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1. INTRODUCTION

Let O be a complete discrete valuation ring and assume that the residue field
k = O/J(O) is algebraically closed of characteristic p > 0, the quotient field X has
characteristic 0 and it is also a splitting field for all the X-algebras considered below.
Let further K be a normal subgroup of a finite group H, and let G = H/K.

Consider a block b of OK with defect group P < K and let ¢ be the block of
ON, (P) corresponding to b. E. Dade stated in [D3] several forms of a conjecture and
one of them, the Invariant Conjecture, involves the number of irreducible K-characters
belonging to b and having a given defect and a given stabilizer in H/K .

The aim of this note is to provide a structural look to this conjecture, which means,
to find equivalences of categories preserving these invariants.

Assume for the moment that b is G-invariant and let OHb and S = ON(P)c. It
follows that R and S are strongly G-graded O-algebras with R, = OKb and S, =
ONg(P)c. Then the group G acts on the category of (R;,S;)-bimodules. If C is a
tilting complex of (R,,S,)-bimodules, then this equivalence is called G-equivariant if

R, ®p, C®s, Sy =C

in the bounded derived category of R, ®, S17-mod. We investigate equivariant derived
equivalences in Section 2 in a slightly more general setting, and we show that they pre-
serve stabilizers of simple CR,. It is well-known that derived equivalences also preserve
defects of simple modules.

In section 3 we restrict to the case of group algebras and we show that an equivariant
splendid derived equivalence between the blocks b and ¢ of two groups K and K’ having
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the same Brauer category induces, by applying the Brauer functor to the tilting complex,
another equivariant derived equivalence between suitable blocks kCp (Q) and kC.,(Q),
for any subgroup @Q of P.

As a consequence of this discussion, we conclude in Section 4 that an “invariant”
form of Broué’s Conjecture implies Dade’s Invariant Conjecture in the case of blocks
with abelian cyclic defect groups. The invariant conjecture was checked in many cases,
one of them being that of blocks with cyclic defect groups in [D4]. We shall verify that
Rouquier’s construction of a splendid derived equivalence between OKb and ON (P)c
actually yields an equivariant derived equivalence.

Let me just mention that the “equivariance” of a derived equivalence is a weaker
condition than the “gradedness” considered in [M1] and [M2], and we expect that graded
derived equivalences preserve the invariants involved in the stronger forms of Dade’s
conjecture.

Concerning the terminology, rings wiil always be associative with unit element and
modules are unitary, finitely generated and left, unless otherwise specified. The main
reference for modular representation theory is [T]. We also refer to [Br], [L1] and [L2] for
general facts on various types of equivalences between blocks, and to [D1] and [D2] for
Clifford theory and representations of strongly graded algebras.

2. EQUIVARIANT DERIVED EQUIVALENCES

2.1. We fix a complete discrete valuation ring O with algebraically closed residue field
k = O/J(O) and quotient field of characteristic 0. We shall assume that all O-modules
are free of finite rank.

Fix also a finite group G and let R = @ o R, and § = P, S, be two strongly
G-graded O-algebras. We assume that R and S are symmetric O-algebras, such that
the symmetrizing forms of R and S are G-invariant symmetrizing forms for R; and S,
respectively.

We denote KR = K ®, R, kR = k ®, R and we assume that KR and KS (or
equivalently KR, and KS,) are semisimple K-algebras, and that X is a splitting field
for all the K-subalgebras of XR and KS.

By an (R, S)-bimodule we mean a module over R®,, S°?. Observe that R ®, S is
a strongly G x G-graded O-algebra and it has a strongly G-graded subalgebra

A=A(R,S)= PR, 80, 57,
g€eG

where S7¥ = S, _.. Remark that and (R,,S,)-bimodule is the same as a A;-module.
Similarly, the enveloping algebras R¢” = R®.,R°P and S = 5®,,5° are GxG-graded
O-algebras.
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2.2. Let DY(KR,) be the bounded derived category of the category KR,-mod. Since
for any g € G, the functor

ICRg Rxr, —: KR,-mod — KR,-mod

is an equivalence with inverse KR _, ®xp, —, we have that G acts on R,-mod, on
Db(KR,) and also on the corresponding Grothendieck groups R(KR,) and R(D%(KR,)).
By [H, III, Lemma 1.2], the canonical embedding of XR,-mod into D*(KR,) induces an
isomorphism

R(KR,) = R(D*(KR,)),

which is clearly a G-isomorphism. We identify these two groups and we denote by
i X] € R(KR,) the class of an object X € R(KR,). By definition, the stabilizer of X is
the subgroup

Gx ={9€ G| KR, ®p, X ~ X in D*(KR,)}

of G. The group R(KR,) is endowed with a scalar product defined by
(X1, X = Z dim Hompb(icﬂl)(X[’i], X').

This scalar product is clearly G-invariant, and the G-set Irr(KR,) of isomorphism classes
of simple XR,-modules is an orthonormal Z-basis of R(KR,).

2.3. Let further D°(kR;) be the bounded derived category of kR;-mod and let
Dgerf(le) be the full subcategory of D°(kR;) consisting of perfect complexes (that
is, complexes isomorphic to complexes of projective kR,-modules), and denote by kR, -
proj the subcategory of finitely generated projective kR, -modules.

Again, G acts on these categories, since for any g € G the functor

kR, ®g, —: kR,-mod — kR,-mod

is an autoequivalence. Consequently, the canonical embedding induces a G-isomorphism

between the Grothendieck groups
R(kR,) ~ R(D*(kR,))

and
RP"(kR,) ~ R(D®_.(kR,)).

perf

The G-set Irr(kR;) of isomorphism classes of simple kR,-modules is a Z-basis of
R(kR,), while the G-set Pim(kR,) of isomorphism classes of projective indecomposable
kR, -module is a Z-basis of RP"(kR,).
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There is a G-invariant duality between R(kR,) and RP"(kR,) defined by
((P],[X]) = Z( 1)* dim x Homp oy (Pli], X),

where P € DY _((kR,) and X € Db(le)
2.4. The Cartan-Decomposition triangle T(Rl) of R, is the commutative diagram

R(KR,) R(kR,)

k%

Rrr(kR,)
where the maps are defined as follows.

If P is a perfect complex of kR, -modules, then the Cartan matrix Car: RP"(kR;) —
R(kR,) sends the class [P] of P to its class in R(kR,).

The decomposition map dec: R(KR;) — R(kR;) sends the class [X] of a KR, -
module X to the class of k ®, X, € kR,;-mod, where X, is an R, -lattice such that
X~K®pX,.

Reduction modulo J(©) is an isomorphism between RP"(R;) and 'R)’"(kR ). Using
this, the adjoint

tdec: RP"(R,) & R(KR,;)
sends [P] to [K ®, P].

These maps are clearly compatible with the metric structure of 7(R;), and since
kR,®p, — R;®g, — and KR @y g — are autoequivalences of kR,-mod, R,-mod and
KR,-mod respectively, we have that Car, dec and *dec are G-maps, that is, CardP] =
9Car[P], dec(qX]) and tdecs X]| = 9(tdec[X]) for any g € G.

We shall always consider 7(R;) endowed with the metric structure and the G-

structure.

2.5. Definition. A derived equivalence induced by the complex C of (R;,S,)-
bimodules is called G-equivariant if C is G-invariant, that is,

R,®p C®g S, ~C in D°(A,)).
2.6. Theorem. Assume that the complez C of (R,, S,)-bimodules induces an equivari-

ant derived equivalence between R, and S,. Then there is a G -isomorphism between the
Cartan-decomposition triangles T (R,) and T(S;).

R(le)/R(kRI) R (kS,)

~

RPr(kR,)
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Proof. The inverse equivalence is induced by the complex Homy (C,R;) of (S;, R,)-
bimodules, which is naturally isomorphic to the (O-dual C* of C. We first show that

C* is G-invariant too.
We have that Homp(R®p C, R) is a complex of G-graded (S, R)-bimodules with

Homp(R®p, C,R), ~ Hompy, (R, ®p C,R; )

as complexes of (S,, R,)-bimodules for any g,h € G. Since R is strongly graded, it

follows that
Homy(R®p, C,R) ~Homp (C,R,)®p R

as complexes of G-graded (S, R)-bimodules, and consequently,
Homp, (R, ®p, C, R,) ~ Homp, (C,R,) ®p R;-

as complexes of (S;, R,)-bimodules.
On the other hand, Homp (C'®g, S, R,;) is a complex of G-graded (S, R,)-bimodule
with

Homp (C ®g, S,R,), ={f | f((C®s, S,) =0 for h#g'}
~ Homp (C ®g, Sy-1, Ry)-

Since S is strongly graded, we have that
Homp (C ®s, S, R)~S ®g, Homp (C,R))

Homp (C ®g, S4-1,R;) = S, ®5, Homp (C, R,)

as (S, R,)-bimodules. Finally, we obtain that for any g € G,
HomR1 (Rg ®R1 C ®Sl Sg-—1,R1) ] Sg ®Sl HOmR1 (C, Rl) ®R1 Rg_]_,

which proves the claim.
If X € D*(R,), then for any g € G,

L L
C* ®R1 (Rg ®R1 X) ~ (Sg ®51 C ®R1 Rg_]_) ®R1 (Rg ®R1 X)
L
~ 5 g, (C* ®g, X).
By [Br, Proposition 4.2], we have that X®,C and K®,C* induce a derived equivalence
between KR, and KS,, while k®,C and k®,C* induces a derived equivalence between

kR, and kS, and these equivalences induce an isomorphism between the triangles 7 (R,)
and 7(S5,).
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Since K ®, C and k ®, C are G-invariant complexes, we see that the above iso-
morphism between 7 (R,) and 7(S;) is a G-isomorphism, and since KR, and KS, are
semisimple, we have a G-isomorphism “with signs” between Irr(CR;) and Irr(KCS,).

2.7. The group G x G acts on the category of (R,, R;)-bimodules by
X9 =R ®p X®g R, 1,
and G acts on the set of ideals of R, by
I—9I=RIR ;.
If B isablock of Ry and G = {9 € G| R,BR,-. = B} be the stabilizer of B, then
g (B)= Y. B
9€[G/Gs]

is a G-invariant bimodule summand of R,.

Using [Br, Proposition 4.3] and the theorem above we obtain

2.8. Proposition. Under the assumptions of Theorem 2.6, we have:
a) CQ®, C* induces a G x G -equivariant derived equivalence between RT" and Si™.
b) If B is a block of R,, then B’ = C* ®p B ®p, C is a block of S, Gg = Gp,
and BCB' induces a Gp-equivariant derived equivalence between B and B', while C

induces a G -equivariant derived equivalence between Trg_(B) and Tr&_(B')

2.9. Remark. As in definition 2.5, one can say that, by definition, the bimodule p Mg
induce an equivariant stable Morita equivalence between R, and 5, if for any g € G,

A9®A1M2M

in the stable category Al-m of A;-mod. (Recall that our assumptions force that the
inverse equivalence is induced by the O-dual M* of M.)

By adapting the proof of [Ri, Corollary 5.5], one can easily see that if C' induces
an equivariant derived equivalence between R; and C;, then there is a bimodule M,
projective as a left R,-module and as a right S, -module, inducing an equivariant stable
Morita equivalence between R, and S;.

Indeed, truncating a projective resolution (over A,) of C, we obtain for some degree

n a bounded complex
C'=(—203Q Pl op 2, )

isomorphic to C in D?(A,) with P* projective for ¢ > —n, such M = Q—"(Q~")
induces a stable Morita equivalence between R; and S, . This construction is functorial,
and applied to Ag ®a, C, we obtain the A, -module Ag ®a, M.

The following observation will be needed in Section 4.
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2.10. Lemma. Let H be a normal p'-subgroup of G and C a complex of (R,,S)-
bimodules inducing a G -equivariant derived equivalence between R, and S,. Assume
also that C extends to Ay, and that the isomorphism between Ag ®a, C and C holds
in DP(Ap).

If D= (Ry ®y Si) ®p,, C, then D induces a G/H -equivariant derived equivalence
between Ry and Sy.

Proof. Since H is a normal subgroup of G, [M2, Lemma 2.9 and Remark 2.10 c)] implies
that A ®,, C is naturally a Az -module. It follows by [M2, Theorem 4.8] that D induces
a derived equivalence between Ry and Sy .

For g € G, we denote 9D = R gy ®p, D ®g, SHg_l , and we have to show that

9D ~ D in D°(Ry-mod-Sy).

Observe first that 9D ~ R, ®p D ®g S -1 is an H-graded (Ry, Sy )-bimodule, where
for z € H,

(gD)z = Rg ®R1 Dg—lwg ®S1 Sg"l *
By assumption, there is an isomorphism in D%(A;) between D, = C and (9D), ~
R, ®p, C ®g, S,-1, and using [M2, Lemma 2.6] we conclude that 9D ~ D.

3. LOCAL STRUCTURE

We recall from [L1] and [L2] the definition of a splendid equivalence, and we shall
adapt it to our situation.
3.1. Let K be a normal subgroup of a finite group H and K’ a normal subgroup of
H’ such that G = H/K ~ H'/K’, and let a: H/K — H'/K’ be an isomorphism. It
follows that OH and OH' are strongly G-graded O-algebras. Let also b be a block
idempotent of OK and ¢ a block idempotent of OK'.

Let H, and H! be the stabilizers of b and c¢ respectively. If G, = H,/K and
G, = H!/K', then R := bOHb = OH,b is a strongly G,-graded algebra, and S :=
cOH! = OH/c is a strongly G,-graded algebra.

We assume that b and ¢ have a common defect group P < K, and that for each

subgroup @ of P, a indices an isomorphism
o(Q): Cyx(Q)/Cx(Q) = Cy(Q)/Cki(Q).

Denoting G = C(Q)/Ck(Q), we have that kC(Q) and kCpy,(Q) are strongly G-
graded k-algebras.

3.2. Let ¢ € (OKb)P and j € (OK’c)P be primitive idempotents such that Brk (i) # 0
and Brg ' (4) # 0, where Brp is the Brauer map. For every subgroup @ of P there are
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unique block idempotents e, € kC(Q) and fy € kCy.(Q) such that BrX (eg # 0
and Br¥ (j)fo # 0.
Define as above the stabilizer

G(Q,eq) = {hCK(Q) | he CH(Q)a heQ = eQ},

s0 egkCy(Q)eg = erCH(Q)G(Q,eq) is a strongly G . -graded k-algebra. Similarly,
fokCy (Q)fg = fokChy (Q)G(Q,fq) is a strongly G ;.)-graded k-algebra.

By definition, for two subgroups @ and R of P, let Ey ;((Q,eq), (R,eR)) be the
set of equivalence classes modulo inner automorphisms of R of group homomorphisms
@ — R of the form u — %*u = zuz~! for some z € H, satisfying zQz~! C R and
Teqr™ ! = e,q,-1. As in [KP, 2.8], these maps are considered together with the action
of H on G by left translation; it follows that homomorphisms induced by z,y € H such
that K # yK are different.

We assume further that OKb and OK'c have G-equivalent Brauer categories. We
understand by this that for any subgroups () and R of P, there is an equality

Ey (@ eq), (R eg)) = B (@) fo), (R, fRr))

which is compatible with the isomorphism «: H/K — H'/K'. Compatibility with o
means that whenever z € H induces by conjugation a homomorphism @ — R such that
feq = €, there is #’ € H' inducing the same homomorphism, such that a(zK) = z'K".

3.3. The indecomposable (R,,S;)-bimodule M is called splendid, if it is a direct sum-
mand of the bimodule OKi ®,p jOK'.

Let M(Q) be the (kCx(Q), kC.,(Q)-bimodule

M(Q)=M?/(J(O)M? + 3 TIF(M™)).
R<Q

Then by [L1, Theorem 1.1], the (kCy(Q)eg, kCx.(Q)fq bimodule e, M(Q)f, is also
splendid.

By definition, a tilting complex of (R, §;)-bimodules is splendid if the indecomposable

summands of its components X* are splendid.

3.4. Proposition. With the above notations, assume that the Brauer categories of b
and ¢ are G -equivalent. Then

a) G, =G, and G(Q’eq) = G(Q,fq) for any subgroup Q of P.

b) If X is a splendid complex of (R,,S,)-bimodules inducing a G, -equivariant de-
rived equivalence between R, and S, , then egX (@) fq is a splendid complez inducing o
G (Q,eq) ~€quivariant derived equivalence between kC(Q)eg and kCy(Q)fq -

Proof. a) By the Frattini argument, (see also [D1, (0.3a)], we have that

G, = Ny(P,ep)K/K
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and
G,= Ny (P, fP)K'/K'.

For any @ < P we have by (3.2) that
Ng(Q,eq)/QCk(Q) = By (@, eq) = Eg: (Q, f) = Np/ (@, ) /QCK: (Q)-

Taking () = P we obtain that G, =G ..
Since o: H/K — H'/K' restricts to the isomorphism «(Q), we deduce that

G (Q,eq) = G(Q.1q) for any Q.
b) The fact that the complex e, X(Q)fy induces a splendid derived equivalence

between kCy (Q)ey and kCy.,(Q)f, follows from [L1, Theorem 1.1]. We have to show
that eQX(Q)fQ is G(g,e,)-invariant. ,

Indeed, let h € Cy(Q) and A’ € C,(Q) such that heq = eg, * fy = fg, and
a(hK) = K'K'. Then we have

hCx (Q)eq Bror(@)eo %X (@)fa Brcy(@)iq FCk (@) ™"
~ e (h @) X(Q) @, k' )y
= eQ(h ® X ®y hl_l)(Q)fQ
~ eQX(Q)fQ.

4. CONJECTURES FOR ABELIAN AND CYCLIC DEFECT GROUPS

4.1. Let H,K,G, b and P be as in the preceding section and let H' = N (P), K' =
Ny (P), G'= H'/K' and c be the Brauer correspondent of b. Let also a: G’ —+ G be
the map induced by the inclusion of H’ in H.

As we already have seen, we have

G, = Ny(P,ep)K/K ~ Ny, (P, ep)K'/K' =G,

Moreover, if P is abelian, then by slightly adapting the proof of [T, Proposition 4.9.6],
one obtains that the Brauer categories of OKb and OKV' are G -equivalent.
Therefore, it makes sense to formulate the following equivariant version of Broué’s

conjecture:

4.1.1. If b is a block of OK with abelian defect group P, then there is a G -equivariant
splendid derived equivalence between OKb and ONy(P)c, where c is the Brauer cor-
respondent of b.

4.2. Denote by
C: (FPp<P<:--<P)
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a p-chain of K and by |C| = n the length of C. The groups K and H act on the set
of p-chains of K, and let N, (C) and N (C) be the normalizers of C' in K and H
respectively. Denote also N;(C) = Ny (C)/N(C). We have that

Cg(P,) < Ng(C) < Ng(P,),

and if 8 is a block of ON,(C), then by [KR, Lemma 3.2], the induced block ¥ of OK
is defined.

The group N,(C) acts on the set Irr(ICNg (C)) of simple KN (C)-modules, so if
x € Irr(XN(C)), then the stabilizer N;(C,x) is defined. Denote further by def(x)
the defect of x and by B(x) the block of ON(C) to which x belongs.

If d <0 is an integer and F is a subgroup of Ng(C), then denote by k(C,b,d, F)
the number of characters x € Irr(KK Ny (C)) satisfying

def(x) =d, B()*=b and  Ng(C,x)=F,
and by k(8,d, F) the number of characters x € Irr(K3) satisfying
def(x) =d and Ng(B,x) = F.

We have that k(C,b,d, F) depends only on the K -conjugacy class of C, and Dade’s
Invariant Conjecture [D3, 2.5] states that

4.2.1 If O,(K) =1 and def(b) > 0 then

> (-1)€K(C,b,d,F) =0,
CeF/K

where F is one of the families P, U, N or € of p-chains of K introduced in [KR].
The argument of [KR, Proposition 5.5] now gives .
4.3. Proposition. Conjecture (4.1.1) implies conjecture (4.2.1).

Proof. Let b be a block of OK with abelian defect group P > 1,let = (P, <--- < P,)
be an element of A and let 8 be a block of ON,(C) inducing b.

If P, is a defect group of 8 , then, denoting C' = (P, < --- < P,_,), we have that
BNx(C") is defined, it has defect group P, , and (BNx(C))K =p.

Then by hypothesis, there is an Ng(C)4-equivariant derived equivalence between 3
and gVx(C'), By [Br, Proposition 4.5], defects of irreducible characters are preserved.
It follows that '

k(8,d, F) = k(8N<(C) 4, F).
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If P, is not a defect group of 3, then the defect group F, ,, of § satisfies P, <P, ,,,
andlet ¢' = (1< P, <---< P, <P,.;) € N. Then Ng(C') = NNK(C)(Pn+1) and
there is a unique block 3’ of Ny (C’) inducing B. Again we have that

k(g',d,F)=k(8,d, F).

Consequently, (4.2.1) holds.

4.4. Assume from now on that P is cyclic and b is G-invariant. R. Rouquier proved in
[Rou] that there is a splendid derived equivalence between OKb and OK'c. This result
was a consequence of a series of derived equivalences, and in the remaining part of this
paper we show that all those equivalences are equivariant. This verification, together
with the fact that the composition of equivariant derived equivalences is equivariant too,
will imply that Rouquier’s inductive proof can be used to conclude that (4.1.1.) holds
for blocks with cyclic defect groups.

We denote R = O_(K), and (under the hypothesis that P is non-normal, let Q be
the subgroup of P such that [Q : R] = p. Let also I = Ng(P,ep)/Cr(P), L = Nyx(Q),
I, = Niy(P,ep)/Ci(P), Ly = Ni(Q), and let ¢, be the block of OL, corresponding
to b.

We have that ) is a weakly closed subgroup of K with respect to H, and by the
results of [D4, Section3] we have that ¢, is L-invariant, hence OLc, is a strongly G-
graded algebra. Recall also that I/I;, ~ G.

4.5. Consider the block algebra OK’c. Then we are in the situation of [Rou, Proposition
2.15]: c is a block of Cj(P) and it has a unique simple module V. Starting with V,
one constructs an (OCy (P)c, OP)-bimodule M, inducing a Morita equivalence between
OC(P)c and OP. Further, the I-graded OH'c-module OH'c®pc, (p). M, induces a
graded Morita equivalence between OH'c and an I-graded crossed product of OP and
I. By the proof of the same [Rou, Proposition 2.15], OK'c®q,. (P)c M, induces an I, -
graded Morita equivalence between OK'c and OP xI; (this amounts to the extendibility
of M, to a certain “diagonal” subalgebra), which is then G-invariant (since G ~ I/I,).

4.6. By [Rou, Lemma 4.2], if R = O,(K) = 1, then the bimodule b6OKc¢, induces
a Morita stable equivalence between OKb and OL,c,. Since K < H and b, c; are
G-invariant, we have that bOKc, is a G-invariant bimodule. Moreover, its unique

nonprojective bimodule summand M, is G-invariant too.

4.7. We show that if M is a G-invariant (OKb, O(P x I,)-bimodule inducing a stable
Morita equivalence between OKb and O(P x I,), then the construction of [Rou, Section
3] provides an equivariant derived equivalence between OKb and O(P x I,). Indeed,
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let € = |I,| be the inertial index of b, S = M ®g(pyr,) O, and denote by © the Heller
operator. Let v; be the vertex of the Brauer tree corresponding to the character of Q¢S

and let I; be the edge connecting v; and v;,,. Then

@ (Paaig ®p Poio)

0<i<e—1

is a projective cover of M (as a bimodule). We have that S, Q%S and Pq.g are
G-invariant OKb-modules. One can easily see that Pgaig ® Pgai 18 a G-invariant
bimodule, and it follows that the tilting complex C defined in [Rou, 3.4] is G-invariant.

4.8. It remains to examine the case when R = Op(K) is not trivial.

Assume first that 1 # R < Z(K), and denote by “~” the canonical projection from
K to K =K/R and from L, to L, = L,/R.

By the inductive assumption, there is an equivariant derived equivalence between OKb
and OL,¢,. then the tilting complex of (OKb, OL,¢,)-bimodules constructed in [Rou,
4.2.1] is clearly G-invariant.

Assume finally that 1 # R &£ Z(K), and we again show that the construction of [Rou,
4.2.2] gives a G-invariant tilting complex of (OKb, OL,c,)-bimodules.

We have that OKb and OL, ¢, are I,-graded algebras with 1-components OC . (R)b
and OCy (R)c, respectively, where OC}, (R)c, is the Brauer correspondent of the block
OCy(R)b.

Since b and ¢, are G-invariant, we have that N, ;(6(R)) acts by conjugation on
bOCk (R)c, (where 6(R) = {(u,v) | u € R}. Regarded as an O(Ck(R) xC}_(R))/é(R)-
module, bOC (R)c, has an indecomposable direct summand M with vertex 6(P/R),
which extends to an ONj.; (R)/6(R)-module. Then Ind’,f,:f;f‘(‘g‘}é(m M is an I,-
graded (OKb,OL,c,)-bimodule. Inspecting further Rouquier’s arguments and using
Lemma 2.10, we see that it is enough to show that the ON ; (R)/d(R)-module M is
I-invariant.

This holds, since I, is a p'-group, so M is an ONg,; (R)/6(R)-summand of
bOC (R)c, and it still has vertex §(P/R), while the O(Ck(R) x Cp (R))/6(R)-
summands of (bOCy (R)c,)/M have smaller vertices.
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