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1 INTRODUCTION

ABSTRACT

We show that radiation dominated accretion discs are likely to suffer from
a “photon bubble” instability similar to that described by Arons in the context
of accretion onto neutron star polar caps. The instability requires a magnetic
field for its existence. In an asymptotic regime appropriate to accretion discs,
we find that the overstable modes obey the remarkably simple dispersion
relation

w? = —igkF (B, k).

Here ¢ is the vertical gravitational acceleration, B the magnetic field, and F
is a geometric factor of order unity that depends on the relative orientation
of the magnetic field and the wavevector. In the nonlinear outcome it seems

likely that the instability will enhance vertical energy transport and thereby

change the structure of the innermost parts of relativistic accretion discs.

Key words:

Compact objects such as black holes and neutron stars are among the most interesting

objects in astrophysics because of their exotic strong-field gravitational physics and because

they are likely at the center of some of the most luminous and energetic objects in the

universe. Since it is mainly their accretion flows, and not the compact objects themselves,

that are readily observed, the dynamics and radiative properties of the accretion flows are

the focus of much theoretical attention.
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2 C. F. Gammie

One of the most important models for accretion flows is the thin disc (Shakura & Sunyaev
1973, Lynden-Bell & Pringle 1974). This model predicts that for rapidly accreting objects
the inner parts of the disc are radiation pressure dominated. It was realized soon after the
model was first proposed, however, that radiation pressure dominated discs are unstable,
both viscously (Lightman & Eardley 1974) and thermally (Shakura & Sunyaev 1975). This
suggests that the standard thin disc model is not self-consistent, and so attention has turned
to other models such as advection-dominated flows (see Narayan 1997 for a review).

Despite theoretical arguments that the thin disc is unstable, thin disc spectra are widely
used to fit observations of black hole candidates. Indeed, there is indirect evidence for (the-
oretically unstable) thin discs in that some observations are well fit by thin disc spectra. For
example, some galactic black hole candidates such as Nova Muscae have X-ray spectra that
are well fit by rﬁulti-temperature thin disc models (R. Narayan, private communication).

One can stabilize radiation pressure dominated discs by modifying the usual prescription
for the shear stress ¢,4 ~ ap so that #,4 ~ ap, (p, = gas pressure) or some combination
of gas and radiation pressure (e.g. Lightman & Eardley 1974, Piran 1978). Arguments have
been advanced in favour of such a modification by Eardley & Lightman (1975), Coroniti
(1981), Sakimoto & Coroniti (1981,1989), and Stella & Rosner (1984). These arguments
rely on the thermodynamic peculiarities of magnetic buoyancy in a radiation dominated
plasma. More recent work has vastly increased our understanding of magnetically driven
angular momentum diffusion in discs (see the review of Balbus & Hawley 1997). Numerical
experiments suggest that ¢,, is limited by Lorentz forces rather than by buoyant escape
of magnetic fields (Stone et al. 1996), although these experiments do not include radiation
pressure and radiative diffusion.

An alternative route to viscous stability (e.g. Liang 1977) is to modify the disc cooling
law using convection, although this is not successful in eliminating the thermal instability
(Piran 1978). Modification of the disc cooling rate has not seemed a promising approach.

Recently, however, while investigating neutron star polar cap accretion, Klein & Arons
(1989, 1991) noticed the development of evacuated regions, or “photon bubbles”* in their
radiation hydrodynamics simulations. A subsequent linear analysis (Arons 1992) revealed
that the source of the photon bubbles was an overstable mode present in radiation domin-

ated, magnetized atmospheres. Earlier incarnations of the photon bubble instability in an
* Bubble is something of a misnomer, since surface tension plays no role. The phenomenon is really more like convection.
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Photon Bubbles in Discs 3

unmagnetized plasma have turned out to be flawed; Marzec (1978) gives a full discussion of
this point. Later numerical studies of the nonlinear evolution of the photon bubble instabil-
ity (Hsu et al. 1997) showed that vertical transport of energy is enhanced in the nonlinear
outcome.

One is naturally led to inquire whether this same photon bubble instability is present
in the radiation dominated parts of accretion discs, and if so, what the consequences might
be for disc structure. Unfortunately Arons’s (1992) analysis is not immediately applicable
to discs. It considers physical parameters relevant to neutron star polar cap accretion: a
thermal timescale long compared to the dynamical timescale, negligible gas pressure, and
superthermal magnetic field. Our purpose in this paper is to generalize Arons’s work to the
regime appropriate to discs.

First we evaluate conditions inside accretion discs using a standard o model (§2). Then
we write down a set of governing equations appropriate to these conditions (§3). In §4
we construct a model equilibrium to perturb about, and in §85 and 6 we work out the
linear theory in the WKB limit. The astrophysical implications of the result depend on the

nonlinear outcome, about which we speculate in §7. §8 contains a summary.

2 CONDITIONS IN ACCRETION DISCS

What conditions are relevant to a study of the photon bubble instability in accretion discs?
Consider accretion onto a black hole of mass m Mg at a rate 7 Legqc?, where Leyq =
ArGMc/Kes, and k., is the electron scattering opacity. Using the standard thin-disc, one-
zone model (Shakura & Sunyaev 1973), assuming radiation pressure is dominant and & =~
Kes ~ 0.4gcm™2, we find that at radius rGM/c?

T ~0.37 a lm %2 gem™2 (1)
T o~ 2.4 x 107 o~ V4m~1/4p=3/8 K, (2)
32 gem™3, (3)

p~42x 1077 a7 tm 2y

Here and throughout we ignore corrections due to general relativity and the inner boundary
of the disc. Radiation-dominated accretion discs have entropy profiles that suggest convective
instability (e.g. Bisnovatyi-Kogan & Blinnikov 1977). Calculations of disc vertical structure

using mixing-length theory (Shakura, Sunyaev, & Zilitinkevich 1978) show, however, that
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4 (C. F. Gammie
the vertical radiative flux of energy always dominates the vertical advective flux and so the
mean structure of the disc is not likely to be very different from the values calculated above.

The electron scattering optical depth is
Ts ~ YiKes /2 = 0.074 a_lm_1r3/2, (4)

while the “true” optical depth, which measures the extent to which radiation is thermalized

inside the disc, depends on the absorption opacity Kq:

7" = Zy/Keska/ 2. (5)

The absorption opacity is a complicated function of density, temperature, metallicity and
the radiation spectrum. Taking k, ~ xp, the Planck mean opacity, and evaluating xp from
tables for a solar composition gas (Magee et al. 1995) we find that 7* ranges from < 1 to > 1.
For example, at r = 50 from a 10 M black hole accreting at 1 = 1, and taking a = 0.1,
we find 7* ~ 14.8. Discs around supermassive black holes have somewhat higher effective
optical depths, since they are cooler and the Planck mean opacity increases sharply below
3 x 10® K due to bound-free absorption by metals. All this implies that the true optical depth
of perturbations that are smaller than the scale height can be small, and so the radiation
field must be treated using an approximation that is valid in this regime.

The ratio of gas pressure p, to total pressure P is
Br =py/P =16 x 107% o~ V4m =4 -2p21/8 (6)
so the boundary of the radiation-dominated region lies at
re = 160 o®/*'m*/ 2 16/2, (7)

Also the sound speed ¢, is

cs/c = 3.0 Tr~32, (8)
The radiative diffusivity is Dy = ¢/(kp). In dimensionless form,
Dy
M, = ~ 4.
0 , H 5 a, (9)

where H = disc scale height. Thus My ~ 1, while in neutron star polar cap accretion
M, < 1. This difference changes the character of the instability significantly, and is the
most important difference between our work and Arons’s work.

We also need an estimate for the magnetic field strength. We use the prescription By =
c2/vi = (4a)™! (¢2 = P/p is the isothermal sound speed; v4 = Alfvén speed), consistent
with the simulations of Hawley, Gammie, & Balbus (1995). So if o = 0.1, 8y = 2.5. For
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Photon Bubbles in Discs 5

reasonable values of o, then, 8y ~ 1. Arons (1992) focused on the case fx < 1, but
developed a more general analysis in an appendix.

Finally, heat conduction, radiative viscosity, ordinary viscosity, and ordinary resistivity
are all completely negligible.

To summarize the results of this section, accretion discs have approximately thermal
magnetic fields, so By = ¢Z/v% ~ 1. In their inner region radiation pressure dominates, so
B, < 1. The thermal timescale is comparable to the dynamical timescale (to within a factor
of ) so the dimensionless radiative diffusion rate My = (¢/(xp))/(c;H) ~ 1. Finally, the
thermalization length I, = (p\/Kkg) ™' varies widely but can be ~ H. Since we will consider
perturbations on scales small compared to the scale height, the perturbations can also have
a scale small compared to the thermalization length. Thus it is not clear a priori that it is

appropriate to use the Rosseland diffusion approximation for the radiation field.

3 BASIC EQUATIONS

Since we cannot use the Rosseland diffusion approximation for the radiation field, we turn
to the more general flux-limited nonequilibrium diffusion approximation (see Mihalas &
Mihalas 1984 and references therein). This approximation is very similar to the Rosseland
diffusion approximation (it still sets K;; = Jé;;/3, where K and J are the second and zeroth
angular moments of the intensity), but, loosely speaking, it allows for the possibility that the
radiation field has a different “temperature” than the gas. More precisely, it does not require
that J = aT!;1 /m, where Ty = gas temperature. Because it is a diffusion approximation, it is
strictly valid only on scales large compared to the photon mean free path (pk.,)~", but it
gives qualitatively sensible results on smaller scales.

The governing equations for the gas, then, are the continuity equation,
Dip = —p(V - v), (10)

where D; = 0; + (v - V), the momentum equation,
(B-V)B VB? Adrkp
- H
A7 81 + ’ (11)
where H = [, In/(47) T is the frequency-integrated flux and ¢ is the gravitational potential,

pDyv = —Vpy, — pVp +

and the gas energy equation (u = internal energy per unit volume),

T H denotes the scale height and H; a component of the flux. Likewise B denotes the thermal mean intensity and B; a
component of the magnetic field. The difference should be clear in context.
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6 C. F. Gammie
Dyu = —yu(V - v) + dmkap(J — B), (12)
where J is the frequency-integrated mean intensity, B ~ aTg;1 /@, and we approximate the

absorption opacity by the Planck mean opacity. The magnetic field evolution is governed by

the induction equation

DB =-B(V-v)+ (B -V)v (13)
and the constraint V - B = 0. The mean intensity evolution is given by

1 4J

“D,J—|—|Dyp=-V -H+xs, —J), 14
10T = (30) Dip ==V - Hot map(B =) (14)
and the flux evolution is given by

1 1

—C-DtH = _EVJ — kpH, (15)

where we approximate s by the Rosseland mean opacity ~ &,.

4 MODEL PROBLEM: STRATIFIED ATMOSPHERE

Magnetized, radiation-dominated accretion discs are dynamically evolving flows, since they
are subject to the magnetorotational instability (Balbus & Hawley 1991) and, possibly,
ordinary convective instability. Linear theory therefore cannot even in principle provide a
rigorous guide to their dynamics. The best we can hope for is to find a model problem that
captures the essence of physical conditions in accretion discs and is simple enough to solve.

The model problem we have chosen is a nonrotating stratified atmosphere with V¢ =
g%z = const., a uniform magnetic field, and a constant flux H, from below. This is the least
complicated model that is potentially subject to the photon bubble instability. It allows
us to focus on photon bubbles alone, disentangled from the magnetorotational instability,
magnetic Rayleigh-Taylor instability, and convective instability.

The model equilibrium is determined by the vertical momentum equation

10 4
p | dmkp

02 H,—g=0, (16)

the gas energy equation

J =B, (17)
the intensity equation

V-H=0, (18)

and the vertical component of the flux equation
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Photon Bubbles in Discs 7

——— = —KkpH,. (19)

This set of equations admits a two-parameter family of solutions. A natural set of para-
meters is 8, evaluated at z = 2,, and £ = H,4mwk/(cg), which is the ratio of the flux to the
critical flux where the effective gravity vanishes (i.e., the local Eddington limit). Defining

the pressure scale height H = c?/g, at z = z, we have

dlnT, 1 £
hy=—-H == 2
T 8z  41-8, (20)
Olnp 1 ( (1—3,3,/4))
h,=—-H =—|1-L——F], 21
= =8 =5, (21)
which imply
Oln P, L
h, =—-H L = , 22
0z 1-6, (22)
dln P, 1-L
h,=—-H 4 - : 2
7 0z B, (23)
The entropy profile suggests convective stability (entropy increases upwards) if
4(y - 1)(4 =76, +36,%)
L < Lopit = 24
' (7 - 1)(16 - 12131" - 3/31'2) + ﬁ_rz ( )
(Kutter 1970, Wentzel 1970, Tayler 1954). In the limit of small §, this amounts to
L<1-6+0(52. (25)

For model atmospheres in which M, < 1 this implies convective stability. In discs the
question of convective stability is more subtle, and outside the scope of this paper, because

of the presence of radiative damping and rotation.

5 LINEAR THEORY

We will consider only short-wavelength (WKB) perturbations. Longer-wavelength modes are
global in nature and depend on the details of the equilibrium; but the careful construction
of disc equilibria is a futile endeavour since all weakly magnetized discs are unstable. The

perturbations have the form

5 ~ exp [i(kz:c + [ k(a2 - wt)} , (26)
where f is any one of the perturbed variables. Like Arons, we take k, = (1 — u?)/2k and

k, = pk. The basic small parameter of the WKB approximation is (kH)™! ~ ¢ < 1 (we

assume that p ~ 1).
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8 C F. Gammie
Retaining all terms that are potentially of leading order, the linearized continuity equa-
tion is

”Fh" — —ipk - 6w, (27)

the momentum equation is

—twdp — ov,

—iwpbv = —ikép, — ikBIB + (FBEE
+2% (6kpH + képH + kpdH) — gép #, (28)
the induction equation is
—iwéB = —iB(k - §v) + i(k - B)dv, (29)
the gas energy equation is
—iwby — (51},% = —iyu(k - 0v) + dnk,p(6J — 6 B), (30)

the intensity equation is

Y—iwsJ — dv,mB) — A (—ipk - 6v) =

—ik - 0H + £,(0B — §J), (31)
and the flux equation is
%(iw(SH) = —%z’ké.] —kpéH — képH — 6k pH. (32)

Together with the constraint & - §B = 0, these equations imply a complicated eleventh-
order dispersion relation D(w,k) = 0 which we shall not record here (the most compact
form of the full relation is the above equations). We have confirmed that it contains the
dispersion relations for magnetohydrodynamic (MHD) waves, magnetoatmospheric waves
(e.g. Thomas 1982), internal waves, sound waves in a radiating fluid (Mihalas & Mihalas

1984), and the overstable photon bubble mode of Arons (1992) as special cases.

6 OVERSTABILITY
6.1 Numerical Solution

The full dispersion relation is analytically intractable. In the end we will need to expand it
in a small parameter to retrieve the relevant pieces that describe the photon bubble mode.
To motivate an asymptotic approach, we shall first solve the dispersion relation numerically.

The parameters are those appropriate to a disc around a 10 M, black hole accreting at
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Photon Bubbles in Discs 9

the Eddington rate, at r = 50GM/c?. Assume o = 0.1, so By = 2.5, and that the field
is purely vertical. Then B8, = 0.05, ¢c/¢; = 120, I, = 0.07H, v = 5/3, My = 0.4. Take
L =1-303./2 =0.93 so that convection is absent. We consider a set of modes with varying
k and p = 1/3. The real part of the full dispersion relation is shown in Figure 1. The real part
of the overstable mode is marked with a heavy solid line; the imaginary part has comparable
magnitude.

At large wavenumber the dispersion relation is easily interpreted because it becomes

analytic. For general u,

(? — 5E°K?) (w? — gcik?p?) x
(w* = Byl + 53k )W + 5Byt ktp?) x (33)

48i(1~8,)(v—1)Do
Bryle

(w+ %)2@) +
The first term in parentheses is the flux-limited electromagnetic wave with phase velocity
¢/+/3 (see Mihalas & Mihalas 1984). The second term is the Alfvén wave. The third term
contains the fast and slow MHD modes. These are labeled in Figure 1. Notice that the
overstable mode becomes the slow MHD mode at large wavenumber. The final three modes
are strongly damped entropy modes.

Notice that the slow MHD mode has rather low frequency. This is because at short
wavelengths radiation diffuses rapidly out of the perturbation and so the radiation pressure
perturbation is nil. Thus only gas pressure provides a restoring force for this mode. For
B, < 1, the slow mode has w? ~ B,c?vk%u?, so the slow mode velocity is directly related

to the sound speed associated with the gas pressure alone. A radiation pressure dominated

fluid is thus rather delicate on small scales in that it is easily compressed.

6.2 Vertical Magnetic Field

We have shown that an overstable mode exists; we will now demonstrate the existence of
this mode analytically. Again we consider only the simple case of a purely vertical magnetic
field. The basic small parameter is € = (kH)~!. The survey of conditions in accretion discs
(§2) then suggests the following scalings for the other parameters in the problem. We take
H~1lc~1lcle~efy~11,~1,8~e? My~1, £L=1-0(B), and pu ~ 1. Using
a little asymptotic foresight, we also take w ~ e~1/2,

Expanding D(w, k) through leading order in ¢, we find the remarkably simple relation

© 0000 RAS, MNRAS 000, 000000



10 C. F. Gammie
w? = —igku(1l — p?). (34)

One root of this equation, the one with negative phase velocity, describes the overstable
photon bubble mode.
What happens if we increase the importance of gas pressure? Suppose that &, ~ €. Then

we find
w? = —igkp(l — p?) + B2k, (35)

The first term is the photon bubble term, while the second is that of a slow MHD mode in
which gas pressure provides the only restoring force. If we increase 5, /(kH) still further, then
the first term becomes subdominant. This branch of the dispersion relation then becomes
the slow mode, which is stable to leading order in WKB.

Since the overstability is no longer present to leading order in € when & 2 (8. H)™!, and
k 2 1/H, the overstability fails in a WKB sense when §, ~ 1. This provides an approximate
limit on the overstable region in parameter space.

Now suppose that the diffusion time is long compared to a dynamical time, i.e. My ~ €'/2.

Again expanding D(w, k) to leading order in € we find

4y
w? + iw i')” +igku(l — p2) = 0. (36)
0

The new term causes damping. It shows that instability is present in a WKB sense only on

scales such that k 2 1/(HM§).

6.3 General Discussion

We can obtain a better physical understanding of the origin of the photon bubble instability,
and a more general dispersion relation, by expanding the linearized equations in e. This is
not trivial because we must assign an explicit relative ordering in € to all the perturbed
variables. We do this by solving for the eigenvectors § f (dp) (f represents any of the perturbed
variables), and then determining the relative ordering. We use the same ordering for the
model parameters as that described at the beginning of §6.2. This procedure reveals that
the photon bubble mode consists predominantly of motions along the magnetic field. This
is easy to understand because the frequency of the mode, ~ /gk, is smaller by order €!/2
than the Alfvén frequency at the same scale, ~ kv4. Thus the field is stiff enough to resist

any motion that bends the field lines.
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Photon Bubbles in Discs 11

Writing out the dominant terms in full and allowing for a general orientation of the

initially uniform magnetic field, the continuity equation becomes
—wdp = —ipk - §v. (37)

The perturbed velocities perpendicular to the magnetic field vanish. Denoting the unit vector

parallel to the field by 13, the parallel component of the velocity is governed by

Akp

—~0H - b, (38)

—iwdv-b =

so the material feels only the perturbed radiation force. The induction equation is irrelevant,

since the field is stiff. The perturbed flux obeys
k-6H=0. (39)

The perturbed flux is conserved, so there is no exchange of energy between the radiation
field and the fluid on a timescale w™!. Combining this result with the perturbed intensity

equation, we find

5H=—%” (H—k(kl;zH)). (40)

In words, the fluid feels a radiation force that is directed parallel to the wave crests and

is inversely proportional to the density perturbation. Radiation escapes more rapidly along
density minima, while energy flow is impeded along density maxima. Combining eqns.(37),
(38), and (40), and denoting the unit vector along k by k, we find the general dispersion
relation

w? = —ikg(k - b) [b-2— (k-2)(k-b)]. (41)
This implies that the growth rate of the instability is largest for k, = 0 (where the WKB
approximation is not strictly valid) and for B at an angle of £m/4 to the wavevector.

It is readily shown that if the fluid is allowed to move freely, unconstrained by the
magnetic field, then the mode frequency vanishes if we start from the reduced set of equations
above. More rigorously, if we begin with the full set of linearized equations and turn off the
magnetic field, then the stability criterion reduces to the condition that the Brunt-Vaisala
frequency be real.

To understand the overstability on a more qualitative level, consider the history of a single
fluid element in the case k, = 0 where B makes an angle 7/4 with the vertical. Suppose
the fluid element initially lies in a density minimum, so it feels an increased radiation force

from below. It is accelerated upward along the field line. This soon puts it in a region of
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12 C. F. Gammie

convergent flow and then in a density maximum: the phase velocity of the overstable mode
is such that the density maxima progress downward along field lines. It is now shadowed by
the density maximum, the radiation flux drops somewhat, and it falls downward along the
field line. This puts it in a region of divergent flow and then a density minimum, so it is
accelerated upward again. Each round of acceleration is larger than the one before, and so
an overstability results.

The photon bubble instability described by Arons is physically similar to ours, but there
are two differences. The most important is that Arons considers the asymptotic regime
M, <« 1 appropriate to neutron star polar caps. This leads to a rather more complicated
dispersion relation for the overstable modes, with the growth rate proportional to M3. In
this limit, there is a small phase offset between the radiation flux and the density, rather
than the large phase offset that initiates the instability in the limits M, ~ 1. Another
difference is that Arons uses the Rosseland diffusion approximation, which requires that
the gas and radiation have the same temperature, while we use a nonequilibrium diffusion
approximation, which allows the gas and radiation “temperature” to differ. In the end this
turns out to have no effect whatsoever on the overstable modes, because gas pressure (and
hence gas temperature) is completely negligible for modes with frequency and wavelength
comparable to the photon bubble mode. Finally, we note that in the appropriate limit we

are able to recover Arons’s dispersion relation, thus confirming his analysis.

7 NONLINEAR OUTCOME

The astrophysical implications of the photon bubble instability depend on the nonlinear
outcome, to which the linear theory is an unreliable guide. Numerical experiments by Hsu
et al. (1997) show that in the regime My = c¢/(7es¢;) < 1, By < 1 the photon bubble
instability leads to greatly enhanced vertical transport of energy. It thus seems likely that
the photon bubble instability will enhance vertical energy transport in discs.

It is tempting to make an analogy between photon bubbles and convection. Convection
generates such efficient transport of energy that it erases the inverted entropy gradient that
initiated it and, if forced, maintains the convective fluid in a marginally stable state. It is
natural to think that the photon bubble instability drives the disc toward a marginally stable
state as well. Our analysis does not give any rigorous stability criteria, but it does show that

when G, ~ 1 the instability is no longer present at leading order. Thus the instability is likely
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Photon Bubbles in Discs 13

to be absent or greatly reduced in strength when 3, ~ 1. If the disc is initially radiation
dominated, photon bubbles might then transport energy efficiently out of the disc, lowering
the temperature and raising 3, toward 1.

The nonlinear outcome of the photon bubble instability can be characterized by a cooling
rate Q@ (X, T,), which is the energy lost per unit time per unit disc area. The thermal and
viscous stability properties of the disc depend on how @~ varies with temperature and surface
density (Piran 1978). Ultimately this can only be evaluated from a fully nonlinear theory,
but if @~ is a steep enough function of T,, then the disc can be viscously and thermally
stable.

Our analysis also shows that when the dimensionless radiative diffusion rate My decreases
the instability weakens, in that instability is only present for kH 2 My 2. This effect may
also shut off photon bubbles. At low accretion rates, for example, a disc with 8, ~ 1 will
have large My, while at larger accretion rates My is smaller.

Photon bubbles might also change the emergent spectrum. The bubbles make the disc
porous to radiation, so a photon traverses a shorter path to the surface than it would if the
disc were subject only to ordinary radiative difffusion. The photon distribution therefore has
less opportunity to thermalize. In addition, the vertical transport might be more episodic,
enhancing variability. _

This discussion is speculative. Other physical processes may contribute to vertical energy
transport in discs: ordinary convection (but see the discussion of Rees 1987) or magnetic
Rayleigh-Taylor instability (see the flux-tube calculation of Sakimoto & Coroniti 1989) may
dominate photon bubbles. In addition, MHD turbulence initiated by the Balbus-Hawley in-
stability must coexist with photon bubbles. We have developed a linear theory only when
these effects are absent. The full nonlinear development of the radiation dominated disc can
probably only be studied realistically via three dimensional numerical experiments. Numer-
ical methods exist for treating the radiative transfer in a flux-limited Rosseland diffusion
approximation. Since the character of the unstable mode is identical in the nonequilibrium
and Rosseland diffusion approximations, numerical studies of the nonlinear evolution of a

radiation dominated disc may be immediately practical.
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14 C. F. Gammie
8 SUMMARY

We have considered the linear theory of a radiation dominated atmosphere with spatially
constant magnetic field as a model for the radiation dominated inner parts of thin accretion
discs around compact objects. The model is subject to an overstable photon bubble mode
that tends to separate radiation and matter. The photon bubble dispersion relation for a
general orientation of the magnetic field is given by eqn.(41). Vertical energy transport is
likely to be enhanced in the nonlinear outcome. The disc may then deflate until it is no
longer radiation pressure dominated.

I thank J. Krolik, R. Narayan, M. Rees, G. Rybicki, E. Vishniac, and the referee, E.
Szuszkiewicz, for their discussions and comments. This research was supported in part by

NASA grant NAGW 5-2837.
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FIGURE CAPTIONS

Figure 1. The real part of the WKB dispersion relation for a radiation-dominated atmosphere
with uniform vertical field. See text for details. The abscissa is the wavenumber in units of
the scale height; the ordinate is the phase velocity in units of the isothermal sound speed
(P/p)'/2. The real part of the phase velocity for the photon bubble mode is shown as a heavy

line. The growth rate (imaginary part) is comparable in magnitude.
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