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Abstract

The reconstruction of evolutionary trees {phylogenies) from DNA sequence data is a central
problem in biology. We describe simple sufficient conditions for two tree reconstruction methods
(maximum parsimony, and maximum compatibility) to correctly reconstruct a tree when applied
to sufficiently many sequence sites generated under a simple stochastic model.

Key words. Trees, genetic sequences, maximum parsimony method, stochastic models.
AMS subject classifications. 05C05, 92D15
Abbreviated title. Consistency conditions for tree reconstruction

1 Preliminaries

The Mazimimum Parsimony method (abbreviated MP) is a very popular technique for reconstruc-
ting evolutionary trees from biological data. Formally, we are given a collection of functions, each
of which maps the set £ of leaves of a tree T' = (V, E) into some set S of states - such functions
are called characters. In evolutionary studies, the leaves (degree 1 vertices) of the T' correspond
to extant species, and the tree T' describes the evolutionary history of these species from some
hypothetical ancestor (located on some edge of the tree). Characters correspond to characteristics
(morphological, physiological, genetic) on which the extant species differ. For example, in genetics,
aligned DNA sequences (one for each extant species) provides a 4-state (or 2-state) characters -
one for each site in the aligned sequences. For further biological details the interested reader is
referred to [10]. Given a character f we seek to extend f to a function i : V' — S in such a way
as to minimize the changing number of h defined by ch(h,T) := |{e = {u,v} € E : h(u) # h(v)}|-
Let L(f,T) denote this minimal value of ch(h,T) (over all extensions h), sometimes called the
parsimony score of f on T. These concepts are illustrated in Fig. 1.

The MP method selects the tree (or trees) 7' that minimizes the sum of L(f,7) over the
characters f in the data. Informally, such a tree minimizes the number of “mutations” (changes



Figure 1: A fully resolved tree on leaf set L = {1,...,9}, together with a 3-state character
f:L— {a,B,7} having L(f,T) = 5. An example of an extension h of f with ch(h,T) = 5 is
given by the the additional assignment of states shown in brackets

of state across the edges of the tree) that need to be hypothesised in order to explain how the
characters could have all evolved on tree T from some ancestral vertex.

A related method, Mazimum Compatibility, abbreviated MC, selects the tree (or trees) 7' which
maximizes the number of characters f for which L(f,T) = |f(L)| = 1. Informally, such a tree
maximizes the number of characters which could have evolved from some ancestral vertex without
any parallel or reverse mutations. '

A fundamental theoretical question is to determine conditions under which MP or MC would
recover a tree when applied to a large number of characters that evolved independently on that
tree, according to some stochastic model. A variety of Markov-style models have been proposed for
modelling and analysing the evolution of DNA sequences (see,[10]) - in this paper we consider only
the simplest such example - the symmetric r-state model, due to Neyman [8] (see also, [1], [3], [4])
and abbreviated hereafter as the N.model (the case r = 4 is known in genetics as the Jukes-Cantor
model).

In this model, S = {0,1,...r — 1}, the underlying tree T is fully resolved - that is, each vertex
has degree 1 or 3, and we have an associated function p : E — (0, ";—1) Randomly assign, with
uniform probability, an element of S to any one fixed vertex, vp of T and then assign states to
the remaining vertices recursively as follows: for each vertex v which has an adjacent vertex closer
to vy that has been assigned a state, randomly assign v this same state with probability 1 — o(e)
(where e = {vp,v}) or assign v one of the other states with equal probability (viz, TP—(_E%) In this
" way we generate a random function F : V — S. Under the N; model, with parameters (T,p), let
P(F = h) be the probability that F = h, and let P(f,T) denote the probability that Fiz, = f

By definition, and the assumptions of the model,

P(f,T) = > P(F = h)

{m:V-={0,1,.. r~1}:hL=f}

and

I 2 [ a-se)

P(F =h) = —
{e={u,v}:h{u)#h(v)} {e={u,v}:h(x)=h(v)}

N )=
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from which we immediately see that the probability distribution on characters f (and extensions
h) is independent of our choice of vg. There is also an elegant representation of P(f,T') using unitary
matrices (see [5]; [11]), but we do not use this here. A tree reconstruction method is statistically
consistent under this N, model with underlying parameters (T, p) if the probability that the method
reconstructs 7' when applied to k independently generated characters converges to 1 as k tends to
infinity. An example of such a method is the maximum likelihood technique, as Chang [2] recently
established (for the N, model and generalisations thereof).

In a landmark paper, [4] Felsenstein showed that, under the N> model, MP is not statistically
consistent for certain choices of p. Indeed this was demonstrated even when T has just four leaves
(in which case MP=MC). This inconsistency phenomena has been refined and extended by others
[5], [6], [9]. Sufficient conditions for the statistically consistency of MP or MC have only been
described when either 7" has just four leaves [7], or for special cases [5], [6],[9].

Here we provide the first explict sufficient conditions for statistical consistency of MP (resp.
MC) that are applicable to any tree on any number of leaves under the N, (resp. Nz) model.

2 Sufficient conditions for correct tree reconstruction

We begin with some definitions leading to a simple combinatorial sufficient condition for the two
methods described to return a given tree.

Let E denote the interior edges of T' - that is, the edges of T' that are not incident with a leaf.
Deleting an edge e € E from T produces a partition §. of the leaves of T" into two subsets. If
{fY(s) : s € 8} is a bipartition, and equals B, we say that f corresponds to edge e. Thus, f
corresponds to some edge of 7' if and only if L(f,T) = 1. Let c¢(e) denote the set of those r(r — 1)
characters that correspond to edge e and let ¢(T) = U, zc(e). If {fXs):s€8t={g7!(s):s¢
S} we write f ~ g.

Suppose we are given a sequence C of characters. Let n(C, f) denote the number of times
character f occurs in this sequence. Let n[C,f] := > ,.;n(C,g), and for an edge e of T let
ne(C) = X rece) M(C, f) = n[C, fe], where f is any character that corresponds to edge e. Let:

n_(C,T) := min{ne(C) : e € E},
n(C,T) := maz{n[C, f]: L(f,T) > 1},

and
{f:L(f,T)>2}

The following result gives sufficient conditions for MP and MC to return a given tree from some
sequence C of characters, regardless of how these characters arise.

Lemma 1 Let T be any fully resolved tree.
1. MP selects tree T for a sequence C of r-state characters if n_(C,T) > N(C,T).

2. MC selects tree T for a sequence C of 2-state characters if n_(C,T) > n4(C,T).



Proof: For brevity, we let n(f) = n(C, f),n- =n_(C,T),n+ =ny(C,T),N = N(C,T).
Part 1: For a tree T1, let L(T1) := X ; L(f,T1)n(f). It suffices to show that L(T}) is strictly
minimized when 77 = T Firstly note that:

LT)= Y n(f)+N,
{f:L(fT)=1}

and for any tree T} # T we have:

L) > >, L, Tn(f),
{f:L(fT)=1}

Now, since 71 # T and T is fully resolved, T" has at least one internal edge e for which, for all
f € c(e) we have L(f,T1) > 2. Consequently, 3¢ s.1(71)=1} L(f, T1)n(f) = Xyprrm)=1) n{f) +n-,
which combined with the previous inequalities establishes the claim.

Part 2: Let v(T1) denote the number of occurences of a characters f with L(f,71) = 1. It
suffices to show that v(T}) is strictly maximized when 77 = T Firstly note that,

v)= Y, nlf)= Y ne(0)

{f-L(f,11)=1} e€E(T1)

Now, for any tree 71 # T on leaf set £ let S denote the subset of internal edges e of T' for which
Be # Be for any edge €’ of Ty. Since T is fully resolved, S # 0, and the number of edges e in T} for
which B, N {Be : €' € E(T)} = 0 is at most s = |S| and for each such edge n.(C) < ny. Thus,

v(T)—v(Ty) > Z ne(C) —sny >0
ecS

as required. O

When C is generated under the N, model, we can apply this Lemma to obtain sufficient condi-
tions for the statistical consistency of MC and MP (Corollary 1). First we introduce the following
terminology.

Definitions. Under the N, model with parameters (T, p), let

m_ = mingem{B(f,T)}; my = mazspmy>1{P(f,T)}

and
p=Y_P(f,T)L(f,T); M= >, P(f,T)L(f,T).
f {f:L(f,T)>2}

Corollary 1 1. MP is statistically consistent under the N, model if m_ > M/r.

2. MC is statistically consistent under the Ny model if m_ > m.

Proof Note that, under the N, model, if f ~ g then, P(f,T) = P(g,T). Suppose that we have a
sequence C of ¢ characters which evolve identically and independently under the N, model. Then,
by the weak law of large numbers, as ¢ tends to infinity,
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where —, denotes convergence in probability. The result now follows by Lemma 1. O
We can now state our main result.

Theorem 1 Under the N, model with parameters (T,p) let
§ = Zp(e)a
e

p_ :=min{p(e) : e € E°}; p;+ := maz{p(e) : e € E},

and
T :=p-+pt
Then,
1. MP is statistically consistent if
. (r —1)s?
- 1-—s

2. When r =2, MC is statistically consistent if
p- 2 piz + 22 (1 + z) (1)

Remark: Informally, for 2-state characters, the condition for the consistency of MP is that the
probability of a mutation on any internal edge (i.e. p(e)) should be at least (approximately) the
square of the total expected number of mutations in the tree. Thus it assumes the p(e) values are
small and not too unequal. For MC the condition described states, informally, that the probability
of mutation on any internal edge is at least some multiple ¢ of the square of the largest mutation
probability p; in the tree. This places an upper bound on p, as follows: let ¢ denote the largest
possible value of p, subject to the condition (1). Then, since z < 2¢, and ¢ > p_, condition (1)
shows that ¢ > 2¢2 + 82(1 + 2t) from which ¢ < ‘5"1'—5/5 ~ 0.087 (and indeed we can achieve this
by putting all p(e) values equal). Thus, 12p2 > 10p% + 16p3 > pyz + 2z%(1 + z) and so we see
that p_ > cp?. implies condition (1) for ¢ = 12. However if p,. is less than ¢, ¢ can be reduced, and
indeed ¢ converges to 3 as py converges to 0. More comments concerning the interpretation and
consequences of this Theorem are contained in Section 5.



Proof of Theorem 1 Part 1: Let us first recall the definition of y introduced just before
Corollary 1, and let E denote expectation. Then, y = E(L(F|z,T)) for an extension F randomly
generated on T under the N, model. Now, L(Fj;,T) < ch(F,T), and so,

p < E(ch(F,T)) (2)

However, ch(F,T) is simply a sum of independent 0/1 random variables - one for each edge, and
taking the value 1 on edge e = {u,v} iff F(u) # F(v) which has probability p(e). Consequently,

E(ch(F,T)) = s (3)

Let
Q=111 -ple).

Now, M = p — P(L(F|z,T) = 1) and P(L(F|z,T) = 1) > P(ch(F,T) = 1). Furthermore,
P(ch(F,T) = 1) = ¥, p(e) [Tor2e(1 — p(e)) > 5Q. Thus, M < p — sQ while (in)equalities (2), (3)
give u < s, and hence

M<s—3Q (4)

Now, for a character f € ¢(T), let ey denote the edge of T that f corresponds to. An extension
h of f to V can be obtained by assigning a leaf vy the value f(vg) (with probability L), assigning
(appropriate) different states to the ends of ey, and for each edge e # ey assigning the same state
to each end of ¢p. Consequently,

B, T) 2 B(F = h) = 1 x 2 [T (1 pe)) > 105,
e#eo

where § = 2= and so:

m_> Qs (5)
Now, our hypothesis is that § > Ts—_zg Then, 1—s > ;17 which together with the purely algebraic
inequality
Q>1-—s,

implies that @ > ;315. Rearranging gives Q4 > s — sQ and thus, in view of the inequalities (4), (5)
we have
m_ > M/r.

Part (1) of the Theorem now follows from Corollary 1(1).
Part 2: Throughout this proof we will make extensive use of the following two properties of the
N, model with underlying tree T":



e The conditional probability of generating a character f given that a vertex of T is in state
u€{0,1,... ,r — 1} is precisely rP(f,T).

o Let #; and ¢5 be two subtrees of T" which share one non-leaf vertex, v. Let f; and fa denote
the restrictions of f to the leaves of ¢; and ¢3 respectively. Then f; and fs are conditionally
independent once the state of vertex v is specified.

Let Py denote the probability of generating the character that maps all leaves to state 0. We
first establish the following inequality. Suppose that f € ¢(T") corresponds to edge e € E. Then,

B(f,7) > P9 _p, (6)

To establish (6) let 77,75 denote the two rooted subtrees of T whose roots are the ends of
edge e. Without loss of generality we may suppose all the leaves of T} (resp. T») are mapped by
f to 0 (resp. 1). For i = 1,2, and p,v € {0,1}, let P;(u,v) denote the conditional probability,
under the Ny model (restricted to T;) that all the leaves in T; are in state u given that the root
vertex (which we take as our v) is in state v. Let a = 3(P1(0,1)P2(1,0) + P1(0,0)P2(1,1)); 8 =
%(Pl (07 0)P2(17 0) + P (01 1)P2(1, 1)) Thena

P(f,T) = ap(e) + B(1 — p(e)) (7)

and by virtue of the symmetry in the N model which implies that P;(0,0) = F;(1,1); P;(0,1) =
P;(1,0) we see that:
Py = a(l —p(e)) + Bple)
(e

Straightforward algebraic manipulation then shows that (since p(e) < %), B};—(’)ﬂ > 150
required to establish (6). Actually all we shall require is the following corollary of inequality (6):
for any f € ¢(T),

as

P(f,T) > Pop- (8)
Most of the remainder of the proof is devoted to establishing the following upper bounds on
P(f,T).
Claim:

o If L(f,T) = 1 then,

]P(fa T) <zPh (9)

e while if L(f,T) > 1 then

P(f,T) < 22%(1 + )Py < zPy (10)



The proof of inequality (9) is by induction on the number n of leaves of T. The inequality holds
for n = 2 since then there is just one edge e and p(e) = p- = p4; Py = 2(1 — p(e)) and so, since
p(e) € (0,0.5), P(f,T) = %p(e) < p(e)(1 — p(e)) = zPy as required. Now, suppose that n > 2. We
distinguish two subcases.

e feEC(T)
e f corresponds to a non-interior edge of 7'

In the first subcase let T;,T3 be as described above. Consider the two subtrees {t;‘,t? of T;
that intersect precisely on the vertex v;, where e = {v1,v2} is the edge associated with f (see Fig.
2(a)). For # = a,b let P?(u,v) denote the conditional probability, under the N, model restricted
to ¢/, that the leaves t? are all in state u given that v; is in state v. Then

Pi(p,v) = P(u, v) P! (4, v). (11)

Now, if 4 # v then the restriction of f to the leaves of each subtree has L value of 1 on each
subtree, so by the inductive hypothesis,

P}(u,v) < zP{(0,0), (1 # v) (12)

Now, recalling Equation (7) we have P(f,T) = ap(e) + B(1 — p(e)) and so, substituting in
Equations (11, 12) into the definitions of a and B we deduce that:

P(f,T) < Rlp(e) + 22°(1 — p(e)) + p(e)z*]. (13)

where R = 1 P#(0,0)P?(0,0)P¢(0,0)P2(0,0).
Also, we have,

Py>(1—-p(e)R 2 (1 -ps)R (14)

Now, we can bound the term in brackets in (13) by noting that p(e) + 2z%(1 — p(e)) + p(e)z* <
p4 + 222 + 23 (since z < 1), and then, by our assumption (1), we have: p; + 222 +z° < z(1 —p).
Substituting this into (13) and comparing the result to (14) establishes inequality (9) in the first
subcase.

For the second subcase, we may assume that f maps some leaf, incident with an edge e, to state
0, and all other leaves of T to state 1.

Let t*,1? denote the other two subtrees of T which intersect precisely on the vertex at the other
end of edge e from the leaf. Then, defining P%(u,v), P’(i,v) analogously as before, we have:

P(/,T) = 3(P(L, 1)P(1, 1p(e)+P*(1,0)P*(L, 0)(1-p(e))) < 5P*(0,0)P*(0, 0)lp(e)+2(1—p(c))]

and thus, since p(e) + z2(1 — p(e)) < ps + 22 < z(1 — p4), we have:
1
P(f,T) < 5P*(0,0)P*(0,0)z(1 — py.).
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(b)

Figure 2: Representations of T for the proof of the upper bounds (9) and (10).

Furthermore, since Py > $P%(0,0)P*(0,0)(1—p(e)) > 1P2(0,0)P*(0,0)(1—p4) we deduce that
inequality (9) holds in this subcase also.

We now establish inequality (10). We first observe that our condition (1) forces 2z%(1 +z) < z
so it is only the first inequality in (10) we need to establish.

The proof again is by induction on n. For n = 2,3 there is nothing to prove. Suppose n > 4
and L(f,T) > 1. Then, a standard application of Menger’s theorem from graph theory shows that
there are two edge-disjoint paths in T" each of which connects leaves assigned different states by f
([12], Lemma 1). Thus, we may represent 7" as in Fig. 2(b), with five subtrees trees T1,...,T5 as
shown, each pair of which is disjoint or overlaps at one of two (generally non-adjacent) vertices vp
and v; as shown. We call these two vertices reference vertices, and note that each of T1,... ,Ty has
exactly one reference vertex (and it is a leaf of that subtree) while T5 has both reference vertices

as leaves.
Fori=1,...,4,and u € {0,1} let ff‘ be the character defined on the leaf set of T; which maps

its reference vertex to u and all other leaves of T; to the element that f specifies. Let fy,. be the
character defined on the leaf set of T5 which maps vg to u, v; to v and every other leaf in T5 to the
element that f specifies. Fori =1,... ,4 let

Pi(p) := 2P(f;,T:); Li(p) := L(f;, Ta)
and .
Ps(p,v) := 2P(fu,0» T5); Ls (. v) := L(fup, T5)

Fori=1,...,5 let P} equal twice the probability of generating on 7} the character which maps all
leaves to 0. Then,

P(f,T) = 5 3 Ps() [] Bile) I P @)
v

i=1,2 i=3,4

Now, by induction, we may assume that inequality (10) holds for all five subtrees.
Thus, for i = 1,...,4, P,(u) < zP§ when L;(s) > 0, and P;(s) = P} otherwise. Similarly,
Ps(p,v) < zP§ when Ls(p,v) > 0, and P;(u) = P otherwise. Consequently for when p = v €



{0,1} we introduce at least two powers of z into the product terms of Equation (15), while for
u # v we introduce at least three powers of z. Thus, we deduce that:

1 .
P(f,T) < 2z%(1 X = - P}
(f,T) < 2z*(1 + x) 2i=11:I._’5 0

and inequality (10) now follows by observing that:

1 A
r>3 II B
i=1,...,5

Finally we establish part (2) of the theorem. In view of inequalities (9) and (10) we have:
m_ > Pyp—

and
my < 2z2(1 +z)Py

Now, by our condition (1), p_ > prz+2x2(14+z) > 222(1+ ) we see that m_ > m,. The theorem
now follows from Corollary1(2). O

3 Remarks

An interesting consequence of part (2) of the previous theorem is that MC is statistically consistent
under the Ny model whenever p(e) is constant (= p) across the edges of the tree, and p takes a
value at most 0.087 (regardless of the number of leaves of T'). An interesting theoretical question
is whether a similar result holds for MP when p(e)} = p (from [9] it would be necessary, under the
N, model, that p < %) Note that the sufficient condition described in Theorem 1(2) requires that
the p(e) values to converge to 0 at least as fast as n™2, where n = |L|, so in a certain sense the
sufficient condition described for M C is much stronger than that for MP.

More generally, for any bound B on the ratio of the p(e) values, Theorem 1(2) implies that there
exists some upper bound on p, (dependent on that bound) for which MC is statistically consistent
under the N3 model.

It is also instructive to compare the strengths of the two parts of Theorem 1, for the simplest
case n = 4. In [4] Felsenstein considered the Ny model on a resolved tree on four leaves, with two
non-adjacent edges having p(e) = r, and the remaining three edges having p(e) = g. He showed
that MP is statistically inconsistent precisely when g(1 — q) < 72, which, for ¢ small, amounts,
approximately, to ¢ < r2. By contrast, the sufficient condition described in the above theorem for
MP would require g > % which for ¢ <« r <« 1 amounts, approximately, to ¢ > 4r2. For
MC (which agrees with MP on trees with four leaves) the analogous sufficient condition reduces,
approximately, to g > 3r2. In either case we see a gap between sufficiency and necessity conditions
for statistical consistency. In fact, for the case of four leaves it is possible to characterize precisely
the conditions on the five p(e) values for the statistical consistency of MP (see [7]), however in
general this appears to be difficult. Thus a challenge for the future would be to narrow the gap
between necessary and sufficient conditions for the statistical consistency of MP and MC. An
extension of Theorem 1(2) to r > 2 would also be interesting.
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