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The equations of magnetohydrodynamics (MHD) of an ideal fluid have two families of
topological invariants: the magnetic helicity invariants and the cross-helicity invariants.
It is first shown that these invariants define a natural foliation (described as isomagne-
tovortical, or imv for short) in the function space in which solutions {u(x, t),h(x, t)}
of the MHD equations reside. A relaxation process is constructed whereby total energy
(magnetic plus kinetic) decreases on an imv folium (all magnetic and cross helicity inva-
riants being thus conserved). The energy has a positive lower bound determined by the
global cross-helicity, and it is thus shown that a steady state exists having (arbitrarily)
prescribed families of magnetic and cross helicity invariants.

The stability of such steady states is considered by an appropriate generalisation of
(Arnold) energy techniques. The first variation of energy on the imv folium is shown
to vanish, and the second variation δ2E is constructed. It is shown that δ2E is a qua-
dratic functional of the first-order variations δ1u, δ1h of u and h (from a steady state
U(x),H(x)), and that δ2E is an invariant of the linearised MHD equations. Linear sta-
bility is then assured provided δ2E is either positive-definite or negative-definite for all
imv-perturbations. It is shown that the results may be equivalently obtained through
consideration of the frozen-in ‘modified’ vorticity field introduced in Part I of this series.

Finally, in §8, the general stability criterion is applied to a variety of classes of steady
states {U(x),H(x)}, and new sufficient conditions for stability to three-dimensional imv
perturbations are obtained.

1. Introduction

In Part I of this series, we have established two variational principles for steady three-
dimensional solutions of the equations of magnetohydrodynamics (MHD) of an ideal
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incompressible fluid; in Parts II and III, the techniques developed in Part I were used
to obtain stability criteria for two-dimensional and axisymmetric flows. We now return
to the general case of 3D MHD flows. Our aim is first to extend the concept of ‘iso-
vortical deformations’ to the MHD context, for which we shall find that a more general
‘isomagnetovortical’ (or imv, for short) deformation needs to be defined. This leads to
the concept of an isomagnetovortical foliation of the function space in which solutions
{u(x, t),h(x, t)} of the MHD equations reside. The essential property of this foliation is
that, under generalised deformations on an imv folium, all topological invariants asso-
ciated with the MHD equations (and notably magnetic helicity and cross-helicity) are
conserved. We then show that a relaxation process may be defined (a generalisation of
the relaxation to magnetostatic equilibrium described by Moffatt 1985) in which energy
decreases to a minimum while the above topological invariants are conserved. This mi-
nimum corresponds to a stable steady solution of the MHD equations.

Our second aim is to extend Arnold’s (1965) variational principle to the above MHD
situation. This requires consideration of perturbations of an arbitrary steady state resul-
ting from small imv deformations. We shall show that the first-order variation of energy
δ1E vanishes at the equilibrium (i.e. at the steady state); and that the second-order va-
riation of energy δ2E is an invariant of the MHD equations linearised about this steady
state. This latter result is to be expected from general theory; but its verification provides
useful confirmation that the imv foliation has been correctly and completely identified.

It is known from general theory (Arnold 1965) that the steady state is stable if δ2E
is either positive-definite or negative-definite for all admissible perturbations on the imv
folium. We use this principle in §8 to obtain stability criteria for several classes of non-
trivial steady MHD flows. The abstract geometric approach to the equations of ideal MHD
has been developed in a number of previous publications, notably Arnold (1966), S.M.
Vishik & Dolzhanskii (1978), Marsden, Ratiu & Weinstein (1984), Holm et al (1985),
Khesin & Chekanov (1989), Zeitlin & Kambe (1993), Ono (1995), Friedlander & M.
Vishik (1990,1995). The background is extensively covered in the recent book by Arnold
& Khesin (1998).

2. Basic equations and their invariants

Consider an incompressible, inviscid and perfectly conducting fluid contained in a
domain D with fixed boundary ∂D. Let u(x, t) be the velocity field, ωωω = ∇∧u the

vorticity field, h(x, t) the magnetic field (in Alfven velocity units), j = ∇∧h the current

density, and p(x, t) the pressure (divided by density). The governing equations are then:

ut = u∧ωωω + j∧h −∇(p + 1

2
u2) , (2.1)

ht = ∇∧ (u∧h) , (2.2)

∇ · u = ∇ · h = 0 . (2.3)

We shall use the ‘commutator’ notation

[u,h] = ∇∧ (u∧h) , (2.4)

and we shall make frequent use of the property

[u,h] = −[h,u] , (2.5)
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and the Jacobi identity for any three fields

[a, [b, c]] + [b, [c,a]] + [c, [a,b]] = 0 . (2.6)

With this notation, (2.2) becomes

ht = [u,h] , (2.7)

and the curl of (2.1) gives

ωωωt = [u, ωωω] + [j,h] . (2.8)

The boundary conditions on u and h are

n · u = n · h = 0 on ∂D (2.9)

where n is the unit outward normal on ∂D.

Equation (2.7) implies that the field h is frozen in the fluid, its flux through any surface
S bounded by a material curve C being conserved; the conditions ∇·h = 0 and n ·h = 0
on ∂D are conserved under evolution governed by (2.7).

Let Sh be any closed material surface in D on which n · h = 0 (again a condition
conserved by (2.7)) and let Vh be the volume inside Sh. Then it is well known that there
are two invariants for each such volume, namely the magnetic helicity

HM (Vh) =

∫

Vh

h · curl−1h dV (2.10)

and the cross-helicity

HC(Vh) =

∫

Vh

h · u dV . (2.11)

Note that, if there is any closed h-line, γh say, then taking Vh to be a flux tube of
vanishingly small cross-section centred on γh, we obtain the corresponding invariant

Γh =

∮

γh

u · dx =

∫

Σh

ωωω · n dS , (2.12)

where Σh is any surface bounded by γh. Thus the flux of vorticity through any closed
h-line is conserved. Note however that the vorticity field is not frozen in the fluid, since
the Lorentz force j∧h in (2.1) is in general rotational (i.e. [j,h] 6= 0).

The set of invariants (2.10) and (2.11) are topological in character (Moffatt 1969),
carrying information about the linkage of h-lines and the mutual linkage of ωωω-lines and
h-lines. We shall describe them as the topological invariants of the system of equations
(2.1)–(2.3). Note that a possible special choice of Vh in (2.10), (2.11) is Vh = D, in which
case we may talk of the global magnetic helicity and the global cross-helicity of the flow.

We wish to study the existence, structure and stability of steady solutions of (2.1)–
(2.3). The following discussion follows Moffatt (1989). Let u = U(x), h = H(x) be one
such solution, with ΩΩΩ = ∇∧U and J = ∇∧H. Then, from (2.2),

U∧H = ∇Φ , (2.13)

and, from (2.1),

U∧ΩΩΩ + J∧H = ∇Ψ (2.14)

where Ψ = p + 1

2
u2. From (2.13), we have

U · ∇Φ = H · ∇Φ = 0 , (2.15)
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so that U-lines (i.e. the streamlines of the flow) and H-lines (i.e. the magnetic lines of
force) lie on surfaces Φ = cst. The surface ∂D is one such surface, i.e.

Φ = cst. on ∂D . (2.16)

In general therefore, there is a strong topological constraint on the structure of the fields
U(x) and H(x). The only escape from this constraint arises if

∇Φ ≡ 0 in some D1 ⊆ D . (2.17)

Then U∧H = 0 in D1, and so

U = α(x)H with (H · ∇)α = 0 in D1 . (2.18)

Hence, again, the U-lines and H-lines are constrained to lie on surfaces α = cst. in D1.
Again the only escape from this constraint arises if

∇α ≡ 0 in some D2 ⊆ D1 . (2.19)

In this case

U = αH with α = cst. in D2 . (2.20)

It follows immediately that

ΩΩΩ = αJ in D2 (2.21)

and so (2.14) becomes
(

1 − α2
)

U∧ΩΩΩ = ∇Ψ . (2.22)

Here, the possibility α = 1 is very special: it corresponds to U ≡ H in D2, in which case
(2.13) and (2.14) are satisfied for any choice of H(x). If α 6= 1, then (2.22) implies that

U · ∇Ψ = ΩΩΩ · ∇Ψ = 0 in D2 (2.23)

Hence the U-lines (which now coincide with the H-lines) still lie on surfaces Ψ = cst. –
unless, that is,

∇Ψ ≡ 0 in some D3 ⊆ D2 (2.24)

in which case

ΩΩΩ = β(x)U with U · ∇β = 0 in D3 . (2.25)

Now the U-lines lie on surfaces β = cst. – It seems hard to escape the constraint that
U-lines lie on surfaces! However, and finally, it may happen that

∇β ≡ 0 in some D4 ⊆ D3 (2.26)

in which case

ΩΩΩ = βU with β = cst. in D4 . (2.27)

i.e. U is a Beltrami field in D4. Now, at last, we are released from the constraint that
U-lines must lie on surfaces; under the condition (2.27), the U-lines may be chaotic in
D4 (the prototype example is the ABC-flow studied by Henon 1966 and Arnold 1966).
Note that in D4,

U = β−1ΩΩΩ = αH = β−1αJ . (2.28)
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3. The isomagnetovortical (imv) foliation

It is known that, if we replace the field u in (2.7) by any other vector field v(x, τ)†, so
that

hτ = [v,h] , (3.1)

then the integrals HM (Vh) given by (2.10) are still invariant; this is obvious because the
field h is now frozen in the hypothetical flow v(x, τ) and so all its topological properties
are conserved. It is natural to adopt the constraint

∇ · v = 0 (3.2)

and the boundary condition n · v = 0 on ∂D.

In similar spirit, we may enquire what simultaneous modification of (2.8) may be made
that will still guarantee conservation of the set of cross-helicities (2.11). The answer is
that we must replace u on the right-hand side of (2.8) by the same v(x, τ) as in (3.1);
and at the same time, we may replace j by a vector field c(x, τ), so that (2.8) is replaced
by

ωωωτ = [v, ωωω] + [c,h] . (3.3)

It is again natural to impose the solenoidality condition

∇ · c = 0 . (3.4)

It will not be necessary at this stage to impose any boundary condition on c (just as
there was no boundary condition on j in the parent problem (2.1)–(2.3)). We may refer
to v and c as ‘auxiliary’ velocity and current fields.

In order to verify this, we write (3.1) in the form

Dh

Dτ
≡

∂h

∂τ
+ v · ∇h = h · ∇v , (3.5)

and the ‘uncurled’ version of (3.3) in the form

Du

Dτ
≡

∂u

∂τ
+ v · ∇u = v · (∇u)T + c∧h−∇P , (3.6)

where [v · (∇u)T ]i = vj∂uj/∂xi. Then

d

dτ

∫

Vh

(u · h)dV =

∫

Vh

(

u ·
Dh

Dτ
+ h ·

Du

Dτ

)

dV

=

∫

Sh

(h · n)(u · v − P )dS = 0 , (3.7)

using standard manipulations and the condition n · h = 0 on Sh.

The pair of equations (3.1), (3.3) is wider in scope than the pair (2.7), (2.8) because
in the latter

u = curl−1ωωω , j = curl h , (3.8)

whereas v and c suffer no such restrictions.

Note that, if c = 0 in (3.3), then the vortex lines are frozen (like the h-lines) in the
flow v. When c 6= 0, the vortex lines are not frozen in this flow; but the equation is such

† Throughout §§3–5, we replace t by a ‘virtual time’ τ , in order to distinguish the virtual
processes considered from real time evolution.
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that the quantities Γh defined by (2.12), which represent flux of vorticity through any
closed h-line, do remain invariant. The term [c,h] in (3.3) redistributes vorticity flux
within any such closed h-line but conserves the integrated flux.

Equations (3.1), (3.3) thus conserve all known topological invariants of the parent
equations, but allow a much wider range of behaviour due to the freedom of choice
of the auxiliary fields {v, c}. Let A(x) represent the pair of fields {u(x),h(x)} (where
u = curl−1ωωω). Under the action of a pair of auxiliary fields {v(x, τ), c(x, τ)} during a
time interval [τ1, τ2], evolution governed by (3.1) and (3.3) will convert a pair A1(x) to
a pair A2(x) having the same set of topological invariants. Conversely, we may say that
two pairs A1(x) and A2(x) lie on the same isomagnetovortical (or imv) folium of the
function space of such pairs if and only if there exist fields {v(x, τ), c(x, τ)} which effect
the conversion A1(x) → A2(x) in a time interval [τ1, τ2]. This requirement clearly defines
an imv foliation of the function space, two pairs being on the same folium if and only if
they are ‘accessible’ one from another via (3.1) and (3.3), and therefore certainly only
if they have the same set of topological invariants. This foliation provides the required
generalisation of the ‘isovortical’ foliation introduced by Arnold (1965).

It is of course obvious that the function space trajectory of a solution {u(x, t), h(x, t)}
of the parent equations (2.1)–(2.3) lies on an imv folium, since this evolution corresponds
to the particular choice of auxiliary fields v(x, τ) = u(x, τ) and c(x, τ) = j(x, τ) and the
restoration of real time τ → t. This may be stated as:

Proposition 3.1 A trajectory {u(x, t),h(x, t)} of the ideal MHD equations lies on an
isomagnetovortical folium.

4. Relaxation to minimum energy states

Let us now consider the energy functional

E = 1

2

∫

D

(

h2 + u2
)

dV , (4.1)

which is known to be an invariant of equations (2.1)–(2.3). Let us calculate the rate of
change of energy under (3.1), (3.3), i.e. under a more general evolution on an imv folium.
We have

dE

dτ
=

∫

D

{h · [v,h] + u · (v∧ωωω + c∧h−∇P}dV

= −

∫

D

{v · (u∧ωωω + j∧h) + c · (u∧h)}dV . (4.2)

Here, we have used n · u = n · v = 0 on ∂D and have discarded surface terms. Note
that if we put v = u and c = j in (4.2), then the integrand vanishes and dE/dτ = 0 as
expected.

We now exploit our freedom of choice of v and c in order to ensure monotonic decrease
of E, the idea being to drive the system towards a minimum energy state. The obvious
choice is

v = u∧ωωω + j∧h −∇α (4.3)

c = u∧h−∇β (4.4)
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where α and β are chosen so that

∇ · v = ∇ · c = 0 , n · v = β = 0 on ∂D . (4.5)

These requirements define a Neumann problems for α and a Dirichlet problem for β
which provide unique solutions for ∇α and ∇β. Equation (4.2) now gives

dE

dτ
= −

∫

D

(

v2 + c2
)

dV , (4.6)

where we have used (4.5) to discard surface contributions. Hence E does decrease mono-
tonically as required.

In order for this result to be useful, we require a positive lower bound on E. This is
provided by the cross-helicity invariant HC which is conserved on the imv folium; for

E = 1

2

∫

D

(

u2 + h2
)

dV >

∣

∣

∣

∫

D

u · h dV
∣

∣

∣
= |HC | . (4.7)

Hence, provided HC 6= 0, we certainly have a lower bound †. It then follows that E tends
to a limit as τ → ∞, and hence, from (4.6), that‡

v → 0 and c → 0 as τ → ∞ . (4.8)

From (4.3) and (4.4), we then see that u and h must tend to steady (equilibrium) fields
UE(x),HE(x), say, satisfying the steady state equations

[

UE ,HE
]

= 0 , (4.9)
[

UE ,ΩΩΩE
]

+
[

JE ,HE
]

= 0 , (4.10)

where ΩΩΩE = curl UE , JE = curl HE. Moreover, since the energy E ‘goes downhill
all the way’ during the relaxation process, it attains a minimum in the asymptotic state
(only in the most exceptional circumstances could the process be arrested at a saddle
point), and this asymptotic state must therefore be stable.

The process described above is very similar to the magnetic relaxation process descri-
bed by Moffatt (1985). In that case, there was a lower bound on the magnetic energy
obtained through a combination of Schwarz and Poincaré inequalities:

1

2

∫

D

h2dV > q−1|HM | , (4.11)

where q−1 is a constant (with dimensions of length) dependent on the geometry of the
domain D. The inequality (4.11) still holds in the present context and implies, in conjunc-
tion with (4.7), that

E > max
{

|HC |, q
−1|HM |

}

. (4.12)

There is no lower bound on the kinetic energy 1

2

∫

u2dV .

It may well be asked why the above procedure does not work if the fluid is non-
conducting, and h ≡ 0. The answer is that then both HC and HM are zero, and no
positive lower bound is available for E. Thus although a process may be constructed

† The technique of Freedman (1988) may presumably be adapted to demonstrate the existence
of a positive lower bound on E even when HC = 0 provided there is a nontrivial linkage between
the vorticity and magnetic fields.

‡ The appearance of mild point singularities in v and/or c seems unlikely; a formal proof
however is at present lacking, and is desirable.
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as above which monotonically reduces E, there is no guarantee of a limit other than
E = 0. Thus the procedure does not yield any three-dimensional stable steady solutions
of the Euler equations of ideal hydrodynamics, consistent with the conclusion of Rouchon
(1991) that no such steady solutions exist satisfying Arnold’s (1965) sufficient condition
for stability.

5. Variational principle

Suppose now that {U(x),H(x)} is a steady solution of equations (2.1)–(2.3); we may
think of {U(x),H(x)} as a fixed point in the function space. Following Moffatt (1986),
we consider a virtual displacement x → ζζζ(x, τ0) on the imv folium containing this fixed
point, considered as the displacement associated with a steady auxiliary velocity field
v(x) acting over a short time interval [0, τ0]†. Thus

ζζζτ = v(ζζζ) (0 6 τ 6 τ0) (5.1)

and, for small τ0,

ζζζ(x, τ) = x + τ0v(x) + 1

2
τ2

0
v · ∇v + O(τ3

0
) . (5.2)

We define the first-order displacement field

ξξξ(x) = τ0v(x) , (5.3)

which evidently satisfies

∇ · ξξξ = 0 , n · ξξξ = 0 on ∂D . (5.4)

Under the frozen-field distortion of H(x) associated with the virtual displacement ζζζ(x, τ0),
it is known (Moffatt 1986) that the first and second order variations of H are

δ1h = [ξξξ,H] , δ2h = 1

2

[

ξξξ, δ1h
]

, (5.5)

In similar spirit, we may now calculate from (3.3) the first and second order variations
of ΩΩΩ(x) = curl U(x) consequent upon the ‘application’ of steady auxiliary fields v(x)
and c(x) over the time interval [0, τ0]. Defining

ηηη(x) = τ0c(x) , ∇ · ηηη = 0 , (5.6)

these are

δ1ωωω = [ξξξ,ΩΩΩ] + [ηηη,H] , (5.7)

and

δ2ωωω = 1

2

[

ξξξ, δ1ωωω
]

+ 1

2

[

ηηη, δ1h
]

. (5.8)

The corresponding perturbations of U are evidently

δ1u = ξξξ ∧ΩΩΩ + ηηη ∧H −∇α , (5.9)

δ2u = 1

2
ξξξ ∧ δ1ωωω + 1

2
ηηη ∧ δ1h−∇β . (5.10)

By virtue of their construction, the variations (5.5), (5.9) and (5.10) are first- and second-
order perturbations on the imv folium containing {U(x),H(x)}.

The expressions (5.9) and (5.10) have been obtained previously by Friedlander & Vishik
(1995) following an abstract prescription for general Hamiltonian systems of Khesin &

† It is possible to represent displacements in this way because the domain D is fixed.
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Chekanov (1989). We believe that the above derivation is easier to understand, and that
it sheds some light on the physical meaning of the displacement fields ξξξ and ηηη.

The first order variation of energy is

δ1E =

∫

D

(

H · δ1h + U · δ1u
)

dV

=

∫

D

{

H · [ξξξ,H] + U · (ξξξ ∧ΩΩΩ + ηηη ∧H)
}

dV

= −

∫

D

{

ξξξ · (U∧ΩΩΩ + J∧H) + η · (U∧H)
}

dV

= −

∫

D

(ξξξ · ∇Ψ + ηηη · ∇Φ)dV

= 0 . (5.11)

Here we have used ∇ · ξξξ = ∇ · ηηη = 0, n · ξξξ = 0 on ∂D and Φ = cst on ∂D. We have thus
proved:

Proposition 5.1 The energy functional has a stationary point at the steady state (or
fixed point) {U(x),H(x)} with respect to all admissible perturbations on the imv folium
containing the fixed point.

Similarly, the second-order variation of energy on the imv folium is given by

δ2E = 1

2

∫

[

(δ1u)2 + (δ1h)2 + 2U · δ2u + 2H · δ2h
]

dV . (5.12)

Substituting for δ2h, δ2u from (5.5) and (5.10) and rearranging (using integration by
parts) gives

δ2E = 1

2

∫

[

(δ1u)2 + (δ1h)2 − ξξξ ·
(

U∧ δ1ωωω + J∧ δ1h
)

− ηηη ·
(

U∧ δ1h
)]

dV . (5.13)

This result is as previously stated (allowing for change of notation) by Friedlander &
Vishik (1995).

The expression (5.13) apparently depends on the choice of fields ξξξ and ηηη. However δ2E
in fact depends only on the perturbations δ1u and δ1h and is a quadratic functional of
these fields. This follows from:

Proposition 5.2 Let {ξξξ1, ηηη1} , {ξξξ2, ηηη2} be two distinct pairs of displacement fields giving
the same δ1u, δ1h, i.e.

δ1h = [ξξξ1,H] = [ξξξ2,H] , (5.14)

δ1u = ξξξ
1
∧ΩΩΩ + ηηη

1
∧H−∇α1 = ξξξ

2
∧ΩΩΩ + ηηη

2
∧H−∇α2 . (5.15)

Then

δ2E(ξξξ1, ηηη1) = δ2E(ξξξ2, ηηη2) . (5.16)

This result is a natural generalisation of that of Arnold (1966). Its proof involves long
vector manipulation and is relegated to Appendix A.

Arnold’s general stability principle is now applicable: the flow {U(x),H(x)} is stable
provided δ2E is either positive definite or negative definite for all admissible {ξξξ(x), ηηη(x)}.

Before exploiting this principle, we shall first establish the relationship between δ2E
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and the linear stability problem, and then we shall provide an alternative formulation of
the variational principle in terms of the frozen-in ‘modified vorticity field’ introduced in
Part I of this series.

6. Linearised stability problem

Consider now an infinitesimal perturbation of the state {U(x),H(x), P (x)} in the form

{U + u(x, t),H + h(x, t), P + p(x, t)} . (6.1)

We shall identify the perturbation fields u,h with the first-order variations δ1u, δ1h
introduced in §5; now however we are concerned with the actual time (t) evolution of the
system. Substituting (6.1) in (2.1)–(2.3) and linearizing in the perturbations, we obtain
the linear evolution equations

ut + (U · ∇)u + (u · ∇)U = −∇p + J∧h + j∧H , (6.2)

ht = [u,H] + [U,h] , (6.3)

∇ · u = ∇ · h = 0 . (6.4)

We may assume that at time t = 0, the perturbations {u,h} lie on the imv folium
containing {U,H}; then by Proposition 3.1, {u(x, t),h(x, t)} remains on this imv folium
for all t > 0. We may then infer the existence of time-dependent displacement fields
ξξξ(x, t), ηηη(x, t) such that

h(x, t) = [ξξξ(x, t),H(x)] (6.5)

u(x, t) = ξξξ(x, t)∧ΩΩΩ(x) + ηηη(x, t)∧H(x) −∇α . (6.6)

The corresponding vorticity perturbation is

ωωω(x, t) = [ξξξ,ΩΩΩ] + [ηηη,H] . (6.7)

The evolution equations (6.2)–(6.4) imply corresponding evolution equations for ξξξ and
ηηη. These may be found as follows. First, from (6.5),

ht = [ξξξt,H] (6.8)

so that, substituting in (6.3) and using the Jacobi identity,

[ξξξt,H] = [u,H] + [U, [ξξξ,H]]

= [u,H] − [ξξξ, [H,U]] − [H, [U, ξξξ]] . (6.9)

Hence, using [H,U] = 0 (from (2.13)), we have

[ξξξt,H] = [(u + [U, ξξξ]) ,H] , (6.10)

and so (up to an arbitrary additive vector field which commutes with H and therefore
does not contribute the h given by (6.5))

ξξξt = u + [U, ξξξ] . (6.11)

This is the required evolution equation for ξξξ. It implies that

(h− [ξξξ,H])t = [U,h − [ξξξ,H]] (6.12)

thus verifying that, if (6.5) is satisfied at t = 0, then it is also satisfied for all t > 0.
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Equation (6.11) implies the following interpretation for ξξξ(x, t) (Chandrasekhar 1987):
let X(x, t) be the position of a particle in the undisturbed flow U(x) with initial position
x; then X(x, t) + ξξξ(x, t) is the position of the particle in the (linearly) disturbed flow
U(x) + u(x, t).

Secondly, from (6.7) we have

ωωωt = [ξξξt,ΩΩΩ] + [ηηηt,H] , (6.13)

while from the curl of (6.2) we have

ωωωt = [U, ωωω] + [u,ΩΩΩ] + [j,H] + [J,h] . (6.14)

Hence

[ξξξt,ΩΩΩ] + [ηηηt,H] = [U, [ξξξ,ΩΩΩ] + [ηηη,H]] + [u,ΩΩΩ] + [j,H] + [J, [ξξξ,H]] . (6.15)

This may be rearranged in the form

[ξξξt − u − [U, ξξξ],ΩΩΩ] + [ηηηt − j − [U, ηηη] − [J, ξξξ],H] = 0 . (6.16)

The first term vanishes by (6.11); and we then have (again up to an arbitrary additive
term commuting with H which does not contribute to ωωω in (6.7))

ηηηt = j + [U, ηηη] + [J, ξξξ] . (6.17)

This is the required evolution equation for ηηη. It is the same as that previously obtained
by Vladimirov & Moffatt (1995). Equation (6.17) implies that

(ωωω − [ξξξ,ΩΩΩ] − [ηηη,H])t = [U, ωωω − [ξξξ,ΩΩΩ] − [ηηη,H]] (6.18)

(provable by now standard manipulations), thus verifying that if (6.7) is satisfied at t = 0,
then it is also satisfied for all t > 0.

Invariance of δ2E under linearized evolution

We know that the energy E is an exact invariant of the equations (2.1)–(2.3). Moreover,
we know that under an imv perturbation from the state (U,H), δ1E = 0, and so

E = E0 + δ2E + . . . , (6.19)

where δ2E is a quadratic functional of the perturbation fields (u,h). It is to be expected
therefore that δ2E should be an invariant of the linearised evolution equations (6.2)–(6.4),
since if it were not, then E could not be an invariant of the exact equations. We thus
have the following MHD counterpart of Arnold’s (1966) result for ideal hydrodynamics:

Proposition 6.1 The second variation of energy (5.13) is an invariant of the linearised
equations (6.2)–(6.4).

The direct verification of this result, which again involves long manipulations, is given
in Appendix B.

7. Alternative form of variational principle

The theory developed in §§3–6 above is based on the need to consider perturbations
which conserve the cross-helicity invariants (2.11), and the associated circulation inva-
riants (2.12) when closed h-lines exist. These integrals are evidently invariant under the
replacement

u −→ ũ = u + h∧m + ∇α , (7.1)
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where m is an arbitrary vector field and α is chosen so that ∇ · ũ = 0 and n · ũ = 0 on
∂D.

It is natural to ask whether m may be chosen in such a way that the circulation of ũ
round any contour moving with the velocity field u (and not only those which coincide
with closed h-lines) is conserved. If this is so, then the ‘modified vorticity field’

ω̃ωω = curl ũ = ωωω + [h,m] (7.2)

must satisfy the frozen-field equation

ω̃ωωt = [u, ω̃ωω] . (7.3)

It follows from (7.2) that

ωωωt + [ht,m] + [h,mt] = [u, ωωω] + [u, [h,m]] . (7.4)

Substituting for ht and ωωωt from (2.2), (2.8) and using the Jacobi identity, we obtain

[h,mt − j − [u,m]] = 0 (7.5)

and so, up to a field commuting with h, m must satisfy the evolution equation

mt = [u,m] + j . (7.6)

This equation is compatible with imposition of the subsidiary condition

∇ · m = 0 . (7.7)

Equations (7.2), (7.6) are the same as those obtained by a different procedure by
Vladimirov & Moffatt (1995). Here, we view m as the generator of transformations
(7.1) that leave cross-helicities invariant; equation (7.6) is then a consequence of the
requirement (7.3) that the circulation of the modified velocity ũ round any material
circuit (in the flow u) be conserved.

The imv folium introduced in §3 now admits reformulation, putting the emphasis on
the frozen-in fields h and ω̃ωω. If, as in §3, u is replaced by v in both (2.2) and (7.3) and t
by τ , giving

hτ = [v,h] , (7.8)

ω̃ωωτ = [v, ω̃ωω] , (7.9)

then both h and ω̃ωω are frozen-in in the flow v (with conservation of fluxes through all
material circuits). The appropriate modification of (7.6) is

mτ = [v,m] + c , (7.10)

where c is the ‘modified current field’ of §3. It may easily be verified that (7.10) is
compatible with (3.3), (7.8), (7.9) and (7.2). Since c(x, τ) is an arbitrary solenoidal field,
we may equally regard m(x, τ) as the arbitrary field (with c then given by (7.10)), if this
proves convenient.

Consider now the basic state U(x), H(x) satisfying (2.13), (2.14), or equivalently

[U,H] = 0 , [U,ΩΩΩ] + [J,H] = 0 . (7.11)

Let M(x) be the associated steady field satisfying

[U,M] + J = 0 , (7.12)
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and let

Ũ = U + H∧M + ∇α , (7.13)

Ω̃ΩΩ = ΩΩΩ + [H,M] . (7.14)

Then, from (7.3), we have

[U, Ω̃ΩΩ] = 0 . (7.15)

As in §5, we may now consider imv perturbations described by displacement fields
{ξξξ(x), ηηη(x)} where ξξξ = τv(x), ηηη = τc(x) with τ small. The corresponding perturbation
of the field M is given from (7.10) by M → M + µµµ(x) where

µµµ(x) = [ξξξ,M] + ηηη , (7.16)

and we may use the pair {ξξξ,µµµ} instead of {ξξξ, ηηη} to describe imv perturbations.

In terms of these fields the first and second order variations of ω̃ωω are given by the frozen
field relations

δ1ω̃ωω =
[

ξξξ, Ω̃ΩΩ
]

(7.17)

δ2ω̃ωω = 1

2

[

ξξξ, δ1ω̃ωω
]

. (7.18)

Hence, from (7.2),

δ1ωωω =
[

ξξξ, Ω̃ΩΩ
]

−
[

δ1h,M
]

− [H, µµµ] (7.19)

δ2ωωω = 1

2

[

ξξξ, δ1ω̃ωω
]

−
[

δ2h,M
]

−
[

δ1h, µµµ
]

. (7.20)

The corresponding first variation of energy is

δ1E =

∫

D

{

U · (M∧ [ξξξ,H] + µµµ∧H + ξξξ ∧ Ω̃ΩΩ −∇α) + H · [ξξξ,H]
}

dV

=

∫

D

{

(ξξξ ∧H) · ([U,M] + J) + µµµ · (H∧U) + ξξξ · (Ω̃ΩΩ∧U)
}

dV

= 0 (7.21)

using (7.11)–(7.15). Thus we have re-established Proposition 5.1 from the alternative
point of view.

Similarly the second variation of energy is now given by

δ2E =
1

2

∫

D

{

(δ1u)2 + (δ1h)2 + δ1ωωω · (U∧ ξξξ) + δ1h · (U∧ (µµµ − [ξξξ,M]) + J∧ ξξξ)
}

dV .

(7.22)
The relationship (7.16) guarantees that this expression is the same as (5.13); and Propo-
sition 5.2 may be reformulated in an obvious way in terms of the fields {ξξξ,µµµ}. We shall
not labour the details; it is evident that we have merely reformulated the results of §5
from the alternative viewpoint.

8. Sufficient conditions for stability

Let us now consider in more detail the expression (5.13) for δ2E; with the change of
notation (as in §6) δ1u → u, δ1h → h, this may be written

δ2E = 1

2

∫

D

{

u2 + h2 − u · [ξξξ,U] − h · (ηηη ∧U + ξξξ ∧J)
}

dV . (8.1)
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We restrict attention to the class of steady MHD flows for which

U(x) = λ(x)H(x) , H · ∇λ = 0 . (8.2)

For this class of flows, the expression (8.1) may be reduced (see Appendix C) to the form

δ2E = 1

2

∫

D

(u− λh + H(ξξξ · ∇λ))2 dV + W , (8.3)

where

W = 1

2

∫

D

{

(

1 − λ2
)

(

h2 + h · (J∧ ξξξ)
)

− 2λ(ξξξ · ∇λ)(ξξξ · (H · ∇)H)
}

dV , (8.4)

with, as usual, h = [ξξξ,H]. Note that W is a quadratic functional of ξξξ alone; the depen-
dence of δ2E on ηηη in (8.3) is contained in the first integral (via the dependence of u on
ηηη).

The flow (8.2) is stable if δ2E is sign-definite; hence from (8.3) we have immediately:

Proposition 8.1 Steady MHD flows satisfying (8.2) are linearly stable to three-dimensional
perturbations provided

W > 0 for all admissible ξξξ . (8.5)

(The possibility W = 0 is included to cover those displacements ξξξ for which h = [ξξξ,H] =
0.) Let us consider some particular cases.

(i) Flows with constant λ

If λ = cst. in D, (8.4) reduces to

W = (1 − λ2)W0 , W0 = 1

2

∫

D

{

h2 + h · (J∧ ξξξ)
}

dV . (8.6)

If |λ| < 1 (i.e. the flow is sub-Alfvenic) then it is stable provided

W0 > 0 (all admissible ξξξ) . (8.7)

This is as found previously by Friedlander & Vishik (1995). The criterion (8.7) applies
equally to the case of magnetostatic equilibrium (λ = 0) and is the well-known criterion
of Bernstein et al (1958). Sub-Alfvenic flows with constant λ have the same structure as
‘equivalent’ magnetostatic equilibria, and are evidently governed by the same stability
criterion.

If |λ| > 1, then the flow would be stable provided W0 6 0 (all admissible ξξξ). However,
as shown by Friedlander & Vishik (1995), this condition is never satisfied: perturbations
ξξξ of sufficiently small length-scale can always be found such that h2 > |h ·(J∧ ξ)| in (8.6).

(ii) Parallel flow and field

Let D be an infinite cylinder of arbitrary cross-section with axis parallel to Oz, and
suppose that

H = H0(x, y)ez , U = λ(x, y)H , (8.8)

a particular case of (8.2). Then (H · ∇)H = 0, and

h = ∇∧ (ξξξ ∧H) = H0(ez · ∇)ξξξ − (ξξξ · ∇H0)ez . (8.9)

After some algebra, (8.4) reduces to

W = 1

2

∫

D

(1 − λ2)H2

0
((ez · ∇)ξξξ)2 dV . (8.10)
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We assume that the fields ξξξ and ηηη decay sufficiently rapidly as |z| → ∞, to that the
integrals in (8.3), (8.4) converge. [Alternatively, we may consider perturbations periodic
in z, and take D to cover one period.] Thus we obtain:

Proposition 8.2 The state (8.8) is linearly stable to imv perturbations provided
|λ(x, y)| 6 1 in D.

(iii) Annular basic state

Let D be an annular region between two cylinders C1, C2 of arbitrary cross-sections,
and let

H = −ez ∧∇A , U = λH , λ = λ(A) , (8.11)

where A(x, y) is the flux-function of H. We shall suppose that |∇A| 6= 0 in D, i.e. H
has no neutral points in D. The function A satisfies the Grad-Shafranov equation, which
may be written

(1 − λ2)∇2A − λλ′H2 = G(A) (8.12)

where λ′ = dλ/dA. Also, in the state (8.11),

J = −∇2Aez , (H · ∇)H = ∇( 1

2
H2) − (∇2A)∇A . (8.13)

Defining the unit vector

ννν = ∇A/|∇A| , (8.14)

the expression for W may be reduced (see Appendix D) to the form

W = W1 + W2 , (8.15)

where

W1 = 1

2

∫

D

(1 − λ2)(h + (ξξξ · ννν)J∧ ννν)2dV , (8.16)

W2 = −

∫

D

{

(1 − λ2)(J∧ ννν) · (H · ∇)ννν + λλ′|H|(ννν · (H · ∇)H)(ξξξ · ννν)2
}

dV . (8.17)

Further transformation of W2, using (8.13), (8.14) yields

W2 = 1

2

∫

D

(1 − λ2)

(

∇2A −
λλ′

1 − λ2
H2

) (

−∇2A +
∇A · ∇(H2)

2H2

)

(ξξξ · ννν)2dV . (8.18)

From (8.15)–(8.18) we conclude:

Proposition 8.3 The state (8.11) is linearly stable to imv perturbations provided |λ| < 1
(i.e. the flow is sub-alfvenic) and
either

λλ′

1 − λ2
H2

6 ∇2A 6
∇A · ∇(H2)

2H2
(8.19)

or

∇A · ∇(H2)

2H2
6 ∇2A 6

λλ′

1 − λ2
H2 (8.20)

throughout D.

Note that for the limiting case in which H = H0(y)ex, U = λ(y)H, the integral W2

given by (8.18) vanishes, and the stability criterion of Proposition 8.3 reduces simply to
|λ| < 1, in conformity with Proposition 8.2.
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To clarify the conditions (8.19), (8.20), consider the simple case for which D is the
annular domain a < r < b, and

H = H0(r)eθ , H0(r) = −A′(r) , U = λ(r)H . (8.21)

Then, defining

χ(r) = rλ(r)λ′(r)/(1 − λ2) , (8.22)

(8.19), (8.20) are equivalent to the inequalities
either

H0(r) > 0 and H ′

0
(r) +

1 − χ(r)

r
H0(r) 6 0 (8.23)

or

H0(r) 6 0 and H0(r) +
1 − χ(r)

r
H0(r) > 0 . (8.24)

Both (8.23), (8.24) may be combined in the single inequality

H0(r)

(

H ′

0(r) +
1 − χ(r)

r
H0(r)

)

6 0 for a < r < b (8.25)

or equivalently

d

dr

[

(1 − λ2)(rH0)
2
]

6 0 . (8.26)

We conclude that if (8.26) is satisfied, then the state (8.21) is linearly stable to arbitrary
imv perturbations.

Note that, for the case of magnetostatic equilibrium (λ = 0), (8.26) reduces to

d

dr
(rH0)

2
6 0 . (8.27)

This criterion for stability to arbitrary 3D imv perturbations is, as might be expected,
more restrictive than the criterion

d

dr
(H0/r)2 6 0 (8.28)

obtained by Moffatt (1986) for stability to axisymmetric perturbations.

This work was supported by Hong Kong Research Grant HKUST6169/97P and the
UK/Hong Kong Joint Research Grant JRS96/28.

Appendix A. Proof of Proposition 5.2

For simplicity we consider here only a simply connected domain D; more complicated
geometry can be similarly treated. Let ξ̂ξξ ≡ ξξξ2 − ξξξ1, η̂ηη ≡ ηηη2 − ηηη1. Then, from (5.14) and
(5.15),

[ξ̂ξξ,H] = 0 , [ξ̂ξξ,ΩΩΩ] + [η̂ηη,H] = 0 . (A 1)

Hence

∆E ≡ δ2E(ξξξ
2
, ηηη

2
)−δ2E(ξξξ

1
, ηηη

1
) = 1

2

∫

D

(

δ1ωωω · (U∧ ξ̂ξξ) + δ1h · (U∧ η̂ηη + J∧ ξ̂ξξ)
)

dV . (A 2)
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Using integration by parts and the Jacobi identity, we obtain

I1 ≡

∫

D

δ1ωωω · (U∧ ξ̂ξξ)dV =

∫

D

δ1u · [U, ξ̂ξξ]dV

=

∫

D

(ξξξ
1
∧ΩΩΩ + ηηη

1
∧H) · [U, ξ̂ξξ]dV

=

∫

D

(

ΩΩΩ · (ξξξ1
∧ [ξ̂ξξ,U]) + (ηηη1

∧H) · [U, ξ̂ξξ]
)

dV

=

∫

D

(

U · [ξξξ1, [ξ̂ξξ,U]] + (ηηη1
∧H) · [U, ξ̂ξξ]

)

dV

=

∫

D

(

−U · [ξ̂ξξ, [U, ξξξ1]] − U · [U, [ξξξ1, ξ̂ξξ]] + (ηηη1
∧H) · [U, ξ̂ξξ]

)

dV . (A 3)

Similarly,

I2 ≡

∫

D

δ1h · (J∧ ξ̂ξξ)dV =

∫

D

J · (ξ̂ξξ ∧ δ1h)dV =

∫

D

H · [ξ̂ξξ,h]dV

=

∫

D

H · [ξ̂ξξ, [ξξξ
1
,H]]dV =

∫

D

H ·
(

−[ξξξ
1
, [H, ξ̂ξξ]] − [H, [ξ̂ξξ, ξξξ

1
]]
)

dV

= −

∫

D

H · [H, [ξ̂ξξ, ξξξ1]]dV = −

∫

D

(J∧H) · [ξ̂ξξ, ξξξ1]dV , (A 4)

where we have used (A1). Substituting (A3) and (A4) in (A2) and taking account of
(2.14), we obtain

2∆E =

∫

D

(

δ1h · (U∧ η̂ηη) + (ξ̂ξξ ∧ΩΩΩ) · [U, ξξξ1])
)

dV . (A 5)

Hence, in view of (A1),

2∆E =

∫

D

(

δ1h · (U∧ η̂ηη) − (η̂ηη ∧H) · [U, ξξξ1]
)

dV

=

∫

D

η̂ηη ·
(

H∧ [ξξξ
1
,U] − U∧ [ξξξ

1
,H]

)

dV . (A 6)

Since ∇ · η̂ηη = 0 in D, it may be expressed in the form: η̂ηη = ∇∧ g for some vector field g.

From (A6), we then obtain

2∆E =

∫

D

(∇∧ g) ·
(

H∧ [ξξξ1,U] − U∧ [ξξξ1,H]
)

dV

=

∫

D

g · ([H, [ξξξ1,U]] + [U, [H, ξξξ1]]) dV = −

∫

D

g · [ξξξ1, [U,H]]dV = 0 , (A 7)

and this completes the proof.

Appendix B. Proof of Proposition 6.1

The proof is a direct verification that δ2E is conserved by the linearized equations
(6.2)-(6.4). First, we identify δ1u and δ1u with infinitesimal perturbation u and h whose
evolution is governed by (6.2)-(6.4), so that

δ2E = 1

2

∫

D

{

u2 + h2 − u · [ξξξ,U] − h · (ηηη ∧U + ξξξ ∧J)
}

dV . (B 1)
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Then we have

d

dt

(

δ2E
)

=

∫

D

{

u · ut + h · ht + 1

2
ωωωt · (U∧ ξξξ)

+ 1

2
ht · (U∧ ηηη + J∧ ξξξ) + 1

2
ωωω · (U∧ ξξξt) + 1

2
h · (U∧ ηηηt + J∧ ξξξt)

}

dV .

Now we show that

I ≡

∫

D

{

ωωω · (U∧ ξξξt) + h · (U∧ ηηηt + J∧ ξξξt)
}

dV

=

∫

D

{

ωωωt · (U∧ ξξξ) + ht · (U∧ ηηη + J∧ ξξξ)
}

dV . (B 2)

Let

I1 ≡

∫

D

ωωω · (U∧ ξξξt)dV , I2 ≡

∫

D

h · (U∧ ηηηt + J∧ ξξξt)dV . (B 3)

We have

I1 =

∫

D

(

[ξξξ,ΩΩΩ] + [ηηη,H]
)

· (U∧ ξξξt)dV =

∫

D

(

ξξξ ∧ΩΩΩ + ηηη ∧H
)

· [U, ξξξt]dV

=

∫

D

{

ΩΩΩ · (ξξξ ∧ [ξξξt,U]) + ηηη · (H∧ [U, ξξξt])
}

dV =

∫

D

{

U · [ξξξ, [ξξξt,U]] + g · [H, [U, ξξξt]]
}

dV

= −

∫

D

{

U ·
(

[ξξξt, [U, ξξξ]] + [U, [ξξξ, ξξξt]]
)

+ g ·
(

[U, [ξξξt,H]] + [ξξξt, [H,U]]
)}

dV

=

∫

D

{

(ξξξt ∧ΩΩΩ) · [U, ξξξ] − (ΩΩΩ∧U) · [ξξξ, ξξξt] + (U∧ ηηη) · [ξξξt,H]
}

dV . (B 4)

Here the property that ∇ · ηηη = 0 has been used: we have introduced the vector field g
such that ηηη = ∇∧ g.

Similar manipulations result in

I2 =

∫

D

{

(ηηηt ∧H) · [U, ξξξ] + (J∧ ξξξ) · [ξξξt,H] + (J∧H) · [ξξξ, ξξξt]
}

dV . (B 5)

It follows from (B4), (B5) that

I = I1 + I2 =

∫

D

{

[U, ξξξ] ·
(

ξξξt ×ΩΩΩ + ηηηt ∧H
)

+ [ξξξ, ξξξt] ·
(

U∧ΩΩΩ + J∧H
)

+ (J∧ ξξξ) · [ξξξt,H]
}

dV . (B 6)

Finally, using (6.5), (6,6) and (2.14), we arrive at the formula (B2).

It follows from (B2) that

d

dt

(

δ2E
)

=

∫

D

{

u · ut + h · ht + ωωωt · (U∧ ξξξ) + ht · (U∧ ηηη + J∧ ξξξ)
}

dV . (B 7)

After substitution of ut, ht from (6.2)-(6.3) and some manipulations, this may be written
in the form

d

dt

(

δ2E
)

= I3 + I4 + I5 (B 8)

where

I3 =

∫

D

{

u · (U∧ωωω) + (U∧ ξξξ) ·
(

[u,ΩΩΩ] + [U, ωωω]
)}

dV , (B 9)



Magnetohydrodynamics of ideal fluids 19

I4 =

∫

D

{

u ·
(

j∧H + J∧h
)

+ h · [u,H] + [u,H] · (J∧ ξξξ)
}

dV , (B 10)

I5 =

∫

D

{

(U∧ ξξξ) ·
(

[j,H] + [J,h]
)

+ h · [U,h] (B 11)

+[u,H] · (U∧ ηηη) + [U,h] ·
(

U∧ηηη + J∧ ξξξ
)}

dV . (B 12)

Consider first I3. We have

I3 =

∫

D

{

ωωω · (u∧U) + [U, ξξξ] · (u∧ΩΩΩ) + (U∧ ξξξ)
(

[U, [ξξξ,ΩΩΩ]] + [U, [ηηη,H]]
)}

dV

=

∫

D

{(

[ξξξ,ΩΩΩ] + [ηηη,H]
)

·(u∧U) + ΩΩΩ · (u∧ [ξξξ,U])

−(U∧ ξξξ) ·
(

[ξξξ, [ΩΩΩ,U]] + [ΩΩΩ, [U, ξξξ]] + [ηηη, [H,U]] + [H, [U, ηηη]]
)}

dV

=

∫

D

{

(ξξξ ∧ΩΩΩ) · [u,U] + [ηηη,H] · (u∧U) + U · [u, [ξξξ,U]]

−[U, ξξξ] · (ξξξ ∧ [ΩΩΩ,U]) − [U, ξξξ] · (H∧ [U, ηηη])
}

dV

=

∫

D

{

(ξξξ ∧ΩΩΩ) · [u,U] + [ηηη,H] · (u∧U) − U · [ξξξ, [U,u]] − U · [U, [u, ξξξ]]

−(ΩΩΩ∧U) · [ξξξ, [ξξξ,U]] + (U∧ ηηη) · [H, [U, ξξξ]]
}

dV

=

∫

D

{

[ηηη,H] · (u∧U) − (U∧ ηηη) · [U,h] − (ΩΩΩ∧U)
(

[u, ξξξ] + [ξξξ, [ξξξ,U]]
)}

dV . (B 13)

It can be shown by similar calculations that

I4 = −

∫

D

(J∧H) · [ξξξ,u]dV , (B 14)

I5 =

∫

D

{

(J∧H) · [ξξξ, [ξξξ,U]] +
(

[u,H] + [U,h]
)

· (U∧ ηηη)
}

dV . (B 15)

From (B13)–(B15) and (2.14), we obtain

d

dt

(

δ2E
)

=

∫

D

{

[ηηη,H] · (u∧U) + [u,H] · (U∧ ηηη)
}

dV . (B 16)

Finally, since
∫

D

[u,H] · (U × ηηη)dV = −

∫

D

ηηη · (U∧ [u,H])dV

= −

∫

D

g · [U, [u,H]]dV

=

∫

D

g ·
(

[u, [H,U]] + [H, [U,u]]
)

dV

=

∫

D

ηηη · (H∧ [U,u]) =

∫

D

[ηηη,H] · (U∧u)dV ,

we obtain
d

dt

(

δ2E
)

= 0 . (B 17)

Note that while obtaining this formula we have only used the linearized equations (6.2)-
(6.4) and the relations (6.5), (6.6) between fields ξξξ, ηηη and infinitesimal perturbations of
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the velocity and the magnetic field (we have not explicitly used the evolution equations
for ξξξ, ηηη).

Appendix C. Derivation of equation (8.3)

First we note that for the state (8.2) the relationship (6.6) takes the form

u = γγγ + ηηη ∧H−∇α , γγγ = λξξξ ∧J + ∇λ(ξξξ · H) − H(ξξξ · ∇λ) . (C 1)

From (8.1), (8.2), we have

2δ2E =

∫

D

{

u2 + h2 − u · [ξξξ,U] − h · (ληηη ∧H + ξξξ ∧ J)
}

dV . (C 2)

Since

[ξξξ,U] = λ[ξξξ,H] + ∇λ∧ (ξξξ ∧H) = λh − H(ξξξ · ∇λ) , (C 3)

we obtain

2δ2E =

∫

D

{

u2 + h2 − λu · h + (u · H)(ξξξ · ∇λ) + h · (J∧ ξξξ) − λh · (ηηη ∧H)
}

dV . (C 4)

Further, using (C1), we get

2δ2E =

∫

D

{

u2 +h2−2λu ·h+(u ·H)(ξξξ ·∇λ)+h · (J∧ ξξξ)+λh ·γγγ−λ∇α ·h
}

dV . (C 5)

Now
∫

D

λ∇α · hdV =

∫

D

λ∇α · [ξξξ,H]dV =

∫

D

(∇λ∧∇α) · (ξξξ ∧H)dV

=

∫

D

ξξξ · (H∧ (∇λ∧∇α))dV =

∫

D

(ξξξ · ∇λ)(H · ∇α))dV .

Substitution of this in (C5) and some manipulations yield

2δ2E =

∫

D

{(

u + H(ξξξ · ∇λ) − λh
)2

+ (1 − λ2)
(

h2 + h · (J∧ ξξξ)
)

+ λ(h ·H)(ξξξ · ∇λ) + λ(h · ∇λ)(ξξξ ·H) − λ(ξξξ · ∇λ)
(

ξξξ · (J∧H)
)}

dV . (C 6)

It may be shown that

X ≡ λ(h ·H)(ξξξ · ∇λ) + λ(h · ∇λ)(ξξξ ·H)

= (H · ∇)
(

λ(ξξξ · ∇λ)(ξξξ · H)
)

− λ(ξξξ · ∇λ)(ξξξ · ∇)
(

1

2
H2

)

− λ(ξξξ · ∇λ)
(

ξξξ · (H · ∇)H
)

.

With help of this identity (C6) may be transformed to the equation

2δ2E =

∫

D

{(

u + H(ξξξ · ∇λ) − λh
)2

+ (1 − λ2)
(

h2 + h · (J∧ ξξξ)
)

− 2λ(ξξξ · ∇λ)
(

ξξξ · (H · ∇)H
)}

dV , (C 7)

which evidently coincides with (8.3).
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Appendix D. Derivation of formula (8.15)

Consider the integral

I = 1

2

∫

D

(1 − λ2)
(

h2 + h · (J∧ ξξξ)
)

dV , (D 1)

which enters the expression (8.4). We start with some transformations of this integral
similar to those of Bernstein et al (1958). First, following Bernstein et al (1958), we shall
prove the identity

2(J∧ννν) · (H · ∇)ννν = J2 + (J∧ ννν) · (∇∧ (ννν ∧H)) + H · (J∧ ννν)divννν , (D 2)

where ννν is defined by (8.14).

It follows from (8.11), (8.14) that H · ννν = 0. Therefore,

0 = ∇(H · ννν) = (ννν · ∇)H + (H · ∇)ννν + H∧ (∇∧ ννν) + ννν ∧J , (D 3)

and so

∇∧ (ννν ∧H) + Hdivννν = (H · ∇)ννν − (ννν · ∇)H

= 2(H · ∇)ννν + H∧ (∇∧ ννν) + ννν ∧ J .

Further, we have

Y ≡ J2 + (J∧ ννν) ·
(

∇∧ (ννν ∧H) + Hdivννν
)

= J2 + (J∧ ννν) ·
(

2(H · ∇)ννν + H∧ (∇∧ννν) − J∧ ννν
)

= 2(J∧ννν) · (H · ∇)ννν + H ·
(

(∇∧ ννν)∧ (J∧ ννν)
)

= 2(J∧ννν) · (H · ∇)ννν , (D 4)

whence the identity (D2) immediately follows.

Now we rewrite the integral (D1) in the form

2I =

∫

D

(1 − λ2)
{(

h + (ξξξ · ννν)J∧ ννν
)2

− 2(ξξξ · ννν)2(J∧ννν) · (H · ∇)ννν
}

dV + I1 , (D 5)

where

I1 =

∫

D

(1 − λ2)
{

2(ξξξ · ννν)2(J∧ννν) · (H · ∇)ννν − 2h · (J∧ ννν)(ξξξ · ννν)

− (J∧ ννν)2(ξξξ · ννν)2 + h · (J∧ ξξξ)
}

dV . (D 6)

Substitution of (D2) in (D6) yields

I1 =

∫

D

(1 − λ2)
{(

(J∧ ννν) · (∇∧ (ννν ∧H)) − J0|H|divννν
)

(ξξξ · ννν)2

− 2h · (J∧ ννν)(ξξξ · ννν) + h · (J∧ ξξξ)
}

dV . (D 7)

Here J0 ≡ −∇2A and we have used eqns. (8.11), (8.13), (8.14).

Let

ξξξ = (ξξξ · ννν)ννν + ξ̃ξξ , ξ̃ξξ = b ez + cH , (D 8)
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i.e. b = ξξξ · ez, c = (ξξξ ·H)/H2. Substitution of (D8) in (D7) results in

I1 =

∫

D

(1 − λ2)
{(

(J∧ννν) · (∇∧ (ννν ∧H)) − J0|H|divννν
)

(ξξξ · ννν)2

+ h · (J∧ ξ̃ξξ) − h · (J∧ ννν)(ξξξ · ννν)
}

dV . (D 9)

Using (6.5) and (D8), we obtain

Y1 ≡ (ξξξ · ννν)2(J∧ ννν) · (∇∧ (ννν ∧H)) − h · (J∧ ννν)(ξξξ · ννν)

= (ξξξ · ννν)(J∧ ννν) ·
(

(ξξξ · ννν)∇∧ (ννν ∧H) −∇∧ (ξξξ ∧H)
)

= (ξξξ · ννν)(J∧ ννν) ·
(

(ξξξ · ννν)∇∧ (ννν ∧H) −∇∧

(

(ξξξ · ννν)ννν ∧H + b(ez × H)
))

= −J0|H|
(

(ννν · ∇)
(ξξξ · ννν)2

2
+ (ξξξ · ννν)(ez · ∇b)

)

. (D 10)

From (D8) and the condition divξξξ = 0, we have

ez · ∇b = −ννν · ∇(ξξξ · ννν) − (ξξξ · ννν)divννν − H · ∇c , (D 11)

whence

Y1 = J0|H|
(

(ξξξ · ννν)2divννν + (ξξξ · ννν)(H · ∇c)
)

. (D 12)

Substituting this in (D9), we get

I1 =

∫

D

(1 − λ2)
{

J0|H|(ξξξ · ννν)(H · ∇c) + h · (J∧ ξ̃ξξ)
}

dV . (D 13)

Consider now the integral

I2 ≡

∫

D

(1 − λ2)h · (J∧ ξ̃ξξ)dV . (D 14)

Since J∧ ξ̃ξξ = J0c∇A, we have

I2 =

∫

D

(1 − λ2)J0c∇A · (∇∧ (ξξξ ∧H))dV

=

∫

D

(

∇((1 − λ2)J0c)∧∇A
)

· (ξξξ ∧H)dV

=

∫

D

(1 − λ2)ξξξ ·
(

H∧

(

∇(J0c)∧∇A
))

dV

= −

∫

D

(1 − λ2)(ξξξ · ννν)|H|
(

H · (J0c)
)

dV ,

whence,

I1 =

∫

D

(1 − λ2)|H|c(ξξξ · ννν)
(

H · ∇(∇2A)
)

dV . (D 15)

Now let us recall equation (8.12). Using (8.11) and (8.12), we obtain

(1 − λ2)(H · ∇)∇2A = λλ′

(

H · ∇(H2)
)

. (D 16)

Eqn. (D15) can therefore be written as

I1 =

∫

D

λλ′|H|
(

H · ∇(H2)
)

c(ξξξ · ννν)dV . (D 17)
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Now, taking account of eqns. (D5) and (D17), we can rewrite (8.4) in the form

W = W1 + R , (D 18)

where

W1 = 1

2

∫

D

(1 − λ2)
(

h + (ξξξ · ννν)J∧ ννν
)2

dV

R = 1

2

∫

D

{

λλ′|H|
(

H · ∇(H2)
)

c(ξξξ · ννν)

−2(1 − λ2)(ξξξ · ννν)2(J∧ ννν) · (H · ∇)ννν − 2λλ′|H|(ξξξ · ννν)ξξξ · (H · ∇)H
}

dV . (D 19)

All that remains to be done is to show that R in (D19) coincides with the integral W2

given by (8.17). We have

Y3 ≡ −λλ′|H|(ξξξ · ννν)ξξξ · (H · ∇)H

= −λλ′|H|(ξξξ · ννν)
(

(ξξξ · ννν)ννν + cH
)

· (H · ∇)H . (D 20)

Substitution of this in R yields

R = −

∫

D

{

(1 − λ2)(ξξξ · ννν)2(J∧ ννν) · (H · ∇)ννν + λλ′|H|(ξξξ · ννν)2ννν · (H · ∇)H
}

dV . (D 21)

After comparison of this formula with (8.17) we conclude that R is indeed the same as
W2.

REFERENCES

Arnold, V.I. 1965 Variational principle for three dimensional steady flows of an ideal fluid.
Prikl. Matem. i Mekh., 29, N. 5, p. 846-851 (English transl.: J. Appl. Math. & Mech., 29,
5).
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