions, the corresponding Brillouin zone of fermions will be reduced and we will
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have four bands. Let Ci", C%, (i = 1,2, 3, 4) are corresponding creation and annihilation
operators at the lattice sites 77 = (n, m). For example (see Fig.1) we can mark operators

as follows

Ck atthe = (odd, odd)

C2 atthe i = (odd, even)
C: atthe 7 = (even, even)

C; atthe i = (even, odd)

The Hamiltonian of the model we would like to define is

H(Cx®) = 3 (4uCF UnaChiz + 1405 Un aChyz + t02C5 U, aChy it
i, i
on ML }
+ iz 0721+Uﬁ,ﬁ0f1i+,1 +taCatUs, ﬁCf]}_’_,-; + t2aC3t Uy zC5 it
+ t230,-2£+Uﬁ’, ﬁcg-_,_ﬁ + t12C%+Uﬁ’ ﬁC§+ﬁ) +m Z C:'i+0% (1)

sites
i=1,..4

where [i are the unit vectors on ML along of directions of the arrows, m is the chemical

potential and relations
Usg €U(1), na=n=][JUUUU = ¢ = >r/1,
A

ng =n"'=[[UUUU = e* (2)
B

defines the external U(1) magnetic field background. The fermion hopping amplitudes #;;
can be regarded as metric elements on the lattice and may be represented as pe'# %, where
p is the conformal factor and In p 4 I's z can be regarded as gravitational connection. It
is important to mention the absence of the complex conjugate terms in the expression
(1) and therefore the Hamiltonian is non-Hermitian.

So we have the Hamiltonian for fermions, which are living on Manhattan lattice in
the disordered external magnetic and gravitational backgrounds.

One can write the partition function for the excitations of energy E of the model as

~H(CL;®)+E Y sites citrel

Z(E) = / f[l II dC3dCie (3)
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where C% and C% are now independent Grassmann fields, corresponding to C% and Ci'.
In the Bloch wave basis and after some simple gauge fixing the Hamiltonian (1) can

be written as

) ) - - 2 L
H(C;; @) = ZC%‘*H(k),-jC’%, ke = —L—l,l =0, gy T 1, (4)
i
2n N
ky = Fn,n =0, g 1,
where ’H(E),-j are the elements of the following matrix
m wtige~ v 0 wlt 7=
- w‘ltzle_"‘” m wt23e""= 0
H(k) = . . : (5)
0 w_1t326’k‘° m wt34e”‘v
wt4le_"’°‘ 0, w_1t436ik" m
and w = ¥4, Wt = 1.

It’s not hard now to find the spectrum of the model (1) by diagonalizing 4 x 4 matrix
of ’H(E) The answer is obviously invariant under double lattice space periodic U(1)

transformations and can be written as
1 : . , .
E=m =+ {'2' (t23t3262"" + tiatae e 4 tygty,e + tlztgle_z"‘“) +

1 . . | o
+ [— (t23t3262lk= + t14t4le’f2:kz + tagtaa e2iky + t1atsy 6—2'kv) .

4
1/2}1/2 (©)

One can see, that when m=0 we have a E — —F symmetry in the spectrum of the

—  (tiatsz — Mtiatsa)(tastar — ﬂ_1t43t21)]

" model, which is consequence of anticommutativity of the Hamiltonian ’H(E) with the

chirality operator I’

{#(k),T} =0, TI= (;é . (7)

I 'is a 2 x 2 unit matrix.
Let as now to investigate the critical E = 0 states of the system and consider homo-

geneous £;; = t case for simplicity. It is easy to find from (6), that £ = 0 for

2 P t2
cos 2k, + cos 2k, = ;n—tz + 2(sin 5)2W’ (8)
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and the only solutions of this equation in the limit 2 — 0 are imaginary k, (or k,)
with |k| = oco. In general, the real solutions appears by appropriate choose of hopping
parameters t;; both, for finite and infinite limits, only for & = 0. This means that wave
functions of F = 0 states exponentially grows to the boundary of the sample, localizing
fermions there. One can call this states as edge states. What we will do further in this
article, is just to prove, that in a case of appropriate choose of hopping parameters, this
edge excitations are massless and find the corresponding field theory for them.

The partition function for this edge excitations is simply Z(0) in (3), which means
that the original Hamiltonian (1) in 241 space, written in Grassmann fields (instead of

creation-annihilation operators), can be considered as the action for them in 2D.
A(C;; @) =H(Cy @) (9)

Without loss of generality we can re-scale Grassmann fields in the action A(Cj; ®) in
order to fix m = 1. This will require an appropriate rescaling of the partition function.
Because of Grassmann properties of the fields C%, Z(0) is equal to the sum of products
of Wilson loop integrals from U(1) and gravitational fields over all possible oriented
contours, which covers the lattice. The U(1) loop integrals represents the magnetic
fluxes through the contours, which is always equal to & = +2nip/q, due to the disordered
character and the fact, that in ML all closed curves contain odd number of plaquettes.
Therefore
20) = [ TIT[ dC3dCie ™ = 5 (cop(cn)™ [[8()8(r), (10

i=1 7 all possible o,T
coverings

where N;(Nz) is the number of the closed contours v,(%,), (0,7 = 1...N1(IV;)) with
clockwise {anti-clockwise) orientations and
B(7) = [ pe™™#. (11)
iy
The sum in (10) is taken over all possible coverings. We formally will not make differ-
ence between clockwise and counterclockwise notations for loops in the future if its not

necessary.



In the homogeneous case, when t;; = t, one can find a similarity of (10) with the
critical Q-state Potts or the O(n) loop gas models, when the loop weight factor(the
fugacity)

—n=4/Q=n, (12)
“(see [16, 18, 19]). The essential difference of our model from the mentioned ones is the
fact, that instead of real loop weight factor we have a phase factor —7, defined by (2).

After corresponding rescaling of Z(0) in the limit 2 — 0 by ¢~%¥ (LN is the number
of ML lattice sites) only the dense coverings of the lattice by loops will survive (the
mass term will not contribute) and all loops will appear only with fugacities —n*!. The
p/q = 1/2 case is distinguished by its connection with the sign factor of 3DIM [3]. For
this case we have —p = 1. The generalization of the model for random surfaces with
ML structure on them is straightforward and we will discuss it later. The sign of the
surfaces, appeared here, are essentially connected with the singularities at the endpoints
of selfintersection lines of the immersed surface [3]. They can be regarded as U(1) flux
impurities, which ensure phase factor (-1) for the each contour rounding them.

What immediately follows from (8) is that at the

m

(T)2=2i\/4—(2sin<p/2)2=2iV2+2cosq> (13)

we have critical behavior of the free energy of 2D theory and long range excitations in
the spectrum. Formula (13) very much reminds the well known formula for 2D O(n)-loop

gas models [16, 18, 19] phase transition condition [16], if
n = —2cos P

What we are going to demonstrate here is that the model has continuum limit (trans-

ition line) for all p/q at t — oo too.



3 The Spectrum of the Model in the absence of Ex-
ternal Magnetic Field

As we can see from the expression (8), in the limit of ¢ — oo, which needs for a
fully packed phase, there is obvious massless excitations in the limit & — 0. This fact
determines the way to proceed further, namely we will consider fermionic fields in the
empty (& — 0) background and construct his continuum limit. The external U(1) fields
and background fluxes will be included into the model via correlators of two scalar fields,
¢1 and s, which interacts with fermions.

In this section we will analyze the model in case of ® — 0. It is appeared that the
best approach of handling the problem is the Transfer Matrix approach. Following [20]
let’s find quantum Hamiltonian on a chain, such that his coherent-state path-integral
along imaginary time produces action, which coincides with A(¢*; 0)

Z(®=0)=TrTV? = / T1 d%; md; me— 40 (14)
im

(From the Fig.1 we see, that due to geometric properties of ML, the translational
invariance of our model is broken for one-lattice spacing translations and present only for
two-lattice spacing translations. That means the Transfer Matrix we need is the product
of two different Transfer Matrices, defined on two, B; and B,, horizontal chains (choose

vertical direction as imaginary time).
T =Tp,Tp, =: e 81 : 7 H5s ¢ (15)

where :: means some ordering of operators and will be defined below. The Transfer
Matrix will act on a Hilbert space of fermionic states on a 1D chain.

The geometry of ML shows (see Fig.1) that one can define T, on a chain of B;
plaquettes (and correspondingly T,- on a B,) and that is enough to restore the action
(1). The structure of Transfer Matrices is easy to fix by shrinking vertical lines (time
direction) to points on a chain. Lets define Hp, and Hp, as follows

— + + + !+
—Hp, = Z (t2302j+102j — taCici41 + Micgico; + M1czj+102j+1) )
J



—HBz = Z (—tggc;_jcb'_.l + t14C;-j_102j + Mzc{,ich- -+ M;C;j_l_lCzj.*.]_) . (16)
J

Here ¢ and c; are usual fermion creation-annihilation operators, defined on a vacuum
|0 >. The hopping parameter t;; are the same as before, while M, ; and M{,z have to be

specified later.

Let’s define coherent states on the sites of chain as follows:
[1h25) = €%5°%10),
(5] = (0|e¥% . (17)
for the even sites and
|[92541) = (Fi11 — P2541)10),
(Y2i41] = (O|(c2j1 + Paj41) (18)

for the odd sites. The Grassmann variables 1;, ¥; anti-commutes with operators ¢, c;.

This states has following properties

Caj|taj) = —ajl2;),
(thajlcd; = —(Waj |92
FivaP2ir1) = Pojra[Pajea), (19)

(Yaj41lc2i01 = —(W211[h2511,

with the overlap of two different type of coherent states

(thajlepa) = e¥¥%,

(aj1|Was41) = ePrrrdai (20)
"and the completeness relation of the states as

/ dajdipa|92;) (Dojle¥¥ P = 1,

f d"sz+’1d¢2j+1|1/;2j+1>(1/125+1|€¢2"+"/;”'+1 = L (21)
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The state of the chain at the time m is product of the states at sites

L/2
[¥(m)) = l:[llfﬁaj(m))lfﬁzjﬂ(m)),
L/2
(Y(m)| = E(ﬂﬁzj(m)l(«ﬁzm(m)l, (22)

where L is the length of the chain.

Now the calculation of partition function with Transfer Matrix 7' by use of formulas
(15-22) is easy to perform. If we will choose usual normal ordering for the fermions at
even points of the chain and the hole operator ordering at odd points of the chain in
the expression (15) for T, then the matrix elements between coherent states, defined in
(17-18), can be obtained simply by changing operators c;, ¢} by their eigenvalues 1;, 9;.
This type of ordering means that in ground state half of states are filled by fermions.

Then for the partition function we will have

Zo = TrT"? =Tr(Ts,Ts,)"? =
= [ TL s mdipime (29)

im

where

S@W,y) = Y [t23'/—)2j+1(m)¢2j (m) + tarPaj1(m + 1)ghni(m + 1)+

jm

+  tsatajra(m + 2)gpa(m + 2) + t141ﬁ21_'+1 (m + 1)thaja(m + 1)+

+ (14 My)gaj(m)ai(m + 1) + (1 + Ma)hyi(m + L)yi(m + 2)+

+ (1= My)Popa(m)aisa(m + 1) + (1 — My)Pajpa(m + Dby (m + 2)] +
+ sz [Bas42(m)p241(m) + s (m)y;(m)], (24)

which is exactly coinciding with the expression (1) for zero external magnetic field, if

parameters ;; relates to M, and M{yz as follows

t43=1+M1; t34=1+M2,
t21 =1- Mi, t12 =1- M; (25)

11



Our aim is the investigation of the Transfer Matrix T in the limit ¢ — oo after the
rescaling of partition function by ¢~V. This is necessary for 3DIM sign factor.

For construction of the continuum limit of the Hamiltonian H of the model defined
by

T=e¢H = e8¢ ¥ (26)

we need to analyze his spectrum. Let make Furies transformation of the fermionic fields

co; and ¢z;41 in (26) separately

i(25+1)p

1
Ca; = —= C1.5€
1 s
Coj = szcz,peﬂ”’ (27)
pr

where p = %@l , 1 =0,...L/2 — 1 are the momentums, which corresponds to Bloch states
in the problem with the translational invariance on two lattice spacing. We have two
bands in the reduced Brillouin zone. It is obvious that the full Transfer Matrix 7' can be

represented as
T = H 1 Tp i Top 1= HTP, (28)
P P

where T3, and Ty, are the Furies transforms of e 81 and e¥8: correspondingly.
Our aim is now to represent the product of normal ordered forms of Tj, and T3, in

the expression (28) for T}, as

T, = DefrStulrptnzs) — De—Hp (29)
Here the operators
+ ot o . G — ot o . G ot +
ST =c3,01p5 S =Clplap S =Coplap —ClpCip (30)

form an Sl, algebra and can be represented as Pauli matrices, while
Nip = CipCip, 1=1,2 (31)

are particle number operators.

12



After some obvious, but not trivial calculations we will have for &, = (€2)'/2 the

chemical potential x4 and D following expressions

D = 2ty
28— l34t43
ti2tn
14 A1 Ay + togtsee? + tyatgne 2P
coshe, = . 32
i 2(t1atartsatss)t/? (32)
where
Ay =tyity3 — tartas,
Az = tiatss — tiats. (33)

In the Appendix we will represent an alternative way of obtaining of this formulas.
Diagonalization of the Hamiltonian H, in (29) is easy to realize considering it as an

Sly algebra element. It is clear that
Hy= —£,5% — p(nip + nap), (34)
hence the dispersion relations for two bands of the spectrum are
Eip = (&p—n),
Bap = (—&5—p). (35)

Though we start chapter by talking about absence of the external U(1) field but it
is easy to follow that our expressions remain true for arbitrary double lattice spacing
periodic external fields. In this case simply the hopping parameters t;; are complex and
the phases represent the U(1) field. In the gauge used in (5) we will have the same

expression (32) for the spectrum, but where now

Ay = w gty — witatss,

Ag = wtyatsy — w4tz (36)

The expression (13) for the critical line follows from the (32) and (36) as a condition

gp = 0.
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Up to now we were considering the spectrum in general case, but for our loop gas
model in a fully packed regime it is necessary to consider homogeneous t;; — t — oo
limit. Asimmediately follows from the (32), this limit is singular and needs to be analyzed
properly.

Let as go to the limit £ — oo together with ® — 0 always staying on the critical line

(13), that is

1
lgg =t =tu=tlg=tn=tp=tu=tg=1t=—3%. (37)
2sin 3
Then, it easy to see from (32), that in the limit & — 0 we will have y = 0 and
coshe, = 2 + cos 2p. (38)

In the next section we will argue why this particular scaling limit was chosen.
iFrom the (35) one can see that the spectrum of the model is gap-less and at p = +5
two bands touch each other with e+z = 0. Therefore, when the ground state is filled up

to Fermi level corresponding to £7/2, the spectrum is linear near that point
gp = 12k, (39)

and we can construct SO(2) invariant field theory. This corresponds to half filling of the
states. The situation is similar to one in the Luttinger liquid [22], but it is necessary to
calculate the central charge of this massless excitations.

The spectrum was analyzed in [17] in connection with Hamiltonian walk problem by
calculation of the partition function and there was established, that it corresponds to
(0, 1) spin fermionic system with central charge ¢ = —2. We will confirm now this result
by calculating of the finite size corrections to ground state energy of the model [30].

Following [17] we use the Euler-MacLaurin formula for the approximations of finite

sums
By = Ze,,=L/27rf epdp +
) 0
b 2T (/) ~ £ (=m/2) + (40)
TARY g'(—m .
14



where €, is the negative energy branch of the spectrum and €'(7/2) and ¢’(—n/2) are the

velocities of right(left) excitations at the Fermi level, equal to
g'(r/2) = —€'(—m/2) = 2. (41)

Comparing (40) with the finite size correction formula of excitations with central

charge ¢
T
E=—Le— 22
Ley 61" (42)
one will obtain ¢ = —2 and hence, we have a fermionic system of spins (0,1) [23].

It is known, that (0,1) spin system is just the Faddeev-Popov ghost fields for area
preserving transformations.

As it was stressed before, for the partition function of the sign-factors model (let us
mention here again that for the full sign-factor we should add to model additional vertex
operators as perturbations, which corresponds to Whitney singularities) we should absorb

t into 1, 9 by the scale transformations
Y =ty =t (43)

and appropriately rescale the partition function Z(® — 0) by the ¢~ due to fermionic

measure in (14), where LN is the number of fermionic degrees of freedom.Then we will

come to -
1 D+ . Py
tL—NZ((} -— 0) = tLN Z(C = —2) = (48111 Z) 4 Z(C = —2) (44)

Analyzing the Det’H(E) in a fully packed phase m — 0 one can easily see, that
(4sin %)% behavior (which — 0 with ® — 0) appeared in the answer as a result of
phase factor interference in the sum over all possible coverings of the surface by loops,
while any particular representative of this sum is finit in the limit & — 0. The ratio of
DetH (k) over (4sin %)%, which is Z(c = —2), represents in the limit of the fully packed
phase the sum over the variety of coverings of space by curves with the fixed number of

loops.
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It is worth to mention in the end of this section, that in case of following choose of
parameters

ty = t1p = to3 = —t34 = tanhé,

_ 1
t1a =t =32 = —ta3 = coshd’ (45)

the transfer matrix constructed here in (28-33) will be field theory realization of Chalker
and Coddingtons transfer matrix for the scattering edge excitations in the Hall effect.

They again form (0, 1)-spin system with the central charge ¢ = —2 [14].

4 Interaction with the External Magnetic Field

In this section we will reproduce external U(1) field and background fluxes via two
scalar fields.

First, let us introduce dual Manhattan Lattice ML with sites in the middle points of
the ML plaquettes (A and B points in Fig.1) and arrow structure with vectors ¥ on the
links. Vectors fi and 7 on ML and ML are dual each other and intersects perpendicularly
in the middle points of the corresponding links.

Consider scalar fields () and @(n') (@2 € ML,n' € ML) on the ML and ML
correspondingly and define following action for them

S(p, ) = % > (i + i) — (i) (#(n! +7) — p(n)) . (46)
A
7
In the (46) 7 and n' are neighbor sites on ML and ML correspondingly, vectors

and 7 exits from 7 and n' and crosses each other in the middle points of the links.

By introducing ¢, () and ¢(7) as
() = 3 (p(7) + 9@, Ba(7) = 3 (0(7) — B() (47)

we can separate the holomorphic ¢, 2(2), (2 = n +4m) and antiholomorphic ¢ 2(2), (zZ =

n — im) parts in each of the fields, which will have following correlators [21]

(p1(2)pr(w)) = —G(|z —w]) —darg(z — w),
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(p2(2)pa(w)) = +G(|z - wl) +iarg(z — w) (48)

In the continuum limit correlators transforming into ordinary correlators of free scalar
fields in 2D.
G(|z — w|)eso = In |z — w|, (49)

and hence

G(z — w)eso — In(z — w). | (50)

Let us introduce now following vertex operators

Va(z,2) = eHwHEa,
Ve (2,2) = e‘i%n‘pl—i%nwz, (51)

The charges @,z in (51) have to be defined whereas Q(w) = R{w)e? (€? is the lat-
tice spacing) can be interpreted as solid angle of the plaquette, induced by background
curvature Ry(w). We define the following background curvature in this case

+27 weA |
fa(w) = { 52)

-27 w€EB

Let us define now a new fermionic fields in the sites z of the original ML lattice

hi(e) = FnEHRROC (2, 7) = Vi(2,2)Ci(2, 2),
a(z) = TR0y (2, 2) = Vi(2,2)Ca(2, 2), (53)
’¢3(Z) = ei%l¢1(‘)+i%z¢’(z)03(z,2) = VE;(Z, 2)03(2, 2),

a(z) = FnEFe@C,(z,2) = Vi(z,2)Cu(z, 2).

In the expression (53) ¢1(z) and ¢2(Z) are the holomorphic and antiholomorphic parts
of the scalar fields p; and g, correspondingly. The ;(z) fields are defined by complex
conjugation.- The necessity of the introduction of the two ¢; and ¢, fields is dictated
by the number of degrees of freedom of original C;(z) fermionic fields. Also, as we will
see later, the presence of two scalar fields ¢, » with opposite sign of kinetic energy and

appropriate choose of Q) 2, insures the cancellation of total central charge of the theory,
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which we need in the model (1, 10) by definition. The choice of coefficients &'3 in the
exponents of (53) is dictated by coincidence of parameters of the Jacobian of C; — ;
transformations with the background charges %;39 in V4, Vg (see (51)).

We would like to show, that the partition function (10) is equal to

Z(0) = f HHdC"dCa II dea(z)dpa(z) TI  Valz 2)Va(z, 2)eSerral+Ali0)

i=1 & zEsites z€plaquettes
a=1,2

(54)
where S(p1¢2) is the action of the free scalar fields ¢y, 2 with correlators (48) and
A(1;;0) is the fermionic action (9) on ML, but with fields (53), placed in the zero
external magnetic field.

Let’s first make integration over C%. Because of Grassmann character of variables C},
the nonzero contribution in integral (54) can have only terms, where at each site z of
ML we have one pair CLC%. The expansion of eA(¥5% in (54) over 1; produces two type
of nonzero products of 1;(2)1;(z) at the each site of ML. The first come as a product of
hopping terms in A(%;;0) along closed oriented contours 7,,(c = 1,...,k) on ML. The
second come as a product of mass terms M1;(2)y;(z) in A(¢);;0) along another closed
oriented contours 7., (r =1, ...,1), which covers the complement to <, sites. The sum of
contours v,U#, densely covers ML by the all possible ways. Hence the term, which have
nonzero contribution into partition function Z(0) is the following

k 1
P= X 11 I s T G@tsCe+) I I 2 =

all possible g=1.7iCy, 2€Yo 7=12€%>
coverings

k
ST I0 I e T Ci(2)Ci(z + p)Vit (2)V;(z + ) H II Ci(z)Ci(2) (55)

all possible g=1 ficy, Z2E% 7=1 2%,
coverings

The integration over g, in (54) means the calculation of average of the product of
operators Vy, Vp and ¢, dependent parts of the fields ;(z) in (55) (see definition of ¢;
in (53)).

Therefore
4 ~
z(0) = [II1] dcidciz
i=1 i
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Z =( I Valz2)Va(2 2)P)p1psZp = Z1222:Z, (56)

z€ plaquettes

where Z, is the partition function of the free scalar fields ¢ 2

Z‘P S /DQ01D9026_S((‘01’¢2) (57)

The variable Z; in (56) consists only of mutual correlators of vertex operators V, 5
and equal

Z, = exp ( >3 ((%) (ff;) ) Q(2)G(|= - w|)Q(w)) (58)

z,w€ plaquettes
of ML

The Z; consists of mutual correlators of ¢; 2, dependent parts of Grassmann fields 9;

in (58) and (56).

Zy = exp ( 3 ((%) (%2) ) M(2)G(|z — wl)M(w)) (59)

z,wE sites
of ML

where

( ) +1, for 1/J1,3; (60)
—1, for ¢2,4,

We see from (58,59) that condition @; = Q2 = Q is insuring the full cancellation of
G(]z — w|) dependent parts in Z; », giving

Z1 = Zz =1 (61)

The term Z3 in (56) is defined by the correlators of VA'}g with ¢, dependent parts of ;.
It is easy to see, that

Z = % I s [] GOK OKG+uCE+r, (6

all possible g=1 ficy, zZE%e
coverings

where
K(z) = e4,, 23, 2w Gz—w)— G(z—m)] (63)

and the sum is taken over middle points of all (A and B) plaquettes.
The product K*(z)K(z + p) in (62), being element of U(1) group, is nothing but
U(1) gauge field part in the action (1) in fixed gauge. The integration over fermionic
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fields C;(z),C;i(z) in partition function is simple and produces (-1) for the each closed

contour [, in the (62) together with the product of expressions
2
K*(2)K(z +p) = e %9=,=+e(W)9(W), (64)

along them. In (64) ©, .., is the looking angle of the link (z,z + ) from the middle
point w of some plaquette in ML (see Fig.2) and is equal to 2. Finally, by use of (52),
we have the following expression for each contour in (62)

JIROLCEE s (65)

Z,z-+€
99— +@ ( ) ® @
V
o o ® [
Fig.2.

In order to have a phase factor e2™?/9 which we need, one should take

Q= 2p/_¢1 (66)

One can obtain (65), taking into account (52) and the fact, that only points inside
the contour C in (64) contribute to the phase and due to the Manhattan nature of the
lattice we always have an extra + or — value for the Q(w). An additional — sign for each

closed contours appeared because of the fermionic measure for the loops.
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Therefore, after integration over ¢,, the whole partition function Z(0) reduces to the
product of factors

4 k
Z(0) = Z¢/HH dCydC; ] GCi(2)Ci(2) > T (—€®) IJ pe™*2.  (67)

i=1 7 all lattice all coverings =1 RAEYe
points

In the limit % — 0 the last component of the product in (67) will be cancelled by the
rescaling factor £~LV. The C, C-part and the last term of this expression represents the
variety of coverings of the lattice by fermionic curves with the fixed number of loops and,
as it was pointed out in the section 2, is equal to Z(¢ = —2) in the limit of fully packed
phase B — 0. As for partition function of free scalars Z, in continuum limit, in SO(2)
rotation invariant regularization we have

1
4872

7, = exp (— [ )6z - w|)Q(w)) (68)

for each of them, which corresponds to central charge ¢ = 1. Therefore, the fermionic
and bosonic parts the expression (67) cancel each other and we are left with
K
2= > (=), (69)
all coverings o=1
where ®, is the U(1) flux inside the contour <, and this expression indeed coincides with
the (10) in the % — 0 limit. Now it is clear why in the section 3 we have considered a
particular scaling limit. Only in that unique limit we can have cancellation of bosonic
and fermionic anomalous parts and our partition function will represent the fully packed
limit of the model, defined in (10).
Expression (68) together with (58) shows that the central charges of scalars are 1+3Q2.
Finally let us make the following remark. Introduced two free scalars with the opposite

statistics are equivalent to two dimensional vector field
As = aP1 + eaﬁaﬂ‘p2 (70)

with the statistical weights equal
P(A.) = exp ( / Ag) . (71)
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5 Continuum Limit of the Model

In the previous sections we have represented model as a free fermionic spin (0.1) system
with central charge ¢ = —2, interaction of which with the external magnetic field can be
constructed via two scalars of opposite statistics and vacuum charge Q? = 2p/q. For the

spin (0,1) fermionic system the action is
A, 0) = . VLY + PrOYR (72)
7r

where ¥gr(v1) corresponds to 15 4(11,3) fermions.

The formulation of continuum limit of the vacuum charge parts of the scalar fields
in the action, which corresponds to background flux operator, is straightforward (see
expressions of vertex operators in (54))

I Va(z,2)Vs(z,2) = exp (Z i%ﬂ(w)(gol +(p2)) =

z€plaquettes

= o (i [ PuR@)e+e) (73)

One can generalize the model (4) for the random surfaces. All closed random M L-s
are in one to one correspondence with the closed surfaces in regular 3D lattice. Following
[3] they can be constructed as follows. Let us consider middle points of the links on such
surface in regular lattice as sites of the new lattice which we would like to construct
and connect them with links. Now, by drawing arrows on these links as in Fig.3 we will
complete the construction. The B; and B, plaquettes in Fig.3 coincides after rotation

on /2.

Fig.3.
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The B, faces of ML are always quadrangles, while A; ; type faces, which formed
around sites of the original 3D regular lattice, can be arbitrary n-angle, with n= 3,4...9
(in case of regular target lattice). Hence, the curvature of A; ; faces can be changed and

become
Q= Z(4—n) (74)

We would like to have a U(1) flux in the n-angle face on random ML, equal to 3n,
which is proportional to area of the n-angle. Then the corresponding solid angle can be

written as
Qo — Qp(w) =27 — Q. (w) w € A;

Qw) = { ,
—Qo =27 w e B,

and the formula for the loop gas representation of the models partition function (10) for

(75)

random surface will be modified as follows

z= 3 II(=n(3))(-n(3))2(7)2(:), (76)

all possible o,T
coverings

where
p
) = exp | 222 f Ql, 77
(o) = eop (242 [ ) ()
with vy, = 0D. So we see, that response of the model on inclusion of gravity is simply

consists in appearance of the gravitational curvature of the random surface in the vacuum

charge term (73) of the effective action S
R= Rba.ckground + Rgrav (78)
Finally we get the action of the defined model for the continuum limit as
1 2, |7 7 5 1, 5 1, 5
S =1 [ &2 [§u0%s + Frdbn + 3001001 — 300200r
-~ i 2R+ (79)

Here the fermionic field 9 is the (0,1) spin system with central charge equal to —2, which
is necessary to cancel +2 part of the central charge of free fields ¢; and ¢, appearing in

continuum limit in addition to 3Q?, calculated in (58).
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It is easy to recognize in the obtained action the action for twisted N = 2 supercon-
formal theories [24, 25], but in order to fix the concrete type of the theory, the SU(2)/U(1)
coupling constant k, it is necessary also to compare the U(1) current. The usual U(1) cur-
rent on lattice is defined by hopping of fermions and the z (correspondingly Z) component

of such current simply is
Je = Jaa + iarmrm-m = Carm (Ca +iCh 5 45)) (80)

where u; and pus are the vectors on the ML in z and y directions correspondingly. By use
of expressions (53) for C(z, z), and with the help of properties of the vertex operators,
it is not hard to find, that

J: = YL + iQdp;. (81)
This expression of U(1) current, together with the action (79), allows to fix a model as

twisted [8] N = 2 superconformal theory [24, 25] at the level

k+2=625= (82)

The connection of N=2 superconformal theories with the 2d polymer physics, percol-

=RES

ation problem and polymers at the ©-point was investigated in [26, 27).

On the other side it is known [28, 29] that twisted N = 2 superconformal theories
at the level k are equivalent to (p,q) minimal models, interacting with 2d gravity and
are topological. So, the described model of +27p/q fluxes can be considered as (p, q)
minimal model interacting with 2d-gravity and as microscopic statphysical equivalent for
topological theories. We hope in this way to find a topological definition for sign factor
of 3DIM.
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7 Appendix

Let us first calculate Z(0), which simply connected with the determinant of the op-
erator H(k), defined by eq. (5) as

Z(O) = Hdet[H(E)] = H {1 + (t14t32 - t12t34)(t23t41 — t43t21)+
E

in

+ (tzstszezik’ + tratsne ™2 4 tygtzae®y + t12t216_2ik”)} ) (83)
2 ' L
z L ] l 0, 2 H
2 N

The aim is to represent Z(0) as

Z(0) = TrTN? = [[ Tr(Tx, )™, (85)
ke
where
Ty, = Dexp ((er, + p)np, + (—€k, + p)na2,) - (86)
Then

Z(O) = HD%’ (]_ + e(l“i’ﬂ:z)%) (1 + e([.l—skz)%'.)
= oo+ (°°Sh St cosh E%) ’ (87)
ks

Now, if we will use the known trigonometric identity

N
N
cosh 5 ke + cosh Eu =971 H {cosh ek, + cos(ip + —= N/2 )} (88)

n=0
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in the expression (87) for Z(0), and compare it with the (83), we will find an exact

coincidence, provided that

D = 23ty
2 — l3al4s
tizto
1+ (t1ats2 — t12t3a) (B2star — Lagtan)
coshe, = 89
P 2(t1ata1tsatas)t/? (89)
N tostsn€®P + taty e 2P
2(t12ta1taatas)t/?

(90)

In the scaling limit of Z(0), defined by eq.(37) and ® — 0, we will have the same
expression for the partition function as for Hamiltonian walk obtained in [17], where was

shown, that it coincides with the partition function of ¢ = —2 particles on the torus.
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