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ABSTRACT

The molecular component of the Galaxy is comprised of turbulent,
magnetized clouds, most of which are self-gravitating and form stars. To
model how these clouds’ kinetic and structural evolution may depend on
their level of turbulence, mean magnetization, and degree of self-gravity,
we perform a survey of direct numerical MHD simulations in which three
parameters are independently varied. Our simulations consist of solutions to
the time-dependent MHD equations on a two-dimensional grid with periodic
boundary conditions; an additional “half” dimension is also incorporated
as dependent variables in the third Cartesian direction. Two of our survey
parameters — the mean magnetization parameter § = cZ,,,.;/V%;ven and the
Jeans number ny = Leoud/ Ljeans — allow us to model clouds which either meet
or fail conditions for magneto-Jeans stability and magnetic criticality. Our third
survey parameter — the sonic Mach number M = Gueiocity/Csouna — allows us to
initiate turbulence of either sub- or super- Alfvénic amplitude. We evaluate the
times for each cloud model to become gravitationally bound, and measure each
model’s kinetic energy loss over the fluid flow crossing time. We compare the
evolution of density and magnetic field structural morphology, and quantify the
differences in the density contrast generated by internal stresses, for models of
differing mean magnetization. We find that the values of 8 and n;, but not the
initial Mach number M, determine the time for cloud gravitational binding and
collapse: unmagnetized models collapse after ~ 5Myr, magnetically supercritical
models generally collapse after 5 — 10Myr (although the smallest magneto-Jeans
stable clouds survive gravitational collapse until { ~ 15Myr), while magnetically
subcritical clouds remain uncollapsed over the entire simulations. We find,
contrary to some previous expectations, less than a factor of two difference
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between turbulent decay times for models with varying magnetic field strength;
the maximum decay time, for B ~ 14uG, is ~ 10Myr. In all models, we find
turbulent amplification in the magnetic field strength up to at least the level
Bpert = Couna/ V41 ven = 0-1. We find that for weakly self-gravitating stages of
evolution, when clouds have M = 5 — 10, the mass-averaged density contrast
magnitudes (log(p/p)) are in the range 0.2 — 0.5, with the contrast increasing
both toward low- and high- §; only the more strongly-magnetized models appear
consistent with clump/interclump density contrasts observed in Galactic GMCs.

1. Introduction

All present-day star formation in our Galaxy is observed to take place in cold molecular
clouds. These clouds are highly turbulent (with sonic Mach numbers 10 or more for the most
massive clouds, e.g. Blitz (1993)), and appear to be quite inhomogeneous based on both
molecular line observations in a range of tracers (e.g. Falgarone, Puget, & Pérault (1992),
Falgarone et al (1998)), and stellar extinction maps (Lada et al (1994), Lada, Alves, &
Lada (1998)). Because magnetic field measurements are difficult to obtain, the distributions
of magnetic field strengths and directions within clouds are less well characterized than
other cloud properties; the mean field strengths are probably no less than a few yG, and no
more than a few tens of uG (e.g. Heiles et al. (1993), Crutcher et al (1993), Troland et al
(1996), Crutcher (1998)), and the spatial power spectrum of the magnetic field is probably
dominated by components with close to the largest scales possible, within a structures of
a given density regime (e.g. Goodman & Heiles (1994), Goodman et al (1995), Schleuning
(1998)) Given the extremely low thermal pressure in molecular clouds, magnetic stresses
are expected to be at least as important as gas pressure in governing cloud evolution, and
may be much more so. In particular, since sufficiently strong mean magnetic fields would
render the internal motions sub-Alfvénic and the cloud self-gravity subcritical, it has long
been argued that magnetization may significantly inhibit turbulent dissipation and prevent
gravitational collapse (Arons & Max (1975), Mouschovias & Spitzer (1976), Shu et al.
(1987), McKee et al. (1993)).

The nonlinear amplitudes and structural irregularity of the turbulence seen in molecular
clouds require time-dependent numerical simulations in order to model their evolution
theoretically. This is the second in a series of papers reporting on the results of numerical
experiments designed to characterize how magnetic fields at a range of strengths affect the
structure and evolution of cold, turbulent, self-gravitating clouds. In Paper I (Gammie &
Ostriker (1996)), we outlined (see also Ostriker (1997)) the observational situation, the
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theoretical background on the nature of ideal turbulent flows and applications to cold
Galactic clouds, and the issues that can be addressed by numerical simulations; we then
presented results of the first extensive survey (in “1 2/3D” slab geometry, i.e. with one
independent spatial variable, but all three components of dependent spatial variables) of
model cloud evolution in the ideal MHD limit. The survey considered clouds both with
and without gravity, and either with an input spectrum of turbulence that decayed over
time, or with an ongoing excitation of turbulence through velocity perturbations introduced
at spatial scales smaller than the simulation box. Among the conclusions of Paper I was
the finding that, when sufficient initial energy in the form of transverse disturbances is
input to a cloud model and then evolved, gravitational collapse along the mean field can
be suppressed for times > ¢, (see eq. 3 below). Paper I also reported on the large density
contrasts, and correspondingly small filling factors, which arise in freely-decaying turbulent
MHD flows (e.g. a typical model having 50% of the mass at density larger than three
times the mean, and 10% of the mass at nine times greater than the mean). Because these
conclusions could potentially be affected by the restricted geometry of the slab-symmetric
models — where no spatial variations perpendicular to the mean field are possible — we
re-examine these issues in the present paper with a less restricted geometry.

Recent numerical work by other groups has addressed a variety of related questions.
Elmegreen (1997) has found that hierarchical density structure arises in 1D MHD cloud
models which are subject to mechanical forcing at their boundaries. Passot, Vazquez-
Semadeni, & Pouquet (1995) and Vazquez-Semadeni, Passot, & Pouquet (1996) have
modeled cloud formation and evolution in the ISM on ~ kpc scales, incorporating a number
of physical effects (Galactic rotation and shear, heating from localized star formation,
and cooling) in addition to magnetic fields. Padoan & Nordlund (1997) and MacLow et
al (1998) have simulated the decay of Mach-5 turbulence in 3D cloud models with weak
(c2/vi = 2,1, respectively) and moderate (c?/v3 = 0.02,0.04, respectively) magnetic fields,
and find less than a factor 2 difference in the kinetic energy decay for the two cases.

Because the matter distributions in clouds should eventually influence star formation
and the IMF, numerical modelers have taken a particular interest in analyzing the density
structure of their simulated clouds. In particular, there has been considerable recent
attention devoted to the shape of the density distribution function obtained in simulations
of compressible turbulence. Based on a variety of non-self-gravitating simulations at varied
Mach numbers, with/without turbulent forcing, and using a variety polytropic indices 7,
two different groups (Padoan, Jones, & Nordlund (1997), Nordlund & Padoan (1998);
Scalo et al (1998), and Passot & Vazquez-Semadeni (1998)) have concurred in finding that
log-normal density distributions are expected when v = 1, and skewed log-normal/power
law distributions are expected when v # 1. These groups differ, however, in their predictions
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of the scaling of the mean density contrast magnitude with Mach number.

In this paper, we extend our previous slab-geometry survey (Paper I) by performing a
survey in 2 1/2 dimensions! of the evolution of turbulence in model clouds with a range
of sizes, Mach numbers, and magnetizations. §2 describes our numerical experiments,
including the computational code we use (§2.1), the definitions of relevant dimensionless
parameters (§2.2), and our choices of parameters for the survey (§2.3). In §3, we present our
results on the evolution of cloud energies (§3.1), structural appearance (§3.2), and density
distributions (§3.3) in our models. We summarize our results and discuss the principal
implications of our work for the evolution and structure of observed clouds in §4.

2. Simulations
2.1. Numerical Method

To create the model cloud evolutions presented in this paper, we integrate the
equations of ideal, compressible, self-gravitating MHD using a variant of the ZEUS
algorithm developed by Stone & Norman (1992a), Stone & Norman (1992b). ZEUS is
an operator-split, finite difference method on a staggered mesh. The magnetic field is
evolved using “constrained transport” (Evans & Hawley (1988)), which guarantees that
V - B = 0 to machine precision. The transverse components of the magnetic field are
evolved using the “method of characteristics” which guarantees accurate propagation of
Alfvénic disturbances. Dissipation occurs on small scales in part due to purely numerical
effects associated with discretizing the MHD equations (i.e. from zone-to-zone averaging
of velocity, magnetic field, or density variations), and in part due to an artificial viscosity
introduced to capture shocks. The algorithm has been extensively tested and used in a
wide variety of astrophysical applications.

Our implementation of ZEUS is “2 1/2 dimensional” (2.5 D). This peculiar
nomenclature means that there are two independent spatial variables (z,y), but that all
(three) components of the velocity and magnetic field vectors are still evolved as dependent
variables. In this sense, there are two fully dynamical dimensions and a third dimension in
which the flow is symmetric. The boundary conditions in all models are periodic.

The gravitational potential is determined from V2¢ = 47G(p — p); the mean density

11.E. two spatial independent variable, but three spatial components to all dependent variables; this allows
spatial variations both parallel and perpendicular to the mean magnetic field.
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appears because of the periodic boundary conditions. We solve for the gravitational
potential using the Fourier method. The gravitational kernel is

¢ = 2nGpy ((1 — cos(kzAz))/Az? + (1 — cos(kyAy))/A;tf)_1 . (1)
This ensures that the discrete representation of Poisson’s equation is satisfied.

We adopt, for all models, an isothermal equation of state, meaning that p = c2p, where
¢? is a constant in both space and time. Thus we do not integrate an internal energy
equation. This is a physically reasonable approximation for molecular clouds because the

cooling time is very short (e.g. Goldsmith (1987) and references therein).

For all the simulations, we choose the initial velocity field to be locally divergence-free
(i.e. the individual Fourier components are constrained to satisfy vy - k = 0), and isotropic
in direction. The velocity amplitude is drawn from a Gaussian distribution with power
spectrum (|vi|?) «x k73, for k = |k,& + kyj| and 27/L < k; < 128(2w/L). The initial
kinetic energy therefore obeys E = Yy, x, Ex where Ex = (1/2)vE o k=3, corresponding to a
relationship o, (R) o< R*/? between size scale R and the velocity dispersion o, averaged over
that scale.

Initially, the density for all models is taken to be uniform; all inhomogeneities are
generated self-consistently from divergences in the velocity field created by internal pressure
forces, gravity, and magnetic stresses (since V - v = 0 initially). The initial magnetic field
is also taken to be uniform, pointing in the & direction (right-left in the model snapshots
shown). Notice that the uniformity of B and p in the initial conditions implies that the
mass-to-flux ratio along each field line is constant. In snapshots shown, the symmetric
direction z points out of page.

We have tested. our implementation of the ZEUS algorithm using a variety of test
problems: linear waves, standard advection tests, shock tubes and the parametric instability
of circular polarized Alfvén waves. Of particular interest for what follows is whether the
simulations are converged at our standard resolution, 2562 zones. We have tested this
by evolving an initial Gaussian random velocity field, as in all our decay experiments,
while holding the amplitude and phase of the field’s Fourier components fixed as the
resolution is increased from 322 to 5122 zones. The convergence test models use ny = 2.5,
Ek init = 50, and 8 = 0.02 (see §2.2 for definitions). We find a secular decrease in the ratios
E?/E™ of turbulent energies (= perturbed magnetic and kinetic energy) at successive
resolutions; at time 0.1, these ratios decrease from E%/E%? = 1.19 to E'%/E% = 1.11 to
E?*6/E1?8 = 1.08 to E%2/E?% = 1.06. We also find only a 5% difference in the gravitational
binding time (see §3.1) between the 256 and 512? models. Thus, at a resolution of 2562
zones, the evolution is satisfactorily converged.
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2.2. Scalings and definitions

The fundamental dimensional units for our simulations are the length L of the box
edge, the mean density p = M/L3® of matter in the box, and the (isothermal) sound speed
¢s = /kT/u. Because self-gravity is crucial in the problems under study, it is useful to
describe the size of the simulated region relative to the minimum Jeans-unstable wavelength
Ly = ¢i(r/Gp)'/? at the cloud’s mean density and temperature. For each simulation we
therefore define the size via the Jeans number ny = L/Ly; using ¢, = 0.19km s~ (T/10K)/?
for p = 2.4m, the corresponding physical size is

1/2 —1/2
L=njL;j=n;x19pc (IOLK) (—nL) . (2)

10%2cm—3

With the parameter values ny = 2, 3,4 used in the present simulations, the box edge would
respectively correspond to approximately 4, 6,or 8pc at the mean conditions in a molecular
cloud (ng, ~ 100), a factor 3 smaller for conditions within a cloud clump (ng, ~ 10%), or a
factor 10 smaller for conditions in a dense core (ng, ~ 10%).

Time in our numerical experiments is measured either in units of the sound-crossing
time t, = L/c, for the simulated region, or in terms of a characteristic gravitational
contraction time t, = Lj/c, = (m/Gp)/%.? The corresponding physical time depends on the
mean density according to

ny -1/2
tg = ts/nJ =99 Myr (TozTI;l_—:‘;) . (3)

Thus for ny = 2,3, or 4, the interval 0.1¢, would respectively correspond to approximately
2,3,0r 4 Myr at the typical mean density in a molecular cloud, and a factor 3 or 10 shorter
at clump or core densities; the interval 0.1¢, ~ 1Myr at typical mean GMC conditions.

The total mass within a cube with faces the same size as the simulated region
corresponds to M = n3 M, where the Jeans mass at the mean conditions is

—-1/2 T 3/2
= 573 — nH, .
My =pLy =48 Mo (102cm‘3) (10K) ' 4)

At the beginning of all the simulations, the magnetic field is uniform with strength By
and points in the # direction. The level of the mean magnetic field in each simulation is

2For reference, the free-fall collapse times for a cold sheet, cylinder, or sphere are, respectively 0.25%,,
0.28t,, and 0.31t,.



characterized by the ratio

¢ c? _ T n, B, \?
P = = Bafamp) = 02 (101{) (102cm—3) (muG) (5)

n H‘2

corresponding to By = 1.4uGB~1/? (10}()1/2 (W)I/Z; decreasing (3 corresponds
to increasing the importance of magnetic fields to the dynamics. For the values
B = 0.01, 0.1,1.0 used in the present set of simulations, the mean magnetic field is
By = 14, 4.4, and 1.4uG respectively, for fiducial values T = 10K and ng, = 100cm™3

Uniform clouds are unstable to compressions transverse to the mean magnetic
field (“magneto-Jeans unstable”) when the magnetosonic wave crossing time exceeds ¢,
(Chandrasekhar & Fermi (1953)); for w4 >> ¢, this occurs when ny > 3~/2, corresponding
to having the cross-field column density Ng, > 4.1 x 1022cm=2(B,/10pG) . A closely-related
criterion is used to evaluate a more stringent stability condition, as follows: If a uniform
cubic cloud with size L = njL; condenses along the mean field to make a cold “pancake,”
the pancake will have ratio of surface density to magnetic field /By = (n;8/?)/(2G*/?).
This magnetized pancake is unstable to fragmentation when X/B, > 1/(2rG*/?) 3
(corresponding to Ny, > 1.3 x 10*'em=2(B,/10uG)), so that the corresponding instability
criterion in terms of the original cloud’s parameters is ny > 8~Y27r~1. Clouds with
ny > B~/?x~1 are termed “supercritical;” clouds with the inequality reversed are termed
“subcritical.”

In terms of the fundamental units, all energies in the problem are given in units of
pc2L?; because the Z direction is symmetric, this is the energy per unit length dz. For a
cubic cloud, the corresponding total energy unit would be pc?L3. Where the kinetic energy
is given, it corresponds to

L/2 L/2 dady \ ;
/L/2/L/2fcyv+v+v)p, (6)
the square of the Mach number M = o,/c; (where o, represents the total velocity
dispersion) is therefore M? = (0, /c,)? = 2[Ek /(pL?c?)], i.e. twice the normalized kinetic
energy. The total magnetic energy corresponds to

/m/mdd B+ B? 4 B? 7
~ 8 —L/2J-L)2 zdy( ) (7)

3The same instability criterion applies when considering either the ratio £/Bj for a uniform magnetized
sheet or the central mass-to-magnetic-flux ratio of a magnetized cloud (Tomisaka, Tkeuchi, & Nakamura

(1988)).
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for the energy in the perturbed magnetic field, é Eg, we subtract out the mean-field energy
1/(2p) from equation (7). Because we assume periodic boundary conditions, the mean
magnetic field (corresponding to the & = 0 Fourier component of B), and hence the
mean-field energy, remains unchanged over the course of any simulation. The gravitational

=2 [ [ dady(sp) )

L/2J-Lj2

energy is

where the gravitational potential is computed from the modified Poisson equation in periodic
boundary conditions (§1.1). We note that because equation (1) implies ¢/c? o« L2Gp/c2,
the scaled gravitational energy will obey Eg/(pL*c?) x n3.

2.3. Survey Model Parameters

As described in §1, observed clouds present a range of properties, with some more
tightly constrained than others. From a theoretical point of view, the observed bulk cloud
properties of size, mean magnetization, and velocity dispersion can be described in terms
of the dimensionless parameters ny, 8, and M? = 2[Ex/(pL*c?)] introduced in §2.2. The
well-known correlations between cloud properties (Larson (1981)) can be converted into
relationships between these parameters, too. For example, linewidth/size and density/size
scalings of the form &, oc L*/? and p ox L~%/? reported either for whole GMCs (Solomon
et al (1987)) or for clumps within GMC’s (Bally et al (1987)) can be combined to show
that cloud kinetic energy (Ex o M?) and gravitational energy (Eg « n%) scale together;
in terms of the Mach number M and Jeans number ns, the observed relationship can be
expressed quantitatively as M = o,/c, = 1.7n;. With this observed scaling for sonic Mach
number, the corresponding Alfvén Mach number would satisfy M4 = o, /va = 1.7nJ,31/ 2,
As a consequence, these observed clouds would be magneto-Jeans unstable (rn;3'/2 > 1)
when M > 1.7, and magnetically supercritical (n;3'/? > 1/7) when M4 > 0.54. We can
also define a fluid flow crossing time .55 = L/0,; using the observed scalings, this implies
tg = 1.7t cross-

In modeling the evolution of decaying turbulence in magnetized, self-gravitating
clouds, our survey of numerical experiments brackets the range of observed properties
wherever possible. The survey covers a variety of different initial conditions by varying
three parameters independently: we set the size of the box to ny = 2,3, or 4 Jeans
lengths (see eq.2), we set the ratio ¢/vy = @ = 0.01,0.1,1, or 10° (see eq. 5), and
we set the initial kinetic energy to Ex inii/(pc2L?) = 25,50, or 100, corresponding to
initial sonic Mach numbers of M = 7.1,10, or 14. To allow for the decay of turbulent
energy, we have set the range of initial kinetic energies slightly higher than estimates of
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observed cloud kinetic energies in our range of ny. The initial Alfvén Mach number
Mg = (v2/03)? = (QﬁE'K)I/2 = Mp3'?is 7.1, 10, or 14 for the 8 = 1 models; 2.2, 3.2, or
4.5 for the § = 0.1 models; and 0.71, 1, or 1.4 for the § = 0.01 models. Thus, all of the
models with 3 = 108, 1,0.1 have initially significantly super-Alfvénic flow, while the models
with 8 = 0.01 have initially sub-Alfvénic or slightly super-Alfvénic flow. For § = 1, all of the
model clouds would be unstable by the magneto-Jeans criterion (if initially unperturbed),
and also supercritical. For # = 0.1, the n; = 4 models would be magneto-Jeans unstable and
supercritical, while the ny = 3,2 models would be magneto-Jeans stable but supercritical.
For 8 = 0.01, the ny; = 4 models would be magneto-Jeans stable but supercritical, while
the ny = 3,2 models would be magneto-Jeans stable and subcritical. The set of parameters
used for the simulation suite is given in the left three columns of Table 1.

3. Results
3.1. Overall Cloud Energetics

Figure 1 shows the evolution of the total “perturbed” energy F.; = Ex + 6Ep + Eg
for all of the cloud models over the course of the simulations. From Figure 1, it is clear
that low-magnetization cloud models become gravitationally-bound — defined as reaching
E;,; < 0 — at significantly earlier times t;,4 than high-magnetization models, and that
the models with the same values of 3 and nj (i.e. same mean magnetic field and size)
which become bound all do so at close to the same time, regardless of the initial level of
turbulent kinetic energy. In Table 1, we list the time ¢4;,q (or lower limit) at which the
model clouds become bound. The nearly-unmagnetized (3 = 10°) cloud models all become
bound at approximately the same time, 0.5¢,, regardless of the initial level of kinetic energy
or cloud size (i.e. ny). This is only slightly larger than the time (= 0.3t,) that a cold,
initially-quiescent cloud would take to collapse; thus, turbulent energy does not in itself do
much toward preventing cloud collapse. The g = 1 models become bound at times between
0.5 — 1.1¢,, with the larger (n; = 4) clouds collapsing before the smaller (nj = 2) ones.
Thus, weakly-magnetized model clouds which have Alfvén Mach numbers larger than one,
and are magneto-Jeans unstable, collapse within a factor of two of the time for collapse
of completely unmagnetized clouds. The 8 = 0.1 model clouds all have initial Alfvén
Mach numbers > 1, as well, and are all supercritical. Of these, the n; = 4 models, which
are magneto-Jeans unstable, collapse at approximately the same time (~ 0.6¢,) as the
nearly-unmagnetized (3 = 10%) and weakly-magnetized # = 1 models; the n; = 3 models
(which are just barely magneto-Jeans stable) remain unbound until 0.7 — 1.0¢,, while the
magneto-Jeans stable (but supercritical) n; = 2 models evolve to 1.5¢, before undergoing



~10 -

rapid gravitational collapse. For 8 = 0.01, all cloud models with ny = 2,3 (which are
subcritical) remain unbound up to times at least t;, with the models with higher initial Ex
lasting until the simulations were halted at 1.5t,; the supercritical ny = 4 clouds lose energy
more quickly and collapse at ~ 0.8t,.

Consistent with expectations, the gravitational energy of the subcritical cloud
models (8 = 0.01 and n; = 2,3) never exceed the energy of a self-gravitating thin sheet
Eg sheet & —[(n3m2/6) — 1], over the course of the simulations (t > t,; see Table 1). Since the
time for an initially-quiescent, cold cloud to collapse to a sheet is just 0.25%,, it is clear that
the time-dependent magnetic field perturbations have delayed the collapse along the mean
field, in subcritical clouds. For the other models that do become bound, the gravitational
energy exceeds the energy of a self-gravitating sheet at approximately the same times
(tcondense) as the times when they become bound (fping) (see Table 1).

For all models, Figure 1 shows that there is an initial phase of rapid kinetic energy
loss, with the dissipation rate higher in the models with the larger initial kinetic energy
and weaker mean magnetic fields. The time dependence of the kinetic energy dissipation
is isolated in Figure 2, which shows the evolution of Ex for all of the cloud models on
a log-log scale. Over the period before the matter becomes strongly self-gravitating, the
kinetic energy declines approximately proportional to t=%2 in the 8 = 0.01, 0.1 models,
and proportional to t7%€ in the 8 = 1 models. The kinetic energy evolution in the 8 = 108
models does not have a significant period of power-law decay.*

Since the simulations described in this paper all describe models of decaying,
rather than quasi-steady-state, turbulence, there is no single number which can be
used to characterise the turbulent decay rate for each model. However, a useful way
to quantitatively characterize the differences in the evolution of the kinetic energy for
model clouds of different mean magnetization and size is to compare the total kinetic
energy after one crossing time with the initial kinetic energy. We define a characteristic
crossing time for the flow as teoss = L/(2Ek, init)/?; for Ex inir = 25, 50, 100,
teross/ts = 0.1414, 0.1, 0.0707, respectively. In Table 1, we list the values of the ratio
Ex(teross) | Bk, init for each model cloud. For the 8 = 0.01 models, this ratio is in the

“In recent work by ourselves (see Stone (1998)) and another group (MacLow et al (1998)), numerical
simulations of decaying magnetized and unmagnetized turbulence in 3D have shown that the kinetic energy
decline is a steeper function of i. We believe that the difference with the present 2.5D simulations arises
because motions in the symmetry direction (%) are dissipated less easily. Because of the difference between
2.5D and 3D, we regard the present dissipation rates as lower limits; however, we note that the quantitative
differences in the magnitude of dissipation between 2.5D and 3D simulations performed to date are not large
(see §4.1)



-11 -

range 0.42 — 0.48, with the value depending more on the initial kinetic energy than on n;
because self-gravity does not become important for any of these model clouds within £.,ss.
For the § = 0.1 models, all of the models which do not become strongly self-gravitating
within £..0ss have Ex (teross)/ Er, init smaller than the corresponding values for the 5 = 0.01
models; the range is Ex(teross)/Ex, init = 0.32 — 0.46. All of the # = 10° models have
smaller values of Ex(tcross)/FEk, init (in the range 0.26 — 0.32 for uncollapsed models)
than the corresponding models with § = 1, and most of the 8 = 1 models have smaller
values for this ratio (0.33 — 0.39) than the 8 = 0.1 models. Although the trends in the
relative levels of dissipation are as expected, with the lower-3 cloud models experiencing
less dissipation than the higher-8 models, there is less than a factor two enhancement of
kinetic energy at times .55 in the former compared to the latter. Thus, magnetic fields do
reduce dissipation, but when the Alfvén Mach number is of order 0.5 or larger, as for the
present set of models (and as expected from estimates of field strengths in self-gravitating
molecular clouds), the reduction in dissipation is not large.

In Figure 3, we show the evolution of the perturbed magnetic energy é Ep for all
models. Comparison with Figure 2 shows that the perturbed magnetic energy in the
B = 0.01,0.1, and 1 models typically increases until it is about a factor 1.5-3 lower than the
kinetic energy, and then both decline together. The time to reach the peak magnetic energy
increases with increasing B and decreasing Fk, init, and lies in the range 0.1 — 0.25t4 where
the Alfvén crossing time t4 = L/vy = t,4'/%. Overall, the peak values of § Eg decrease with
increasing (3, and depend only weakly on n; for any value of Ek, ini. A fit to the peak value
of §Ep good to +30% is
5B, mas = 0.3B% 18701, (9)

this fit includes only those models with 8 = 0.01,0.1,1 for which é Eg reaches a maximum
and then declines. In Table 2, we list the ratio § Eg/Ex after one crossing time. For

3 = 0.01,0.1,and 1, this ratio varies between 0.25-0.62; for 3 = 10~ this ratio is just

4 — 10 x 10~%. Because the peak value of § Eg, the time at which the peak is attained, and
the rate of kinetic energy dissipation all depend on 3, the ratio § Ep/Ex (tsr0ss) Varies with
B for fixed Eg, init; the variation with nj at fixed 8 and Ek, ini: is more moderate. Defining
Bpert = ¢2/6vi = 1/(26Eg), we note that for all the models with 8 = 0.01, 0.1, and 1, the
minimum value of Bpers is 0.1 or smaller; thus, there is dynamical growth of the perturbed
magnetic field due to turbulence even when the initial mean field is relatively weak. The
amount of growth of the perturbed magnetic field likely depends on the degree of helicity
in the initial velocity field (cf. Menneguzzi, Frisch, & Pouquet (1981), Hawley, Gammie, &
Balbus (1996)), which is maximal for our choice of a divergence-free initial velocity field.
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3.2. Evolution of Cloud Structure

To illustrate the growth of density structure in model clouds, Figure 4 shows density
snapshots for the model with f = 0.01, n; = 3, and Ek, init = 50 at time intervals 0.1¢,
(~ 1Myr). This model is magneto-Jeans stable, and marginally subcritical. The early
structure, consisting of many small clumps and interconnected filaments, is characteristic
of the early appearance of all the models. Over time, the small structures agglomerate
into larger structures as kinetic energy is lost to dissipation and gravity does its work.
This general process occurs in the other models, as well. However, the late-time structural
evolution of the models differs qualitatively depending on the values of 8 and nj. In
subcritical models, over time gravity causes matter to slide along the magnetic fields and
collect into larger filaments (actually the projections of sheets in this 2D geometry) which
lie preferentially perpendicular to the mean field. Figure 4 shows how these sheets may
continue to oscillate in time. In supercritical models, on the other hand, the self-gravity
of the condensations that form is sufficient to overwhelm magnetic stresses, leading to the

growth of rounder clumps and eventual gravitational collapse.

Figure 5 compares the development of structure in three cloud models which differ
only in the magnitude of their mean magnetic field — having § = 0.01,0.1, and 1. The
B = 0.01 model is magneto-Jeans stable and (marginally) subcritical; the 8 = 0.1 model
is magneto-Jeans stable but supercritical; the § = 1 model is magneto-Jeans unstable
and supercritical. The model clouds all have the same size n; = 3, and all have the same
value of Ex, init = 50 (and, in fact, identical initial spatial velocity perturbations). In the
3 = 0.01 model, the magnetic field lines remain close to their original, parallel configuration;
early-time large oscillations of the matter clumps and filaments bend and compress the field
locally. At the final time shown (¢ = 0.8¢,), the matter density remains less than p/p = 100
everywhere. In the 8 = 0.1 model, the magnetic field is less rigid and hence there are much
larger initial departures from parallel lines. Local regions with density log(p/p) > 2 appear
in the ¢/t, = 0.5 snapshot (these contain 3.6% of the total mass), and grow in volume and
mass so that at t/¢, = 0.8, 18% of the mass is at log(p/p) > 2. The magnetic field becomes
more uniform as kinetic energy is lost, but there remain large departures from straight
lines in the high-density regions. In the 8 = 1 simulation, the magnetic fields immediately
become strongly bent and stretched, and by ¢/t; = 0.8 has even undergone noticable
reconnection in the high-density region. The matter becomes strongly clumped, with 8 %
of the mass at log(p/p) > 2 at t/t, = 0.5, and 62 %(55%) of the mass at log(p/p) > 2(3)
at t/t, = 0.8. In this last frame, a single zone contains 47% of the total mass; because the
density in this zone is high enough to make the Jeans length smaller than the grid scale,
the simulation is not well-resolved at this point. The § = 10° simulations (not shown) are
also initially filamentary, and gradually coagulate due to gravity. The late-time structures
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consist of rotationally-supported condensations (with trailing spiral arms); this sort of
structure does not develop in the higher-3 models because magnetic stresses redistribute
angular momentum away from gravitationally-collapsing regions.

3.3. Statistics of Matter Distributions

As described in §3.2, the overall structure in our model clouds evolves in time due to
the combined action of gravity, Reynolds stresses, and magnetic stresses. At the same time
as the overall structure evolves, the detailed distributions of matter in the models evolves as
well. These distributions can be characterised in a variety of ways. We find it informative to
consider two related distributions: the fraction of volume dV/V,,, and the fraction of mass
dM/M;y; = pdV/(pViet), as a function of the logarithmic density enhancement/decrement
log(p/p). In Figure 6, we show how these volume and mass distributions appear for the
cloud model snapshots portrayed in Figure 5. The values of the volume-averaged and
mass-averaged density logarithms

(og(o/ )y = 32 “E L) (10
and )
(log(p/))m = 3 2B /ﬁ’%‘: th(p ) (11)

are also indicated, for each distribution.

A number of common features are apparent for all the models shown in Figure 6; these
trends apply to our other models, as well: (a) The mass distributions are offset toward larger
density than the volume distributions; this simply means that matter is clumped, with
the mass-averaged density logarithm larger than the volume-averaged density logarithm.
Because most of the volume is at lower-than-average density, while most of the mass is at
higher-than-average density, (log(p/p))v is negative and (log(p/p))ar is positive. (b) At
earlier times, the distributions are roughly log-normal in shape, while large tails evolve in
time. (c) The values of (log(p/p))v and (log(p/p))m are nearly equal in magnitude, at early
times. It is easy to show that for a lognormal distribution, this will be true by definition.
(d) Over time, the mass and volume distributions become more separated, for any given
model. This is due to the action of gravity increasing the clumping of matter. (e) At the
earliest time, before self-gravity becomes important, the 8 = 0.01 model has greater density
contrast than the 8 = 0.1,1 models.

Given the strong temporal evolution in any of our models, no single distribution
characterises its density structure. However, because the density distribution in a real cloud
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is one of the most straightforwardly-obtained observables, it is important to investigate
in our model clouds how the density distribution depends on the input parameters. If a
clear correlation exists between the density distribution and input parameters in our model
clouds, then the density distributions in real clouds could potentially be used as a surrogate
to determine less-easily observable cloud properties — such as the mean magnetic field
strength.

To isolate the effect of the magnetic field in influencing the density distributions in
our model clouds, we have chosen to analyze the models early in their evolution, before
the effects of gravity become significant. Since the velocity dispersion — corresponding to
the kinetic energy in our models — is the other direct observable in real clouds, we select
instants in each model cloud’s evolution when the kinetic energy has a fixed value; because
Ey decays at different rates for different 3, these analysis times differ for the different cloud
models. To make quantitative comparisons among the models, we evaluate the volume-
and mass- averaged density logarithms at times in each model when the kinetic energy has
decayed to half of its initial value. These computed values for (log(p/p))v and (log(p/p))m
are listed in the last two columns of Table 1. In a schematic picture of clouds as consisting
of denser clumps embedded within a more tenuous interclump medium, we may think of
(log(p/p))m as describing the magnitude of the positive density contrast in the “clump”
component, and (log(p/p))v as describing the magnitude of the negative density contrast
in the “interclump medium”.

Based on the computed values of {log{(p/p))v and (log(p/p))m tabulated, we can make
a number of observations. These remarks apply to the set of 27 models with # = 0.01,0.1, 1;
since the unmagnetized models have unrealistically low field strength, and generally become
self-gravitating earlier, we do not consider them here. At fixed Ex and 3, we find the
variation of the the density contrast with nj is (except for the 8 = 0.01, Ek, iniz = 0.25
models) less than 0.15; thus, these variations are not principally due to gravitational effects
(as desired). We also find that for fixed 3, the density contrast generally increases with
increasing Eg. Finally, we find that at fixed Ex, all except for two models with 3 = 0.01
have larger density contrasts than the corresponding 8 = 0.1,1 models at all nj.

In Figure 7, we plot the values of the clump and interclump density contrasts
vs the total magnetic energy density, so that the models with different mean [ fall
in three separate groups. Within each group, increasing (perturbed) magnetic energy
correlates with increasing kinetic energy, accounting for the increase shown in the
density contrast toward larger total Eg. The 8 = 0.1 points lie quite close to the lines
I(log(p/p))v,m| = Clog(B?/(8mpc?)) with C = 0.2 — 0.25, and the 8 = 0.01 points lie near
the extension of these lines. The 8 = 1 points all lie well above these lines, and typically
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have density contrasts that fall between the 8 = 1 and # = 0.01 models, at a given Fkg.

Physically, the decrease in the density contrast in going from 7 = 1 to f = 0.1 at
fixed Ex can probably be attributed to a increase in the effective pressure provided by
magnetic fields: for a fixed value of the Mach number = (2Ex)'/?, the Alfvén Mach number
decreases proportional to 8172, and ram-pressure induced density contrast should decrease
as the mean magnetic field strength increases. The increase of the density contrast in going
from 8 = 0.1 to 8 = 0.01, on the other hand, is likely the signature of the importance
of transverse magnetic fields in compressing the medium. At quasiequilibrium kinks in a
strong magnetic field, matter is compressed until the central thermal pressure pc? equals
the external magnetic pressure B2 /8r. For a nonlinear transverse wave, B} /4t ~ pv},
implying p/p ~ (1/2)(vL/cs)? at kinks (independent of 8). In this situation, the induced
density contrast would not decrease with increasing mean magnetic field strength. The
measured tendency for matter to collect more strongly at nulls of the transverse magnetic
field for lower- simulations may in part owe to the increasing virulence at low 8 of the
decay instability (in which Alfvén waves pump the growth of field-aligned compressive
waves and backscattered Alfvén waves; e.g. Sagdeev & Galeev (1969), Goldstein (1978)),
which may cause the lowest-3 models to approach the kinked-field state more rapidly. We
discuss potential implications of our results on density contrast in §4.3 .

4. Discussion
4.1. Summary and comparison with other work

In this paper, we present the results of a suite of 2.5-dimensional simulations following
the evolution of cloud models with dynamical parameters comparable to those believed to
hold in Galactic molecular clouds. Our models, which assume cold, isothermal conditions,
are initiated with random, turbulent velocity fields, and include the effects of self-gravity
and magnetic forces. We parameterize the importance of magnetic fields by 3 = ¢2/v5 (see
eq. 5), and the importance of self-gravity by the Jeans number ny; = L/Lj; (see eq. 2). We
follow the evolution of cloud models over time as they dissipate kinetic energy in shocks,
and as the clumps, sheets, and filaments formed by the action of magnetic and Reynolds
stresses coalesce under their own self-gravity.

In §3.1, we compare for different models the times needed for clouds to become
gravitationally bound, and the times needed to reach a state with stronger gravitational
binding than a thin sheet. We find that only the models which are magnetically subcritical
(8?n; < 1/m) survive gravitational collapse for times significantly longer than ¢ = ¢;
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in §4.2 below we comment on the implications of these results. We have also compared
the evolution of kinetic energies, and perturbed magnetic energies, among our models. In
examining the amplification of the perturbed magnetic field, we found that the peak value
of § Ep attains higher amplitudes, and occurs at earlier times, for the lower-38 models (see
eq. 9). To quantify the decay of turbulent energy, we compare the kinetic energy after a
cloud crossing time (i.e. an “eddy turnover time”) with the initial kinetic energy. We find,
for models that have not become strongly self-gravitating at this time, that the kinetic
energy is a fraction 0.26-0.29, 0.33-0.36, 0.32-0.46, and 0.42-0.48 of the initial value, for

B = 108,1,0.1, and 0.01, respectively. Thus, while the models with stronger fields have
lowered dissipation, the effect occurs at a level less than a factor of two, for realistic field
strengths. Although the simulations of MacLow et al (1998) and Padoan & Nordlund
(1997) have somewhat different parameters, they also find kinetic energy reduced to 0.3-0.5
of the initial value, after one crossing time, and differences of no more than a factor two
between their low-8 and high-8 cases. On the other hand, the dissipation in our set of
1D models (Paper I) was much less than in the present set, because the 1D simulations’
initial velocity fields were purely transverse, and the model symmetry inhibited dissipation.
Since real clouds are probably much more similar to the 2.5D and 3D models than the 1D
models, we conclude that realistic turbulent dissipation times Ex / Eyx are not likely to be
more than twice the cloud fluid crossing times — i.e., < 10 Myr - for any likely value of
the mean magnetic field. Although the hope of substantially lowering turbulent dissipation
rates in molecular clouds by including magnetic fields (Arons & Max (1975)) may not be
fully realized, the feedback provided by star formation (e.g. Norman & Silk (1980)) on
timescales comparable to the turbulent decay (see §4.2) may yet allow a quasi-steady state
to exist (e.g. McKee (1989), Gammie & Ostriker (1996)).

We present, in §3.2, snapshots showing density contours, magnetic field lines, and
the velocity field in cloud models with varying levels of the mean magnetic field strength
(i.e. B). All models show highly inhomogeneous density structure well before gravity
becomes important in the dynamics. However, as gravity becomes important, the matter
in subcritical clouds collapses into sheets, whereas in supercritical clouds it collapses into
rounder clumps (and reaches much higher densities). In §4.2 below, we summarize our
results (based on the analysis in §3.3) on the distributions of matter in our models, and
comment on implications for interpreting the clumpy structure of observed clouds.
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4.2. Implications for cloud support and the initiation of star formation

Observed molecular clouds have column densities in the range N, = 3 —10 x 10**cm™2

(e.g. Larson (1981), Myers & Goodman (1988b), Blitz (1993)). The corresponding magnetic
field strengths required for such clouds to be cross-field (“magneto-Jeans”) stable (see
§2.2) are in the range 7 — 24uG, within the range of field strengths that are believed

to prevail on the large scale in molecular clouds (§1). However, typical observed field
strengths fall short of the value 23 — 77uG which would be required to render the same
clouds magnetically subcritical; i.e., able to resist gravitational fragmentation if all of the
cloud’s mass is collected into a sheet, rather than homogeneously filling a volume with
sides comparable to its lateral extent. In the simulations presented in this paper, we show
that regardless of the initial turbulent energy content of our model clouds, only those
clouds which are magnetically subcritical remain uncollapsed throughout the simulations
for times exceeding 1.5¢, — corresponding to ~ 15Myr for typical conditions. In fact, the
only supercritical clouds that survive uncollapsed beyond t; ~ 10Myr are relatively small
(ny = 2, L ~ 4pc) and magneto-Jeans stable. Very low magnetization clouds collapse in
0.5t, ~ 5Myr; this puts a lower limit on the collapse time for supercritical clouds. Since the
Milky Way molecular clouds contianing most of the mass are probably not magnetically
subcritical and have sizes exceeding ~ 4pc, our simulations imply that they cannot survive
for periods longer than 5 — 10Myr without some of part of their interiors becoming strongly
gravitationally bound, and, we expect, beginning to form stars. We regard this as one of
the two main conclusions of the present work.

Observationally-based estimates of the time to initiate star formation are necessarily
indirect, and subject to major uncertainty. Based on Williams & McKee (1997)’s analysis
of the joint distributions of OB associations and GMCs (assuming all molecular material
is associated with discrete clouds with a spectrum of masses dN/dM o« M~1®), if star
formation is equally distributed among all clouds, then roughly 80% of the Galactic
molecular material would reside in clouds containing one or more OB stars. If we take
this fraction as representing the portion of a cloud’s life during which it contains an OB
association, and use 20 Myr (Blaauw (1991)) as the typical observed lifetime of associations,
this implies that associations form in clouds after 20% of their 25 Myr lifetimes, essentially
as soon as our models predict that star formation is initiated in supercritical clouds (5-10
Myr). On the other hand, even in the largest existing cloud catalog (Solomon et al (1987))
created for the inner Galaxy, ~ 60% of molecular material was not actually assigned to
discrete clouds, perhaps because it has not been sufficiently warmed internally by massive
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stars to stand out above the background (Solomon & Rivolo (1989)).° If this cold material
is in clouds with the same mass distribution as the warm clouds, we would infer that 60% of
a cloud’s lifetime passes before OB stars form; a period of > 20Myr must therefore be spent
in forming exclusively low mass stars, if the clouds are supercritical and the first stars form
after 5 — 10Myr. If, on the other hand, much of the cold molecular material is distributed
in small, subcritical clouds that never make OB associations, then OB star formation in
supercritical clouds would again be inferred to commence soon after clouds first begin to

have portions of their interior collapse.

Based on the above discussion, the range of star formation scenarios permitted
by observations is fairly large at present. However, the planned high-resolution
Boston University/FCRAO Galactic Ring Survey in *CO and CS (M. Heyer, personal
communication) should considerably constrain the molecular cloud distribution function,
and correspondingly constrain the possible evolutionary scenarios for star formation and
cloud destruction. This, in turn, should allow us better to evaluate the conclusions of this
paper on the time to initiate star formation in magnetized GMCs.

4.3. Implications for clumpy structure of GMCs

The other finding which we would like to highlight concerns the distribution of density
found in our simulated clouds, and the potential to use observed density distributions in
real clouds as a diagnostic of the magnetic field strength. We find, in concurrence with
other recent work on isothermal cloud models, that the shapes of the density distribution
functions before self-gravity becomes important are roughly log-normal. Our own analysis
of density distributions presented in §3.3, however, primarily focuses not on the shape
of the density distribution function, but instead on the values of volume-weighted and
mass-weighted means of the logarithmic density, (log(p/p))v and (log(p/p))a. These
represent the magnitudes, respectively, of the (negative) density contrast in the tenuous
interclump region, and the (positive) density in the cloud clumps, relative to the mean
cloud density. For a lognormal distribution, (log(p/p))v and (log(p/5))ar will be equal in
magnitude and opposite in sign; this result holds for most of our models, when analyzed
at early times. We find that the values of the mean density contrast depend both on
the amplitude of the turbulence (i.e. the value of Fk), and on the strength of the mean

3For a fixed number of OB associations, reducing the fraction of clouds containing massive stars increases
the photoevaporation rate for those clouds that do contain associations, making estimates of cloud destruction
timescales more consistent with observed OB association lifetimes (Williams & McKee (1997)).
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magnetic field and its perturbations (i.e. the value of Ep). Specifically, we find that

for a given 3, the density contrast increases with Eg, and that virtually all of the more
strongly-magnetized (8 = 0.01) models have larger mean density contrast than the more
weakly-magnetized (8 = 1,0.1) models with the same value of Ex. We also find that the
B = 1 models generally have higher density contrast than the 8 = 0.1 models. Given the
limitations of the current set of simulations, we did not attempt to formulate a more general
theory for the relationship between the mean density contrast and the values of Ex and
3. We defer this much-desired goal until the completion of surveys of 2D and 3D forced,
non-self-gravitating MHD turbulence which are now underway.

While follow-up studies are clearly needed, it is nevertheless tempting to compare
our present results with observations. Molecular clouds are often characterized as
consisting of clumps embedded in an interclump medium, with a fraction 0y = My /M.
of the mass, and fg = Vi /Viet of the volume contained in the high density component
(p/p = 0u/fu), and the remainder of the mass and volume dispersed in a low-density
component (pz/p = (1 — 0x)/(1 — fu)). From *CO maps of Orion A and the Rosette
clouds, Bally et al (1987) and Williams, Blitz, & Stark (1995) estimate 8y = 0.75,0.77 and
frr = 0.1,0.08, respectively. With this simple clump/interclump structure, we use

(log(p/p))v = fulog(pu/p) + (1 — fu)log(pL/p) (12)
and

(log(p/p))m = Ox log(pn/p) + (1 — 0} log(pL/p). (13)
to compute density contrast magnitudes of (log(p/p))v = —0.4,—-0.5 and

(log(p/p))m = 0.5,0.6 for the two clouds. The clumps defined in these observations

are not believed to be self-gravitating; thus, it is fair to compare to the model density
contrast magnitudes computed in §3.3. Of the present models with 8 = 1,0.1,0.01
(corresponding to By ~ 1.4,4.4,14.4pG), Figure 7 shows that only the § = 0.01 simulations
have density contrasts as large as +0.5; thus, the stronger-field cases seem to be in better
agreement with observations, when taken at face value. As argued in §3.3, both 8> 1 and
B3 < 0.01 could yield larger density contrast, although the former (corresponding to sub-uG
fields) is unlikely to exist in the present-day Galaxy. The implication that By R 15uG is far
from definitive, but demonstrates the potential to develop magnetic field diagnostics from
more readily observed cloud properties such as the clump/interclump density contrast. We
view this as an an important direction for future research.

This work was supported in part by NASA grant NAG 53840.
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Table 1. Evolutionary Characteristics of Model Clouds
B my By Updd  leatawd  Sgteds J0Bac (log(p/p))ve (log(p/P)m®
0.01 2 25 >1.0 >1.0 0.46 0.39 -0.4 0.3
0.01 2 50 >1.7 >1.7 0.47 0.31 -0.5 0.4
0.01 2 100 >1.5 >1.5 0.42 0.39 -0.5 0.5
0.01 3 25 0.9 >1.0 0.45 0.40 -0.5 0.5
0.01 3 50 >1.5 >1.5 0.46 0.31 -0.4 0.4
0.01 3 100 >1.5 >1.5 0.42 0.39 -0.4 04
0.01 4 25 0.7 0.8 0.48 0.33 -0.7 0.9
0.01 4 50 0.9t >0.8 0.47 0.32 -0.5 0.5
0.01 4 100 >0.8 >0.8 0.42 0.39 -0.5 0.5
0.1 2 25 1.4 1.2 0.45 0.24 -0.2 0.2
0.1 2 50 1.6t 1.5 0.36 0.51 -0.3 0.3
0.1 2 100 1.6 14 0.32 0.61 - -
0.1 3 25 0.8* 0.8* 0.46 0.28 -0.2 0.3
0.1 3 50 1.0 0.9 0.36 0.50 -0.3 0.3
0.1 3 100 0.9t 0.8* 0.32 0.62 -0.3 0.3
0.1 4 25 0.6* 0.6* 0.50 0.49 -0.2 0.3
0.1 4 50 0.6* 0.6* 0.41 0.49 -0.3 0.3
0.1 4 100 0.6t 0.6 0.32 0.62 -0.3 0.3
1 2 25 0.9 0.8 0.33 0.54 -0.2 0.3
1 2 50 1.1 0.9 0.34 0.38 -0.3 0.3
1 2 100 1.0* 0.7 0.36 0.25 -
1 3 25 0.5 0.5* 0.39 0.52 -0.3 0.3
1 3 50 0.7* 0.6* 0.34 0.39 -0.3 0.3
1 3 100 0.7* 0.7* 0.35 0.25 -04 0.4
1 4 25 0.5 0.5 0.70 0.52 -0.4 04
1 4 50 0.6 0.5 0.37 0.40 -04 04
1 4 100 0.6* 0.6* 0.35 0.26 -0.4 04
108 2 25 0.6 0.6 0.29 9x 106 -04 04
108 2 50 0.5 0.5 0.27 5 x 106 -04 04
108 3 25 0.5 0.6 0.32 9x 1078 -0.5 0.5
108 3 50 0.5 0.6 0.26 6 x 1076 -0.5 0.5
108 4 25 0.5 0.6 0.58 4 x 10~ -0.8 1.0
108 4 50 0.5 0.6 0.29 1x 105 -0.6 0.6
% ping 18 defined as the time at which Ex + Eg +dEp =0
Dt condense i defined as the time at which Eg/Eg sheet = 1 Where Eg sheet = —[(n372/6) — 1].

Evaluated at the crossing time tor = L/(2Ek, init)*/?

9Volume-weighted average of log(p/p), evaluated at the time when Ex = Ek, :nit/2 (see text).

eMass-weighted average of log(p/5), evaluated at the time when Ex = EK,init/2 (see text).

TExtrapolated

*Self-gravity has become unresolved at the grid scale before this measurement is made
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Fig. 1.— Evolution of the total specific energy Ei:/c? = (Ex +38Eg+ Eg)/c? for all models.
Solid, dotted, and dashed curves have ny = 2,3, and 4, respectively.

Fig. 2.— Evolution of the specific kinetic energy for all models. Solid, dotted, and dashed

curves have ny = 2,3, and 4, respectively.

Fig. 3.— Evolution of the perturbed magnetic energy (per unit mass) for all models. Solid,
dotted, and dashed curves have n; = 2,3, and 4, respectively.

Fig. 4.— Density snapshots of the 8 = 0.01, n; = 3, Ek, init = 50 model cloud at temporal
intervals of 0.1¢,. Density contours are at equal intervals in log(p/p) = 0,0.5,1., ....

Fig. 5.— Comparative evolution of cloud models with different magnetization. Left, center,
and right columns have 8 = 0.01, 0.1, and 1, respectively. Eg, i = 50 and ny = 3 for' all
three runs. Snapshots at times ¢/t, = 0.2,0.5,and0.8 show density contours (log(p/p) =
0-0.9:dark blue, 1-1.9:light blue, 2-2.9:yellow, 3-5:magenta), velocity vectors (red), and
magnetic field lines (green).

Fig. 6.— Comparative evolution of density distributions in cloud models with different
magnetization. Same parameters and intervals as in Fig. 5. The solid histograms show the
distribution of volume dV/V,,, and the dashed histograms show the distribution of mass
dM /M, as a function of demnsity, for each snapshot. The numbers in the upper-right of
each panel indicate the values of the means (log(p/p))ar (top) and (log(p/p))v (bottom) for
each distribution.

Fig. 7.— Mass-averaged (upper points) and volume-averaged (lower points) density contrast
in model clouds when Ex = 0.5FEk, init, as a function of total magnetic energy. Vertical
dashed lines separate results from models with 8 = 1,0.1,0.01. Point type denotes Jeans
number nj: triangles, squares, pentagons for ny = 2,3,4, respectively. The dotted lines
indicate logarithmic slopes of +0.2 and +0.25.
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L

Fig. 4.— Density snapshots of the 8 = 0.01, ny = 3, Ek, iniz = 50 model cloud at temporal
intervals of 0.1¢,. Density contours are at equal intervals in log(p/p) = 0,0.5,1., ....
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three runs.
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Fig. 6.— Comparative evolution of density distributions in cloud models with different
magnetization. Same parameters and intervals as in Fig. 5. The solid histograms show the
distribution of volume dV/V,,, and the dashed histograms show the distribution of mass
dM /M, as a function of density, for each snapshot. The numbers in the upper-right of
each panel indicate the values of the means (log(p/p))as (top) and (log(p/p))v (bottom) for
each distribution.
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Fig. 7.— Mass-averaged (upper points) and volume-averaged (lower points) density contrast
in model clouds when Ex = 0.5Ek, init, as a function of total magnetic energy. Vertical
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indicate logarithmic slopes of £0.2 and +0.25.
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