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I review recent developments in the theory of turbulence in centrifugally supported astrophy-
sical disks. Turbulence in disks is astrophysically important because it can transport angular
momentum through shear stresses and thus allow disks to evolve and accrete. Turbulence can be
initiated by magnetic, gravitational, or purely hydrodynamic instabilities; I give an abbreviated
review of the linear and nonlinear theory of each of these possibilities, and conclude with a list
of problems.

1. Introduction

Spiral galaxies, quasars, active galactic nuclei, X-ray binaries, cataclysmic variables,
and young stars: these are a few of the astronomical objects that contain disks. Disks
are common in astrophysics because it is usually difficult to change the specific angular
momentum of gas, but easy to radiate away its thermal energy. Gas injected into in a
spherically symmetric potential thus naturally shocks, radiates, and settles down into a
plane normal to its mean angular momentum.

Because they are so common, disks occupy a lot of the astronomical community’s
time and energy (that would otherwise be entirely dissipated in attempting to measure
Q). Although there are enormous differences between individual disk systems in global
structure and observational appearance, there are a number of fluid dynamical processes
common to all disks. These processes are worth understanding in detail.

The most fundamental process in disks, analogous to nuclear reactions in stars, is
angular momentum transport. The disk cannot evolve unless gas in the disk can be
persuaded to give up some of its angular momentum and spiral down the gravitational
potential. Accretion disks (e.g. CV disks, but not spiral galaxies) are mainly heated
by frictional processes associated with this gradual inflow; we would not see them at all
absent some process for redistributing angular momentum.

The central role of angular momentum transport is evident if we write down an equa-
tion for the evolution of the disk surface density ¥, obtained directly from the angular
momentum and continuity equation in the limit that the disk is thin:
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here (} = orbital frequency ~ r~? and Yw is the mass lost in a wind. Angular mo-
mentum is either redistributed (diffused) through the disk by the height-integrated and
azimuthally averaged shear stress Wy = [ dzddwy4/(27) (using cylindrical coordinates
centered on the disk) or else removed directly from the disk by an external torque 7 per
unit area, provided perhaps by a magnetohydrodynamic (MHD) wind. Without angular
momentum transport (or a wind) the disk does not evolve.

The shear stress wy4 is caused by turbulence, broadly defined, in the disk; fluid viscosity
and radiation viscosity are negligible. Since the disk behaves approximately like a fluid,
it is easy to write down a direct expression for the shear stress:
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Here 4 implies departures from the mean value and g is the gravitational field. One of
the main goals of accretion disk theory is to calculate wy4.

Disk turbulence is interesting because of its importance to accretion disk evolution, but
it is also interesting from a fluid-dynamical viewpoint as a model, self-sustained turbulent
system. In this review I will discuss turbulence initiated by magnetohydrodynamical in-
stabilities (Section 2), gravitational instabilities (Section 3), and purely hydrodynamical
instabilities (Section 4). In conclusion (Section 5) I discuss directions for future research.

Finally, there are a number of other recent reviews that focus on similar issues: Balbus
& Hawley (1998) gives a complete discussion of the literature; Gammie (1998a) focuses
on recent numerical experiments; Stone et al. (1998) discuss transport processes in
protostellar disks; Brandenburg (1998) gives a different perspective on the numerical
experiments with an emphasis on the connection to dynamo theory.

2. Magnetohydrodynamic turbulence
2.1. Balbus-Hawley instability: Linear Theory

Of all the unstable modes discovered to date one stands out as having the largest growth
rates in the largest part of disk “phase space.” It is a local, linear, MHD instability (here
local means that it does not depend on the global radial or vertical structure of the disk)
first understood in the context of accretion disks by Balbus & Hawley in 1991 (although
it was discovered earlier in the context of magnetized Couette flow by Velikhov 1959).

The BH instability is most easily explained using a mechanical analogy first developed
by Balbus & Hawley (1992). Consider two equal masses in coplanar orbit in a Keplerian
potential. The masses are close together in the sense that |[dr|/|r| <« 1, and they are
connected by a spring with natural frequency y. The masses represent “fluid elements”;
the spring represents the magnetic field if v2 = (k - V)2, where V) = B/+/4mp is the
Alfvén velocity and k the wavevector of the perturbation. This analogy is exact in the
case of a purely vertical magnetic field and a vertical wavevector in ideal MHD.

In a frame coorbiting with the center of mass, the governing equations are

8t = —2Q x &t + 30%6rF — y*or, (2.3)

where the terms on the right hand side are the Coriolis, tidal, and spring accelerations,
respectively. These equations are already linear and so, taking ér ~ e*t, we find that

s* + 52(292 + Q%) + (7% - 30%) = 0. (2.4)

In the limit of a weak spring (y2 < Q2), s ~ +v/37 or s ~ +iQ). The unstable member
of the first pair is the BH mode; the second pair are just the usual epicyclic oscillations
of the particles.

One can recover several interesting properties of the BH instability from the dispersion
relation: its maximum growth rate is 3Q0/4; this maximum is achieved at v = v/15Q/4;
the instability vanishes if ¥ > +/3Q. Returning to the analogous magnetic problem using
v — |k- V4|, we see the most remarkable property of the BH instability: no matter what
the magnetic field strength, the maximum growth rate is always dynamical! As the field
strength decreases, the fastest growing mode is simply pushed to smaller and smaller
scales.

The local, linear analysis of a magnetized disk for a general field is somewhat involved
(Balbus & Hawley 1992). The main complication is differential rotation, but this can
be handled by the shearing plane wave formalism invented by Goldreich & Lynden-Bell
(1965). Because of differential rotation there are no nonaxisymmetric local modes, but
this does not mean the BH mechanism is absent. Instead it takes the form of transient,
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finite amplification of nonaxisymmetric, shearing plane waves, but the amplification fac-
tor can be made as large as required by adjusting the initial wavevector. It turns out,
then, that the BH instability is present for any magnetic field orientation and a broad
range of field strengths.

Because the BH instability is so powerful and is present under such general conditions,
it is an important matter to discover when the instability is not present. Two potentially
relevant effects can shut off the BH instability.

(1) The disk is poorly ionized. Then the instability can be damped by either ordinary
resistivity (see Balbus & Hawley 1998; Jin 1996; Papaloizou & Terquem 1997) or ambi-
polar diffusion (Blaes & Balbus 1994). Protostellar disks (Hayashi 1981; Gammie 1996)
and CV disks in quiescence (Gammie & Menou 1998) may fall within this regime.

(2) The magnetic fleld is too strong. In this case one must examine the vertical or
radial structure of a specific disk model to determine precise stability conditions (see
Section 2.4 below). A convenient rule of thumb, however, is that a strong field can only
shut off the instability if the smallest-scale unstable mode has wavelength comparable
to the disk scale height, so that the unstable modes no longer “fit” within the disk.
This happens when V4 > ¢,. Weaker fields are certainly unstable. It is unclear if any
realistic disk model is stabilized by a strong magnetic field; one might expect that a
strong field would be difficult to anchor within the disk, i.e. that the system would be
unstable to some other global or quasi-global instability. Nevertheless strong fields have
been proposed as one way of turning off turbulence in quiescent CV disks (Armitage et
al. 1996).

2.2. Balbus-Hawley Instability: Nonlinear QOutcome

Studies of the nonlinear outcome of the BH instability have mainly used a local model
of the disk. The local model is a first order expansion of the equations of motion in
H(R)/R (H = disk scale height) in a frame comoving with some fiducial point in the
disk. Together with a set of boundary conditions called the shearing box (see Hawley et
al. 1995), this model allows one to study the nonlinear development of the BH instability
in a practical fashion. Experiments typically evolve the equations of compressible MHD,
sometimes including the vertical structure of the disk and sometimes not. They have
used a variety of vertical boundary conditions.

I have reviewed the results of these numerical experiments in detail elsewhere (Gammie
1998a). To give a brief summary, these experiments show that: (1) the instability leads
to fully developed MHD turbulence; (2) this turbulence transports angular momentum
outward; (3) in the absence of a mean field, this turbulence is self-sustained even in the
presence of explicit or numerical dissipation. It can therefore be described as a dynamo;
(4) the mean shear stress in the outcome, a = 2{w,4)/(3pc2), depends on the mean
magnetic field:

Vas)l , 1(Vae)

a~0.01+4|
Cg 4 c4

(2.5)

where (V) is the mean Alfvén velocity; (5) Zero-mean field experiments with finite
explicit resistivity saturate at a level that depends on the resistivity. At magnetic Rey-
nolds numbers below about 103 turbulence and transport die away completely (Hawley
et al. 1996); (6) the slope of the power spectrum of the turbulence is consistent with
Kolmogorov, but the turbulence is anisotropic.
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2.3. Quasi-Global MHD Instabilities

Magnetized disks are also subject to quasi-global instabilities, by which I mean insta-
bilities that depend on the local vertical structure of the disk, but not on its radial
structure.

The Parker and interchange modes are one example of a linear, quasi-global MHD
instability. The original linear analysis is due to Tserkovnikov (1960) for the interchange
mode and Newcomb(1961) for the Parker mode. The stability criterion for Parker modes
in a stratified atmosphere with uniform gravity g, adiabatic index v, and a horizontal
magnetic field, is

dp _ p’g
1 > pont (STABLE) (2.6)

This is equivalent to the Schwarzschild criterion written as if the magnetic field were
absent (it is, however, implicitly present in the equilibrium). I will only quote the stability
criterion for the Parker mode, since it always goes unstable before the interchange mode.
Notice that a large radiative diffusivity, as in accretion disks, can erase the stabilizing
effects of stable stratification (Acheson 1978, Hughes 1985), driving the Parker mode
stability criterion back to that for an adiabatic atmosphere: din B/dz > 0.

Brandenburg et al. (1995) and Stone et al. (1996) have studied the nonlinear outcome
of the Balbus-Hawley instability in a stratified disk, which is then potentially subject
to magnetic Rayleigh-Taylor instabilities. In the experiments of Stone et al. (1996)
there was no significant vertical Poynting flux, suggesting that magnetic buoyancy was
not dynamically important. The vertical run of magnetic pressure was consistent with
marginal stability to the Parker mode.

Radiation-dominated disks, such as might be found in disks around neutron stars
and black holes accreting near the Eddington limit, are subject to yet another type
of quasi-global instability called “photon bubbles” (Arons 1992, Gammie 1998b). The
instability occurs in radiation dominated regions where the magnetic pressure exceeds
the gas pressure. The nonlinear outcome of the instability is not yet known, although
it has been investigated in the context of neutron star polar cap accretion by Hsu et al.
(1997), where it greatly enhances the vertical transport of energy.

2.4. Global MHD Instabilities

Disks are potentially subject to an enormous variety of global instabilities. Global or
quasi-global linear analyses of model astrophysical disks may be found in Papaloizou &
Szuszkiewicz (1992), Gammie & Balbus (1994), Ogilvie & Pringle (1996), Terquem &
Papaloizou (1996), Curry & Pudritz (1996), and Ogilvie (1998), to name a few. There
is also an extensive literature on global instabilities in contexts other than disks (e.g.
Couette flows); see Balbus & Hawley (1998) and references therein. Global analyses can
exhibit the effects of boundaries and background gradients in the fiow, but they lack the
generality of local analyses since they depend on particular choices of the equilibrium.

The three-dimensional nonlinear outcome of Balbus-Hawley and other global MHD
instabilities in disks has not yet been studied, except in an idealized Couette flow model
(Armitage 1998).

3. Gravitational Instability

In the outer parts of AGN disks and protostellar disks gravitational instability may
compete with or completely dominate the BH instability. Local stability of the disk is
determined by Toomre’s @ = ¢;x/(wGX), where £ = epicyclic frequency. For @ < 1 the
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disk is axisymmetrically unstable (the precise value depends on the vertical structure of
the disk; 0.676 is the critical value for an isothermal disk finite thickness disk, 1 for a
zero thickness disk). In an « disk, the instability criterion can be rewritten in the form
. 3 3 3
M> 302 ~7x1073a ( £ _1) Mg yr 1, (UNSTABLE) (3.7)
G 1kms

a condition easily satisfied in the outer parts of AGN disks for & ~ 1, and in YSO disks
for o € 1.

Disks that are grossly unstable do not exist in nature, so the nonlinear theory of such
systems is a mathematical exercise. Instead it is likely that disks are driven unstable,
either by cooling (lowering c;) or by mass-loading (raising X, possibly via infall), and
that stability is partially recovered in the nonlinear outcome either by dissipation (raising
¢s, possibly by shock heating) or by mass-shedding (lowering ¥, in AGNs possibly by
star formation). For an a disk, cooling gives dlnQ/dt ~ af). If infall is to dominate
this cooling, then it is easy to show that the infall accretion rate per logarithmic interval
in radius must exceed the accretion rate within the disk by a factor of order (R/H)2.
It thus seems likely that cooling is the main driver of gravitational instability in most
circumstances.

The nonlinear outcome of gravitational instability with cooling has been studied in
the context of a thin, local model of a gaseous disk by Gammie (1998¢). I find that
the disk goes unstable due to cooling and that, if certain conditions are satisfied, it
then shock heats and returns to marginal stability. In the outcome the disk contains
fluctuating surface density variations of order unity, and the density correlation length
is of order 27QH. The density structure transport angular momentum through both
Reynolds stress and through gravitational stresses.

Finally, a note on linear theory: it is somewhat underappreciated that self-gravitating
disks with constant kinematic viscosity are secularly unstable, a point first noticed by
Lynden-Bell and Pringle (1974) and later discussed in the context of differentially rota-
ting disks by Safronov (1991), Willerding (1992), and Gammie (1996). The instability
grows on the viscous timescale (“viscosity” is here a proxy for smaller-scale turbulence;
molecular viscosity is negligible). In the limit of weak viscosity, the growth rate s of an
axisymmetric mode in a zero thickness disk is

2G| ky| — 2k2
K2 — 2nGElk,| + C2k2

For an a disk (Vgurpy =~ ccsH), in the limit that @ 3> 1 and a < 1 the maximum growth
rate of the instability is 27a/(16Q*).

Why are self-gravitating disks secularly unstable? It is clearly energetically advanta-
geous for disks to bunch up into long-wavelength rings, thereby increasing their gravi-
tational binding energy at little expense in compressional heating. But in inviscid disks
there is an obstacle to this: the conservation of potential vorticity £ = (V x v)/X. Once
viscosity is introduced then £ can evolve and the rotational support of the disk at long
wavelengths is compromised.

s ~ vk? (3.8)

4. Hydrodynamic Instabilities

Absent self-gravity and magnetic fields, we are left with purely hydrodynamic mecha-
nisms for generating turbulence. The local linear stability criterion for rotating fluid
flow is the Rayleigh criterion: d(r?2€Q)2/dr > 0, i.e. specific angular momentum should
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increase outwards. Most disks, and in particular Keplerian disks, satisfy the Rayleigh
criterion.

It has been suggested that Keplerian disks are locally nonlinearly unstable because
of their high Reynolds number (e.g. Shakura & Sunyaev 1973, Lynden-Bell & Pringle
1974). This idea has been developed in some detail by Dubrulle & Zahn (1991), Dubrulle
(1993), and Kato & Yoshizawa (1997). Numerical experiments in the local model (Balbus
et al. 1996), however, fail to find any evidence of nonlinear instability in Keplerian shear
flows. Nonlinear instability is found in a narrow band near dlnQ/dlnr = —2, ie. in
disks that are marginally stable by the Rayleigh criterion. While one can always ask
whether the numerical experiments achieve sufficiently high Reynolds number, Balbus
et al. (1996) present an argument based on moments of the momentum equations that
suggests, but does not prove, that Keplerian disks are nonlinearly stable.

Disks can also suffer quasi-global instabilities such as convection (see Ruden et al.
1988 for the axisymmetric linear theory). One point that is not generally appreciated is
the degree to which ordinary convective instabilities are damped by radiative diffusion
in disks (although there are other, inertial, oscillations that become overstable in the
presence of radiative diffusion).

Workers had long thought that convection might lead to enhanced turbulent transport
of angular momentum in disks, the idea being that turbulence always implies transport.
An early sign that this expectation might be incorrect was a quasi-linear calculation
(Ryu & Goodman 1992) of the angular momentum flux associated with linear, nonaxi-
symmetric convective motions; the direction of the flux was found to be inwards rather
than outwards. Subsequent numerical experiments (Stone & Balbus 1996; Cabot 1996)
showed that in the nonlinear regime the angular momentum flux was small and inwards.
This nonintuitive result is a nice illustration of the value of numerical experiments.

Finally, disks are susceptible to a wide variety of global hydrodynamic instabilities.
One example is the Papaloizou-Pringle (1984, 1985) instability, subsequently elucidated
by Narayan et al. (1986); see Savonije & Heemskerk (1990) for a readable physical
account of this and allied global instabilities. A different type of global instability has
been discovered by Goodman (1993). It requires a tidal field capable of distorting the disk
streamlines into an oval shape. The instability grows from the free energy available in
this oval distortion, causing it to decay by parametric instability into small scale inertial
oscillations.

5. Conclusions

Great progress has been made in the last few years in understanding the origins and
development of turbulence in accretion disks. We know that under a broad range of
conditions the BH instability can initiate turbulence that transports angular momentum
outwards. We also have strong numerical evidence that other types of turbulence in
disks, such as convective turbulence, do not necessarily provide the angular momentum
transport required for disk evolution. But there are still many interesting open questions
about turbulence in disks; I will conclude with three of particular current interest.

1. Is angular momentum transport local? Numerical studies of the three dimensional
nonlinear outcome of the BH instability have so far been restricted to regions of the disk
of order H in size (but see Armitage 1998). It is always found that most of the energy,
and angular momentum flux, is contained in structures that are as large as allowed in
the experiments. Thus the outcome is limited by the experiment size. What will happen
in more realistic, larger-scale experiments?

One possibility is that largest scale structures will have a small fraction of the turbulent
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energy, with most the turbulent energy being concentrated at scales of order H. In this
case angular momentum transport would be truly local. But another possibility is that
most of the energy is always contained in the largest scale structures allowed. Then
angular momentum transport would be mainly due to structure much larger than the
disk scale height: it is nonlocal. This would be inconsistent with current approaches to
modeling disk evolution embodied in the & model. Numerical experiments may be able
to decide between these, and intermediate, alternatives in the near future.

2. Are unmagnetized Keplerian disks nonlinearly stable? Numerical experiments have
diligently sought nonlinear instability in Keplerian disks and not found it (Balbus et al.
1996). But there remains a pool of skeptics who point out that the numerical experi-
ments do not réach astrophysical Reynolds numbers, and so there is still the possibility
of nonlinear instability. Since astrophysical Reynolds numbers will never be computatio-
nally accessible, what is needed is either a proof of nonlinear stability— a mathematically
challenging problem— or an explicit demonstration of nonlinear instability. But for now
the buik of the evidence seems to favor the nonlinear stability of Keplerian shear flows.

3. How do waves and turbulence interact in disks? It is common to model the effect
of turbulence on waves as a viscosity. This is done in studies of the tidal interaction
between planets and protostellar disks (e.g. Lin & Papaloizou 1993), and in studies of
warped disks (e.g. Pringle 1996); in these examples the turbulent viscosity completely
governs the evolution of the disk. But the viscous model is completely untested. It
could be quite misleading if, for example, it amplifies certain modes, or couples together
linear modes of the laminar disk, or even gives the disk gas elastic properties. Numerical
experiments that are immediately practical could measure the effects of turbulence on
large-scale waves and settle this issue.

I am grateful to Jim Stone, Eve Ostriker, and Gordon Ogilvie for their comments and
suggestions. This work was supported in part by NASA grant NAG 52837.
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