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Abstract

A specific form of the Mellin transform, referred to as the “scale transform,” is known
to be a natural complement to the Fourier transform for wideband analytic signals.
In this paper, limitations for the simultaneous localization of scale transform pairs
are investigated. A number of inequalities are established and discussed, based on
various measures of spread (Heisenberg-type inequalities for variance-like measures and
Hirschman-type inequalities for entropy). The same issue of maximally concentrating a
signal in both scale and frequency domains is also addressed via spread measures which
are applied directly to joint scale-frequency distributions. A simple way of obtaining
inequalities for Altes-type distributions is pointed out, new results pertaining to the
unitary Bertrand distribution are established, as well as a new form of uncertainty
relation for the wavelet transform.

1 Introduction

Signals are generally considered as functions of time t or frequency f , both (mutually

exclusive) descriptions being connected by a Fourier transformation. More precisely, well-

behaved signals x(t), t ∈ IR, (e.g., finite energy signals x(t) ∈ L2(IR)) admit classically the

Fourier representation

x(t) :=

∫ +∞

−∞

X(f) ei2πft df, (1)

where X(f), f ∈ IR, stands for their frequency spectrum1.

Nevertheless, and although it is the one that is most commonly used, the Fourier trans-

form is supplemented in some circumstances by other types of transforms, among which

1Throughout the paper, we will adopt the convention of using capital letters for spectra and the corre-
sponding lower case symbols for their inverse Fourier transform (time-domain signals).
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one can single out the Mellin transform. Given a function F (v), v ∈ IR+, the most general

form of its Mellin transform is [8]

(MF ) (σ) :=

∫ +∞

0
F (v) vσ−1 dv,

with σ a complex variable. Here, we will be interested in a somewhat more restricted

definition that proves well-adapted to the analysis of analytic signals, i.e., signals whose

frequency spectrum X(f) vanishes over the real half-line of negative frequencies. Following

[8], we can consider signals in L2(IR+, f
2r+1 df) and define the quantity

X(r)(s) :=

∫ +∞

0
X(f)f i2πs+rdf,

with s ∈ IR. It is easy to verify that

X(r)(s) = (MX) ((r + 1) + i2πs) ,

thus emphasizing the fact that, in the form X(r) above, we are primarily interested in

looking at the Mellin transform MX as a function of only the imaginary part of its output

variable σ, the real part being considered as fixed. Since this real part turns out to be a

parameter rather than a variable, a further simplification can be achieved by fixing r to −1
2 ,

an unrestrictive constraint that, at this point, just amounts to multiplying X(f) by f r+ 1

2

and thus dealing with signals whose spectrum is in L2(IR+, df). Doing so, we end up with

a restricted version of the Mellin transform that exactly coincides with what is referred to

as a “scale transform” in [10].

We will therefore adopt thereafter the following

Definition 1 The scale transform X(s) of X(f) ∈ L2(IR+, df) is

X(s) :=

∫ +∞

0
X(f)f i2πs− 1

2df. (2)

We can immediately remark that, according to Definition 1, the scale transform (2) can

be equivalently expressed as

X(s) =

∫ +∞

−∞

X̃(u) ei2πsudu, (3)
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with

X̃(u) := X (eu) eu/2. (4)

Rewritten this way, the scale transform X(s), s ∈ IR, of a given signal X(f), f ∈ IR+,

appears therefore as an ordinary Fourier transform applied to some suitably warped version

X̃(u), u ∈ IR, of X(f).

The Mellin transform is known to be invertible and, considering the simplified form of

the scale transform given above, the spectrum of a signal can be simply recovered from it

as

X(f) =

∫ +∞

−∞

X(s) f−i2πs− 1

2 ds. (5)

The transform is furthermore isometric from L2(IR+, df) to L2(IR, ds) [8]:

∫ +∞

−∞

|X(s)|2 ds =

∫ +∞

0
|X(f)|2 df, (6)

both members of the above equality defining a quantity referred to in the following as the

energy of the signal.

The importance of both Mellin and scale transforms in the context of signal analysis

comes primarily from the fact that they are naturally adapted to scale changes. In fact, if

a spectrum is transformed according to X(f) 7→ Xα(f) := α−
1

2X(f/α), its inverse Fourier

transform x(t) (i.e., the corresponding signal in the time domain) is dilated or compressed

according to x(t) 7→ xα(t) = α
1

2x(α t), α > 0, whereas its scale transform is only affected

by a phase factor: X(s) 7→ Xα(s) = X(s)α−i2πs, so that its scale energy density remains

unchanged: |Xα(s)|2 = |X(s)|2.
Different and complementary interpretations of the dimensionless variable s can be

provided. A first one is obtained by considering (5) from a “building blocks” point of

view, the complete spectrum X(f) turning out to result from a (suitably weighted) linear

superposition of elementary waveforms of the form

Hs(f) := f−i2πs− 1

2 U(f), (7)
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with U(f) the unit step function. Such waveforms have a non-constant group delay which

reads

tHs(f) := − 1

2π

∂

∂f
argHs(f)

= − 1

2π

∂

∂f
(−2πs log f)

=
s

f
, (8)

thus allowing us to interpret s as an hyperbolic chirp rate.

Within this interpretation, the dimensionless parameter s can be viewed as resulting

from a time × frequency product, which allows for its companion interpretation in terms of

scale. The reason is that the operator S associated to s = tf (in the sense of, e.g., Weyl’s

association rule [10, 17, 18]) is

S =
T F + FT

2
,

where T and F stand for the usual time and frequency operators, defined, respectively, by

(T x)(t) = t x(t) and (Fx)(t) = (−i/2π)(dx/dt)(t). It thus follows that, for any α > 0, we

have
(
αi2πSX

)
(f) = α−

1

2 X

(
f

α

)
, (9)

making of S the infinitesimal generator of the scaling operator whose eigenfunctions are

precisely the hyperbolic chirps Hs(f) defined in (7).

Since the scale transform plays an important role for analytic signals, it is natural

to consider in which respects scale transform pairs {X(f), X(s)} may be faced with joint

limitations, as it is known for Fourier transform pairs. This will be addressed in the following

from a number of different perspectives. Section 2 will consider scale transform pairs in place

of Fourier transform pairs, and basic limitations will be established and discussed, based

on various measures of spread (Heisenberg-type inequalities for variance-like measures and

Hirschman-type inequalities for entropy). The same issue of maximally concentrating a

signal in both scale and frequency domains will then be re-addressed in Section 3 via spread

measures of the same type, but applied directly to a joint scale-frequency distribution. A
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collection of results pertaining to Altes and Bertrand distributions will be established in

this direction, as well as a new form of uncertainty relation for the wavelet transform.

While being essentially of a theoretical nature, all of the results discussed here should

prove useful for a number of signal processing applications. One can mention for instance

the optimal design of wideband signals, the performance evaluation of wideband systems or

the characterization of elementary waveforms in signal decompositions, to name but a few.

2 Inequalities for scale transforms

2.1 Variance inequalities

If we consider (normalized) energy distributions—such as those given in (6)—in analogy

with probability distribution functions, a first natural way of measuring how much they are

localized amounts to evaluating their spread around some central value. To make things

more precise, we will adopt the following conventions and notations:

Definition 2 Given an integrable density ρ(v) defined on IR, its energy E(ρ), its arithmetic

mean ma(ρ) and its arithmetic variance Va(ρ) are defined by

E(ρ) :=

∫ +∞

−∞

ρ(v) dv, (10)

ma(ρ) :=
1

E(ρ)

∫ +∞

−∞

v ρ(v) dv, (11)

Va(ρ) :=
1

E(ρ)

∫ +∞

−∞

(v −ma(ρ))
2 ρ(v) dv, (12)

respectively.

As far as variances of a Fourier transform pair are concerned, a classical result in Fourier

analysis is the Heisenberg-Gabor inequality, according to which a time signal x(t) and its

frequency spectrum X(f) are such that [19]:

Va

(
|X|2

)
Va

(
|x|2

)
≥ 1

16π2
, (13)

with equality if and only if X(f) (and, hence, x(t)) is a Gaussian, i.e., is of the form:

X(f) = K exp
(
−a(f − log b)2 + i(cf + d)

)
, (14)
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with a, b ∈ IR+ and c, d,K ∈ IR.

In the space of analytic signals, Gaussians are clearly not allowed, with the consequence

that the lower bound cannot be attained. One can therefore ask for Heisenberg-Gabor-

type inequalities that would apply specifically to analytic signals, and in particular when

considering the scale transform in place of the Fourier transform. A first result in this

direction is given by the following (proofs can be found in [8, Sect. 11.3.1.2] or [10, Sect.

18.9] and will not be repeated here, the original result going back to [23])

Proposition 1 An analytic signal X(f) and its scale transform X(s) have arithmetic vari-

ances such that

Va

(
|X|2

)
Va

(
|X|2

)
≥ m2

a

(
|X|2

)

16π2
, (15)

with equality if and only if X(f) is a “Klauder wavelet” of the form

X(f) = K exp (a log f − bf + i(c log f + d)) U(f), (16)

with a > −1
2 , b ∈ IR+ and c, d,K ∈ IR.

2.2 Modified variance inequalities

Proposition 1 provides indeed a lower bound for a joint concentration of a signal in both

frequency and scale, but the use of the arithmetic variance in (15) can be questioned. In

fact, in the case of analytic signals, the use of an ordinary (arithmetic) variance introduces

some unnecessary weight on negative frequencies, for which no energy contributions exist

(by construction, analytic signals vanish on the real half-line of negative frequencies). It

furthermore defines a measure of spread that is not scale-invariant, whereas scale-invariance

would be expected to be a key feature in this context. We can therefore consider a more

general definition of variance, adapted to signals whose spectrum is in IR+ only, as follows

Definition 3 Given an integrable density ρ(v) defined on IR+, its energy E+(ρ) and its

generalized variance V (ρ) are defined by

E+(ρ) :=

∫ +∞

0
ρ(v) dv,
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V (ρ) := inf
m

1

E+(ρ)

∫ +∞

0
(ϕ(v) − ϕ(m))2 ρ(v) dv, (17)

respectively, with ϕ : IR+ → IR some monotonic function.

Differentiating (17) with respect to m, we get readily that the natural choice for the

corresponding “mean” of the density ρ is

m = m(ρ) := ϕ−1
(

1

E+(ρ)

∫ +∞

0
ϕ(v) ρ(v) dv

)
, (18)

which has the form of a “quasi-arithmetic” generalized mean, in the sense of [20, Chapter

III], the ordinary (arithmetic) mean being attached to the specific choice ϕ(v) = v.

If we now impose a scale-invariance requirement on (17), we are led to the following

Proposition 2 Given an integrable density ρ(v) defined on IR+, the only generalized vari-

ance (in the sense of Definition 3) that is scale-invariant, i.e., such that m(ρα) = m(ρ)/α

and V (ρα) = V (ρ) for any ρα(v) := αρ(αv), α > 0, is characterized by ϕ(v) = log v, up to

an affine transformation.

Proof — The scaled distribution ρα(v) is such that E+(ρα) = E+(ρ) and its generalized

mean reads

m(ρα) = ϕ−1
(

1

E+(ρ)

∫ +∞

0
ϕ

(
v

α

)
ρ(v) dv

)
.

For the scale-invariance requirement on variance to make sense, the mean has itself to

be scale-covariant, i.e., such that m(ρα) = m(ρ)/α. Such a condition of homogeneity on the

mean is known [20, pages 68 and 150] to restrict solutions to ϕ(v) = log v or ϕ(v) = vr, r 6= 0,

up to an affine transformation. Assuming this to hold, we can write

V (ρα) =
1

E+(ρα)

∫ +∞

0
(ϕ(v) − ϕ (m(ρα))2 ρα(v) dv

=
1

E+(ρ)

∫ +∞

0

(
ϕ

(
v

α

)
− ϕ

(
m(ρ)

α

))2

ρ(v) dv,

and it follows that the scale invariance V (ρα) = V (ρ) requires that

ψ(v, α) := ϕ

(
v

α

)
− ϕ(v)
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be independent of v, for any α. Differentiating ψ(v, α) with respect to v, we must then have

1

α
ϕ′

(
v

α

)
= ϕ′(v)

for any v and any α. It thus follows, by fixing α = v, that we must have ϕ(v) = log v (up

to an affine transformation) and the proof is complete.

Ignoring affine transformations, the choice ϕ(v) = log v in Definition 3 appears as the

most relevant one for analytic signals, and we will adopt the following

Definition 4 Given an integrable density ρ(v), defined on IR+ and of energy E+(ρ), its

geometric mean mg(ρ) and its geometric variance Vg(ρ) are defined by

mg(ρ) := exp

(
1

E+(ρ)

∫ +∞

0
log v ρ(v) dv,

)
(19)

Va(ρ) :=
1

E+(ρ)

∫ +∞

0
log2

(
v

mg(ρ)

)
ρ(v) dv, (20)

respectively.

This definition easily leads us to the following

Proposition 3 An analytic signal X(f) and its scale transform X(s) have, respectively,

geometric and arithmetic variances such that

Vg

(
|X|2

)
Va

(
|X|2

)
≥ 1

16π2
, (21)

with equality if and only if X(f) is an “Altes wavelet” of the form

X(f) = K exp

(
−1

2
log f − a log2(f/b) + i(c log f + d)

)
U(f), (22)

with a, b ∈ IR+ and c, d,K ∈ IR.

Proof — Starting from the remark that
{
X(s), X̃(u)

}
form a Fourier transform pair (see

eq.(3)), we can readily apply to it the usual Heisenberg-Gabor inequality (13) under the

form:

Va

(
|X|2

)
Va

(
|X̃|2

)
≥ 1

16π2
. (23)
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A straightforward calculation shows that

ma

(
|X̃|2

)
= logmg

(
|X|2

)

and

Va

(
|X̃|2

)
= Vg

(
|X|2

)
,

and we obtain immediately the inequality (21).

Since equality in (23) is achieved if and only X̃(u) (and, hence, X(s)) is a Gaussian

as in (14), signals guaranteeing that the lower bound of (21) is attained are then simply

derived from (14) by using the equivalence X(f) = f−
1

2 X̃(log f)U(f), thus leading to the

form (22).

Remark — The family of waveforms (22) has been introduced by R.A. Altes [1] in a context

of active sonar, such as encountered in bat echolocation. “Altes wavelets” are, in fact,

solutions of the problem of “Doppler tolerance,” which consists of estimating at best (i.e.,

with no bias and maximum signal-to-noise ratio) a time delay in the presence of some

unknown Doppler shift.

Having introduced the geometrical variance as a spread measure that is well-adapted

to signals whose frequency spectrum vanishes on the real half-line of negative frequencies,

we can think of making use of it, not only for establishing scale-frequency inequalities, but

also for having a new look at time-frequency inequalities. For doing so, we will need the

following

Definition 5 Given an integrable density ρ(v), defined on IR+ and of energy E+(ρ), its

harmonic mean mh(ρ) is defined by

mh(ρ) :=

(
1

E+(ρ)

∫ +∞

0

1

v
ρ(v) dv

)−1

. (24)

With this definition, which is nothing but the special case of (18) attached to ϕ(v) = 1/v,

we can establish the following
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Proposition 4 An analytic signal X(f) and its Fourier transform x(t) have, respectively,

geometric and arithmetic variances such that

Vg

(
|X|2

)
Va

(
|x|2

)
≥ 1

16π2m2
h(|X|2) , (25)

under the assumption that ma
(
|x|2

)
= 0, and that |X(f)|2 and |X(f)|2 log f both vanish

when f goes to zero and infinity.

Proof — Let I be the integral defined as

I :=

∫ +∞

0
log

(
f

mg(|X|2)

)
X(f)X ′(f) df. (26)

Assuming that |X(f)|2 and |X(f)|2 log f both vanish when f goes to zero and infinity,

an integration by parts leads to

Re {I} = −1

2

∫ +∞

0

1

f
|X(f)|2 df

or, using Definition 5,

Re {I} = − E+
(
|X|2

)

2mh(|X|2) ,

and it follows that

|I|2 ≥ (Re {I})2 =
E2

+

(
|X|2

)

4m2
h(|X|2) . (27)

Going back to (26) and using the fact that the time-domain density |x(t)|2 is supposed

to be zero-mean, application of the Cauchy-Schwarz inequality gives

|I|2 ≤
∫ +∞

0
log2

(
f

mg(|X|2)

)
|X(f)|2 df ×

∫ +∞

0
|X ′(f)|2 df

= 4π2 E2
+

(
|X|2

)
Vg

(
|X|2

)
Va

(
|x|2

)
,

whence the claimed inequality, when combining this result with (27).

Remark — The bound in (25) cannot be expected to be tight, since conditions for equality

in the Cauchy-Schwarz inequality would lead to waveforms such that

|X(f)|2 = K exp (−a (f log(f/b) − f)) U(f),

with a, b,K ∈ IR+, thus violating the assumed boundary conditions at f = 0.
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2.3 Entropy inequalities

Entropy summarizes the complete information about a distribution, taking into account

moments of all orders. This contrasts with variance-type measures, which only consider

the two first moments and, except in the Gaussian case, do not exhaust all of the infor-

mation available from a distribution. Furthermore, entropy providing a global measure of

“peakiness” for a distribution, it may serve as a basis for deriving inequalities relative to

the energy distribution of a signal and of its spectrum.

In order to simplify derivations and to cope more easily with conventional definitions

of entropy, we will assume throughout this Section that all the considered signals are of

unit-energy, i.e., that E
(
|X|2

)
= 1, and we will adopt the following

Definition 6 Given an integrable density ρ(v) defined on IR, its Shannon entropy H(ρ) is

defined by

H(ρ) := −
∫ +∞

−∞

ρ(v) log ρ(v) dv. (28)

In the case where ρ(v) is defined on IR+, we will make use of the notation:

H+(ρ) := −
∫ +∞

0
ρ(v) log ρ(v) dv. (29)

A classical result of information theory, first stated by Shannon, is that entropy and

(arithmetic) variance satisfy the inequality [2, Theorem 8.3.3]

H(ρ) ≤ 1

2
log (2πe Va(ρ)) , (30)

with equality for Gaussian distributions and only for them.

Another important result—as it has been initially conjectured by Hirschman [21] and

later proved by Beckner [5]—is that

H
(
|X|2

)
+ H

(
|x|2

)
≥ 1 − log 2, (31)

with equality if and only if X (and, hence, x) is a Gaussian of the form (14).

Results along similar lines can be obtained for analytic signals and their scale transforms.

They are given in the following Lemma and Proposition.
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Lemma 1 The Shannon entropy and the geometric variance of a unit-energy analytic signal

X(f) satisfy

H+

(
|X|2

)
≤ 1

2
log

(
2πe Vg

(
|X|2

))
+ logmg

(
|X|2

)
, (32)

with equality if and only if X(f) is an Altes wavelet of the form (22).

Proof — According to the model (22), the unit energy analytic signal A(f) having mg
(
|A|2

)

for geometric mean and Vg
(
|A|2

)
for geometric variance reads :

A(f) =
(
2πVg

(
|A|2

))−1/4
f−1/2 exp

(
− 1

4Vg(|A|2) log2
(
f/mg

(
|A|2

)))
U(f).

If X(f) is a given unit-energy analytic signal, we know that [2]

H+

(
|X|2

)
= −

∫ +∞

0
|X(f)|2 log |X(f)|2df

≤ −
∫ +∞

0
|X(f)|2 log |Y (f)|2df

for any unit-energy analytic signal Y (f), with equality if and only if X(f) = Y (f). If we

now let A(f) be such that mg
(
|X|2

)
= mg

(
|A|2

)
and Vg

(
|X|2

)
= Vg

(
|A|2

)
, it suffices to set

Y (f) = A(f) to obtain the claimed result.

Given the above Definition 6 and Lemma 1, we can establish the following (Hirschman-

type) inequality :

Proposition 5 A unit-energy analytic signal X(f) and its Mellin transform X(s) have

Shannon entropies such that

H+

(
|X|2

)
+ H

(
|X|2

)
≥ 1 − log 2 + logmg

(
|X|2

)
, (33)

with equality if and only if X(f) is of the form (22).

Proof — We know from Beckner’s sharp form of the classical Hausdorff-Young inequality

[5] that any function Y (x) ∈ Lp(IR, dx), 1 ≤ p ≤ 2, has a Fourier transform Ŷ (ξ) such that

‖Ŷ ‖q ≤ Cp,q‖Y ‖p, (34)
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with 1/p + 1/q = 1, Cp,q =
(
p1/p/q1/q

)1/2
and where the Lp-norm is defined by

‖Y ‖p =

(∫ +∞

−∞

|Y (x)|pdx
)1/p

.

We can therefore apply the inequality (34) to the pair
{
Ŷ , Y

}
=

{
X, X̃

}
to obtain

‖X‖qq ≤ Cq
q/(q−1),q‖X̃‖q−1

q/(q−1). (35)

Remarking that ‖X‖2 = ‖X̃‖2 = ‖X‖2 = 1 and C2,2 = 1, we can make use of the

following argument, outlined in [19, Lemma 5.5]: if two functions F and G are such that

F (x) ≤ G(x), x ≥ a, and F (a) = G(a), then their derivatives satisfy F ′(a) ≤ G′(a).

Differentiating both sides of the inequality (35) with respect to q and evaluating them at

q = 2, we get therefore that

∂

∂q
‖X‖qq

∣∣∣∣
q=2

≤ ∂

∂q

[
q

q

2
−1

(q − 1)
q−1

2

(∫ +∞

0
|X(f)|

q

q−1 f
1

2

q

q−1
−1

df

)q−1
]∣∣∣∣∣

q=2

,

thus leading to the claimed result, after some manipulations.

In order to prove that signals of the form (22) are indeed minimizers for the entropy

inequality (33), we can combine (30), (32) and (33) to obtain :

1

2
log

[
4π2e2 Va

(
|X|2

)
Vg

(
|X|2

)
m2

g

(
|X|2

)]
≥ H+

(
|X|2

)
+ H

(
|X|2

)

≥ 1 − log 2 + logmg

(
|X|2

)

=
1

2
log

(
e2

4
m2

g

(
|X|2

))
.

Comparing the most left and most right terms of this sequence of inequalities, we thus

recover the inequality (21), whose lower bound has been shown in Proposition 3 to be tight

for signals of the form (22), and the proof is complete.

Remark — The proof above has been given for a sake of completeness, but a short-cut could

have been used, assuming the inequality (31) to be known. In fact, proceeding as in the

proof of Proposition 3, it is easy to establish that

H
(
|X̃|2

)
= H+

(
|X|2

)
− logmg

(
|X|2

)
.
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It then suffices to apply Hirschman’s inequality (31) to the pair
{
X(s), X̃(u)

}
for getting

(33).

2.4 Narrowband limit

We can remark that, depending on the choice we make for measuring the frequency spread,

we may end up with different “most concentrated” signals which can be equally considered

as “optimal” in the sense that the lower bound of the corresponding inequality is attained.

A further observation is however that all the inequalities considered so far (and, hence, the

associated “optimal” signals) tend to become identical in the limit of narrowband signals.

More precisely, it is easy to show that if a density ρ(v) is mainly supported over an

interval [ma(ρ) − ε/2,ma(ρ) + ε/2], with ε ≪ ma(ρ), we then have

∫ +∞

0
log v ρ(v) dv ∼

∫ +ε/2

−ε/2
log (ma(ρ) + ξ) ρ (ma(ρ) + ξ) dξ

∼
∫ +ε/2

−ε/2

(
logma(ρ) +

ξ

ma(ρ)

)
ρ (ma(ρ) + ξ) dξ

∼ logma(ρ)E(ρ)

and, thus, mg(ρ) ∼ ma(ρ). Using similar approximations, we can derive in the same way

that mh(ρ) ∼ ma(ρ) and that

Vg(ρ) ∼
1

m2(ρ)
Va(ρ),

with m(ρ) := ma(ρ), mg(ρ) or mh(ρ), indifferently.

It then follows that, in the narrowband limit, inequality (25) naturally reduces to the

classical Heisenberg-Gabor inequality (13), and that (21) reduces to the standard scale-

frequency inequality (15). Furthermore, in the same narrowband limit, we have

|X(s)|2 ∼
∣∣∣∣∣

∫ +ε/2

−ε/2
X(m(ρ) + ξ) (m(ρ) + ξ)i2πs−

1

2 dξ

∣∣∣∣∣

2

∼ 1

m(ρ)

∣∣∣∣x
(

s

m(ρ)

)∣∣∣∣
2

, (36)

so that

Va

(
|X|2

)
∼ m2

a

(
|x|2

)
Va

(
|x|2

)
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∼ m2
g

(
|x|2

)
Va

(
|x|2

)
,

and both scale-frequency inequalities (21) and (15) reduce to the standard Heisenberg-Gabor

inequality (13).

As far as entropy is concerned, the approximation (36) guarantees that

H
(
|X|2

)
∼ H

(
|x|2

)
+ logm

(
|X|2

)
,

so that the modified Hirschman-type inequality (33) reduces to the classical one (31).

An interpretation of this narrowband limit can be given on the time-frequency plane.

Localization of a signal in frequency amounts to concentrating most of its energy within a

strip of the plane, whereas—from (33)—localization in scale is associated to a time-frequency

domain limited by two hyperbolae. It thus follows that the specificity of scale analysis

mostly concerns wideband signals, while narrowband signals only face the usual localization

limitations of Fourier analysis on “rectangular” domains. A graphical illustration of this

behaviour is given in Figure 1.

A companion illustration of this property is given in Figure 2, where Klauder and

Altes wavelets are both evidenced to become asymptotically undistinguishable from Morlet

wavelets (i.e., Gaussian modulated wavelets) in the narrowband limit.

3 Inequalities on the scale-frequency plane

Limitations for a simultaneous localization of a signal in both scale and frequency were

considered so far from the point of view of individual energy densities in each variable.

Figure 1 suggests however a complementary approach, which would consist of an evaluation

of how much localized a joint distribution of scale and frequency could be, a situation that

is of course reminiscent of similar approaches that may have been used in time-frequency

and/or time-scale analysis (see, e.g., [12, 13, 14, 15, 17, 22]). To make things precise, some

basics of scale-frequency distributions have first to be recalled.
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3.1 Joint distributions of scale and frequency

General procedures for obtaining joint distributions of arbitrary variables (associated with

non-commuting operators) have been proposed and discussed, leading generally to classes

of solutions [3, 9, 10, 17]. As far as scale and frequency are concerned, one way of obtaining

a family of admissible distributions is to make use of the time-frequency interpretation

illustrated in Figure 1, and to impose suitable covariance requirements. We have seen in

(9) that the exponential of the scale operator acts on the spectrum of a signal as a dilation

operator whose eigenfunctions are the hyperbolic chirps (7). It is therefore natural to

require that scale-frequency distributions P̌X(s, f) adapted to scale-changing operations be

such that

P̌Xα,σ(s, f) = P̌X

(
s− σ,

f

α

)
,

when the analyzed signal is transformed according to

X(f) 7→ Xα,σ(f) := α−
1

2 X

(
f

α

)
Hσ(f),

with Hσ(f) defined as in (7).

Assuming that P̌X is sesquilinear in X—so as to have a simple energetic interpretation

for the distributions—, such a covariance requirement with respect to dilations and hyper-

bolic shifts results in the scale-frequency version (i.e., with the identification s = tf) of the

so-called “hyperbolic class” [9]. We will adopt in the following the2

Definition 7 The hyperbolic class of an analytic signal X(f) is given by all scale-frequency

distributions of the form

P̌X(s, f) =

∫ +∞

−∞

∫ +∞

0
Φ

(
s− σ, log

f

ξ

)
Q̌X(σ, ξ) dσ

dξ

ξ
, (37)

with Φ(s, f) some arbitrary kernel and

Q̌X(s, f) := f

∫ +∞

−∞

X
(
f eu/2

)
X

(
f e−u/2

)
ei2πsu du (38)

2Distributions of the hyperbolic class are usually considered as time-frequency distributions. In order to
put a specific emphasis on their scale-frequency interpretation, we will make use of the following convention
for the notation: a time-frequency distribution will be written as PX(t, f), and its scale-frequency counterpart
as P̌X(s, f), with the equivalences PX(t, f) = P̌X(tf, f) and P̌X(s, f) = PX(s/f, f).
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the “Altes distribution.”

As for the scale transform, which—according to (4)—can be expressed in the form of a

Fourier transform applied to a suitably warped version of the signal, the Altes distribution

can be written as

Q̌X(s, f) = W
X̃

(s, log f),

where WX(t, f) is the usual Wigner distribution3 [9, 10, 17]

WX(t, f) :=

∫
X

(
f +

ξ

2

)
X

(
f − ξ

2

)
ei2πξt dξ.

More generally, all members of the hyperbolic class (37) can be expressed as

P̌X(s, f) = C
X̃

(s, log f), (39)

where

CX(t, f) :=

∫ +∞

−∞

∫
Φ (t− τ, f − ξ) WX(τ, ξ) dτ dξ (40)

is a distribution of the so-called “Cohen class” [9, 10, 17], i.e., the class of all sesquilinear

time-frequency distributions which are covariant with respect to shifts in time and frequency.

The hyperbolic class (37) and the Cohen class (40) are equivalent by warping, but they

have no intersection, since none of the covariances of the Cohen class (shifts in both time

and frequency) is shared by the hyperbolic class. Nevertheless, there exist other classes

of distributions which may have an intersection with either the hyperbolic class or the

Cohen class. This is especially the case of the “affine class” [9] which, by construction, is

covariant with respect to shifts in time and dilations. A key distribution of the affine class

that also belongs to the hyperbolic class is the (unitary) “Bertrand distribution” [7], whose

(scale-frequency) definition reads

B̌X(s, f) := f

∫ +∞

−∞

√
λ(u)λ(−u)X (f λ(u)) X (f λ(−u)) ei2πsu du, (41)

with

λ(u) :=
u

1 − e−u
. (42)

3In the general case, integration is performed from −∞ to +∞ but, for analytic signals, the integration
limits are actually −2f and +2f .
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Even if they cannot be expressed as scale-frequency distributions stricto sensu, other

members of the affine class may be of interest. The most prominent example is the

“scalogram”—the squared modulus of a wavelet transform—whose (time-frequency) def-

inition is [9, 17]

|TX(t, f)|2 :=
f0

f

∣∣∣∣∣

∫ +∞

0
X(ξ)Ψ

(
f0

f
ξ

)
ei2πξt dξ

∣∣∣∣∣

2

, (43)

where Ψ(f) is the frequency spectrum of the analyzing wavelet and f0 a (non-zero) reference

frequency, related to some “mean” of the bandpass density |Ψ|2. Given (43), a (formal)

scale-frequency version of the scalogram will be defined in the following as

∣∣∣ŤX(s, f)
∣∣∣
2

:=

∣∣∣∣TX

(
s

f
, f

)∣∣∣∣
2

. (44)

3.2 Variance-type inequalities

Adopting the point of view of characterizing an analytic signal by means of a scale-frequency

distribution, we can address the problem of its joint localization in both scale and frequency

via joint spread measures defined on the half-plane. We will adopt the following definitions:

Definition 8 Given a scale-frequency distribution R(s, f), defined on IR × IR+ and inte-

grable with respect to the measure ds df/f , its energy E(R) and its arithmetic-arithmetic

variance Vaa(R) are defined by

E(R) :=

∫ +∞

−∞

∫ +∞

0
R(s, f) ds

df

f
,

Vaa(R) :=
1

E(R)

∫ +∞

−∞

∫ +∞

0

[
(s−ma(R

(s)))2 + (f −ma(R
(f)))2

]
R(s, f) ds

df

f
, (45)

respectively, with ma(ρ) as in (11), and the marginal distributions R(s)(s) and R(f)(f)

defined by

R(s)(s) :=

∫ +∞

0
R(s, f)

df

f

and

R(f)(f) :=
1

f

∫ +∞

−∞

R(s, f) ds.
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Definition 9 Given a scale-frequency distribution R(s, f), defined on IR × IR+ and in-

tegrable with respect to the measure ds df/f , its arithmetic-geometric variance Vag(R) is

defined by

Vag(R) :=
1

E(R)

∫ +∞

−∞

∫ +∞

0

[
(s−ma(R

(s)))2 + log2

(
f

mg(R(f))

)]
R(s, f) ds

df

f
, (46)

with mg(ρ) as in (19).

Based on those definitions, it immediately follows that marginal distributions play a key

role for making of the joint spread measure an equivalent substitute to the individual spread

measures used previously. More precisely, we have (proof is trivial and will be omitted)

Lemma 2 Given an analytic signal X(f), and any of its scale-frequency distributions

P̌X(s, f) with “correct” marginals, i.e., such that P̌
(s)
X (s) = |X(s)|2 and P̌

(f)
X (f) = |X(f)|2,

we have

Vaa(P̌X) = Va

(
|X|2

)
+ Va

(
|X|2

)
(47)

and

Vag(P̌X) = Va

(
|X|2

)
+ Vg

(
|X|2

)
. (48)

It follows from this lemma that joint spread measures of joint scale-frequency distri-

butions with correct marginals merely re-express the inequalities obtained previously for a

scale transform pair. This is made explicit by the following

Proposition 6 Let P̌X(s, f) be a scale-frequency distribution with correct marginals, then

we have

Vaa(P̌X) ≥ ma
(
|X|2

)

2π
, (49)

with equality if and only X(f) is a Klauder wavelet of the form (16). In a similar way,

Vag(P̌X) ≥ 1

2π
, (50)

with equality if and only X(f) is an Altes wavelet of the form (22)
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Proof — Starting from (47), we can write

Vaa(P̌X) = Va

(
|X|2

)
+ Va

(
|X|2

)

=

(√
Va(|X|2) −

√
Va(|X|2)

)2

+ 2
√
Va(|X|2) Va(|X|2)

≥ 2
√
Va(|X|2) Va(|X|2)

≥ 2
ma

(
|X|2

)

4π
,

the last inequality stemming from (15), and (49) follows. Similar reasoning, starting from

(48) but using (21), would lead to (50). Both lower bounds are attained as previously.

The most simple examples of distributions with correct marginals within the hyperbolic

class are the Altes distribution (38) and the unitary Bertrand distribution (41) but, more

generally, all distributions of the form (37) with φ(0, 1) = φ(1, 0) = 1 (with φ(ξ, τ) the two-

dimensional Fourier transform of Φ(s, f)) are solutions as well [9]. All these distributions

are faced with the same limitations on their joint localization.

In the specific case of the unitary Bertrand distribution, inequality (50) complements

the inequality (49), which had already been proven (in a slightly different form) in [16,

Prop. 17]. Moreover, thanks to the warping equivalence mentioned in (39), we have that

∫ +∞

−∞

∫ +∞

0
G(s, log f)

∣∣∣P̌X(s, f)
∣∣∣
p
ds

df

f
=

∫ +∞

−∞

∫ +∞

−∞

G(t, f)
∣∣∣C

X̃
(t, f)

∣∣∣
p
dt df

for any function G and any positive p (provided that the above integrals exist), so that many

other inequalities can be derived from more standard time-frequency inequalities within the

Cohen class, such as, e.g., those considered in [16, Sect. 3] or [22]. This will not be followed

up here. We will rather concentrate on a more specific issue concerning wavelet transforms

and scalograms.

3.3 An uncertainty relation for the wavelet transform

Numerous comments can be found in the literature about localization properties of the

wavelet transform but, in most cases, it turns out that the considered localization (in
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the time and frequency domains) concerns much more the wavelet used in computing the

transform than the resulting transform itself. A few results can however be found (e.g.

in [11], [13] or [25, 26]), that address explicitly the problem of the joint localization of a

wavelet transform in the plane, and we will propose here a new result in that direction.

Being in fact primarily interested in energy localization, the analysis will be based on

(quadratic) scalograms rather than on (linear) wavelet transforms. Scalograms (43) are

affine time-frequency distributions and, as such, they may be expressed in terms of the

unitary Bertrand distribution, which itself belongs to the affine class. More precisely, if we

consider distributions (41) as affine time-frequency functions by using the aforementioned

notation BX(t, f) := B̌X(tf, f), unitarity (and real-valuedness) of the Bertrand distribution

guarantees that

∣∣∣∣
∫ +∞

0
X(ξ)Y (ξ) dξ

∣∣∣∣
2

=

∫ +∞

−∞

∫ +∞

0
BX(τ, ξ)BY (τ, ξ) dτ dξ (51)

for any X(f) and Y (f) ∈ L2(IR+, df). If we now let Y (f) be some time-shifted and scaled

version of a wavelet spectrum Ψ(f) according to

Y (ξ) = Ψt,f (ξ) :=

√
f0

f
Ψ

(
f0

f
ξ

)
e−i2πξt,

the left-hand side of (51) exactly coincides with the scalogram defined in (43). Moreover,

we readily see from the definition (41) that

BΨt,f
(τ, ξ) = BΨ

(
f

f0
(τ − t),

f0

f
ξ

)
,

so that, after inclusion in (51), we end up with the “regularization” formula [6]

|TX(t, f)|2 =

∫ +∞

−∞

∫ +∞

0
BX(τ, ξ)BΨ

(
f

f0
(τ − t),

f0

f
ξ

)
dτ dξ. (52)

The interpretation of this formula is that scalograms can be viewed as (affine) smoothed

versions of Bertrand distributions, exactly as spectrograms are (standard) smoothed ver-

sions of Wigner distributions [9, 10, 17].

Owing to their definition, scalograms have no “correct” marginals and Lemma 2 cannot

be applied to them. Furthermore, since they are not members of the hyperbolic class, they
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cannot be expected to be covariant with respect to hyperbolic shifts. As a consequence, we

will have—in order to make use of measures such as those defined in (45) or (46), explicitly

constructed on s = tf—to restrict things further and deal only with those signals whose

group delay is zero, so that the mean of their scale density be itself zero: such a property

is in fact a corollary to the following [10]

Lemma 3 Let X(f) be any analytic signal of group delay tX(f). Assuming that f |X(f)|2

vanishes when f goes to zero and infinity, we have

ma

(
|X|2

)
= ma

(
tX |X|2

)
.

Proof — We can write

ma

(
|X|2

)
=

∫ +∞

−∞

s |X(s)|2 ds

=

∫ +∞

−∞

s

∣∣∣∣
∫ +∞

0
X(f) f i2πs− 1

2 df

∣∣∣∣
2

ds

=
1

i2π

∫ +∞

0

∫ +∞

0
X(ξ)X(ζ) δ′

(
log

ξ

ζ

)
dξ dζ√

ξζ

=
i

2π

(∫ +∞

0
f X(f)X ′(f) df +

1

2
E+

(
|X|2

))
.

Assuming that f |X(f)|2 vanishes when f goes to zero and infinity, an integration by

parts shows that

Re

{∫ +∞

0
f X(f)X ′(f) df

}
= − 1

2
E+

(
|X|2

)
,

whence

ma

(
|X|2

)
= − 1

2π
Im

{∫ +∞

0
f X(f)X ′(f) df

}
.

With the notation X(f) := |X(f)| exp{iΦX(f)}, we may write

Im

{∫ +∞

0
f X(f)X ′(f) df

}
=

∫ +∞

0
f Φ′(f) |X(f)|2 df,

from which we get the claimed result, thanks to the definition

tX(f) = − 1

2π
Φ′(f)
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of the group delay of X(f).

Based on this material, we can now prove a new form of “uncertainty relation” for

wavelet transforms. We will need one more definition:

Definition 10 Given an integrable density ρ(v), defined on IR+ and of energy E+(ρ), its

inverse quadratic mean miq(ρ) is defined by

miq(ρ) :=

(
1

E+(ρ)

∫ +∞

0

1

v2
ρ(v) dv

)−
1

2

. (53)

Proposition 7 Let X(f) be any analytic signal whose group delay is zero, and let Ψ(f)

be any wavelet of reference frequency f0 := mg
(
|Ψ0|2

)
with Ψ0(f) := f−1/2Ψ(f). Assuming

that Ψ(f) ∈ L2(IR+, f
−(n+1) df) for n = 0, 1 and 2, the corresponding scalogram |ŤX(s, f)|2

is such that

Vag

(
|ŤX |2

)
≥ D(Ψ)

2π
, (54)

with

D(Ψ) := mg

(
|Ψ0|2

) (
1

miq(|Ψ0|2)
+

1

mh(|Ψ0|2)

)
≥ 2, (55)

and Vag, mg, miq and mh as in (46), (53), (19) and (24), respectively.

Proof — Decomposing the arithmetic-geometric variance (46) in two terms and using the

simplified notation

m := mg

(
1

f

∫ +∞

0
|ŤX(s, f)|2 ds

)
,

we first get from the definition (43) of the scalogram that

I2 :=
1

E
(
|ŤX |2

)
∫ +∞

−∞

∫ +∞

0
log2

(
f

m

)
|ŤX(s, f)|2 ds df

f

=
1

E
(
|ŤX |2

)
∫ +∞

−∞

∫ +∞

0
log2 f |ŤX(s, f)|2 ds df

f
− log2 m

=
f0

E
(
|ŤX |2

)
∫ +∞

0

∫ +∞

0
log2

(
f0ξ

ζ

)
|X(ξ)|2 |X(ζ)|2 dξ dζ

ζ
− log2 m.
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Expanding the logarithm in the above integral, noting that m = mg
(
|X|2

)
and that

E
(
|ŤX |2

)
= f0 C0(Ψ)E+

(
|X|2

)
, (56)

with

Cn(Ψ) :=

∫ +∞

0
|Ψ(f)|2 df

fn+1
, (57)

we obtain after some calculations that

I2 = Vg

(
|X|2

)
+ Vg

(
|Ψ0|2

)
, (58)

with Vg as in (20).

Considering then the first term of (46), and assuming that the group delay of X(f) is

zero, Lemma 3 guarantees that it suffices to consider the quantity

I1 :=

∫ +∞

−∞

∫ +∞

0
s2 |ŤX(s, f)|2 ds df

f

=

∫ +∞

−∞

∫ +∞

0
t2f2 |TX(t, f)|2 dt df. (59)

The evaluation of this integral is better achieved by using the identity (51). Plugging

(51) into (59) and making the appropriate changes of variables, we find that

I1 = f3
0

[∫ +∞

−∞

∫ +∞

0
t2f2 BX(t, f) dt df ×

∫ +∞

−∞

∫ +∞

0
BΨ(t, f) dt

df

f3

−2

∫ +∞

−∞

∫ +∞

0
tf BX(t, f) dt df ×

∫ +∞

−∞

∫ +∞

0
tBΨ(t, f) dt

df

f2

+

∫ +∞

−∞

∫ +∞

0
BX(t, f) dt df ×

∫ +∞

−∞

∫ +∞

0
t2 BΨ(t, f) dt

df

f

]
. (60)

Remarking that

∫ +∞

−∞

∫ +∞

0
tf BX(t, f) dt df = ma

(
|X|2

)
E+

(
|X|2

)
,

we obtain from Lemma 3 and the assumption of zero-mean for the group delay that the

middle term in (60) vanishes, and an explicit evaluation of the other terms leads to

I1 = f3
0 E+

(
|X|2

) [
Va

(
|X|2

)
C2(Ψ) +

∫ +∞

−∞

∫ +∞

0
t2 BΨ(t, f) dt

df

f

]
. (61)
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The evaluation of the remaining integral requires some more effort and can be carried

out as follows. One can write

J :=

∫ +∞

−∞

∫ +∞

0
t2 BΨ(t, f) dt

df

f

=

∫ +∞

0

(∫ +∞

−∞

s2 B̌Ψ(s, f) ds

)
df

f4

= − 1

4π2

∫ +∞

0

d2

du2

[
µ(u)Ψ(f λ(u))Ψ(f λ(−u))

]

u=0

df

f3
,

with λ(u) defined as in (42) and µ(u) :=
√
λ(u)λ(−u).

Differentiating twice the bracketed term with respect to u, evaluating the obtained

derivative in u = 0 by using the identities λ′(0) = 1/2, λ′′(0) = 1/6 and µ′′(0) = −1/12,

and integrating finally in f , we obtain the intermediate result:

J =
1

4π2
C2(Ψ)

[
C0(Ψ

′)

C2(Ψ)
− 3

4

]
. (62)

This can be cast in a more interesting form using the modified wavelet Ψ0(f). From its

definition, we have

|Ψ′(f)|2 =
1

4

|Ψ0(f)|2
f

+ f |Ψ′
0(f)|2 + Re

{
Ψ0(f) Ψ′

0(f)
}
,

so that, after an integration by parts, we obtain

C0(Ψ
′)

C2(Ψ)
− 3

4
=

1

C2(Ψ)

∫ +∞

0
|Ψ′

0(f)|2 df = 4π2 C0(Ψ)

C2(Ψ)
Va

(
|ψ0|2

)
.

Plugging this result into (62), normalizing the resulting contribution (61) and combining

with (58), we finally obtain

Vag

(
|ŤX |2

)
= f2

0

C2(Ψ)

C0(Ψ)
Va

(
|X|2

)
+ Vg

(
|X|2

)
+ f2

0 Va

(
|ψ0|2

)
+ Vg

(
|Ψ0|2

)
. (63)

Proceeding as in the proof of Proposition 6, it is easy to show that the right-hand side

of (63) is bounded below as

Vag

(
|ŤX |2

)
≥ 2

√

f2
0

C2(Ψ)

C0(Ψ)

√
Va(|X|2) Vg(|X|2) + 2

√
f2
0 Va(|ψ0|2) Vg(|Ψ0|2). (64)
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Considering integrals Cn(Ψ) of the type (57) and making explicit the definition of the

reference frequency f0 as the geometric mean of the density |Ψ0|2, we have
√

f2
0

C2(Ψ)

C0(Ψ)
=

mg
(
|Ψ0|2

)

miq(|Ψ0|2)
.

As far as the second term of the sum in (64) is concerned, one may write

√
f2
0 Va(|ψ0|2) Vg(|Ψ0|2) =

mg
(
|Ψ0|2

)

mh(|Ψ0|2)
√
m2

h(|Ψ0|2) Va(|ψ0|2) Vg(|Ψ0|2),

and (64) becomes

Vag

(
|ŤX |2

)
≥

2

[
mg

(
|Ψ0|2

)

miq(|Ψ0|2)
√
Va(|X|2) Vg(|X|2) +

mg
(
|Ψ0|2

)

mh(|Ψ0|2)
√
m2

h(|Ψ0|2) Va(|ψ0|2) Vg(|Ψ0|2)
]
.

According to the results of Propositions 3 and 4, both square roots in the above expres-

sion are each bounded below by 1/4π, thus leading to (54).

Using the standard sequence of inequalities [20, Chapter VI]

miq

(
|Ψ0|2

)
≤ mh

(
|Ψ0|2

)
≤ mg

(
|Ψ0|2

)

which hold for the different means involved in the definition of D(Ψ), we finally get that

D(Ψ) = mg

(
|Ψ0|2

) (
1

miq(|Ψ0|2)
+

1

mh(|Ψ0|2)

)
≥ 2

mg
(
|Ψ0|2

)

mh(|Ψ0|2)
≥ 2,

and this completes the proof.

Remark 1 — Proposition 7 gives a lower bound for the (arithmetic-geometric) variance of

scalograms on the plane, but it fails to characterize signal-wavelet pairs for which the lower

bound would be attained. Given a fixed wavelet, one can however go back to the inequality

(64) and consider it as an affine function (with positive weights) of the spread measure
√
Va(|X|2) Vg(|X|2). We know from Proposition 3 that the minimum of this quantity is

attained for X(f) of the form (22), and the same applies to the joint measure Vag

(
|ŤX |2

)
.

Remark 2 — We know that all of the different means involved in D(Ψ) become identical

in the limit of narrowband wavelets. In this limit, wavelet analysis tends however to be
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equivalent to Fourier analysis and one can observe that, in this case, the asymptotic lower

bound 1/π is identical to the one which controls the lowest (arithmetic-arithmetic) variance

attainable by spectrograms when using the spread measure (45) [16].

3.4 An entropy inequality for the unitary Bertrand distribution

In a way similar to what has been done previously for scale transform pairs, variance-

type inequalities can be supplemented by entropy inequalities in the case of joint scale-

frequency distributions. Again, thanks to the warping equivalence (39), many results can

be readily inferred from entropy inequalities relative to Wigner distributions and their

smoothed versions within the Cohen class [4, 24]. This will not be detailed further.

We will here only consider the specific example of the unitary Bertrand distribution

which, while being a member of the hyperbolic class, cannot be treated in a straightforward

manner on the basis of the results given in [4] (this is so because the extensions of Lieb’s

results given in [4] only concern those members of the Cohen class such that their kernel

function is in L1(IR× IR+), which is definitely not the case for the kernel function used for

expressing the unitary Bertrand distribution as a “smoothed” Altes distribution [9]).

We will first give a definition and prove two lemmata.

Definition 11 Given a positive scale-frequency density R(s, f), integrable and normalized

to one over IR× IR+, its Shannon entropy is defined by

H1(R) := −
∫ +∞

−∞

∫ +∞

0
R(s, f) logR(s, f) ds

df

f
. (65)

Lemma 4 The unitary Bertrand distribution of an analytic signal X(f) is bounded accord-

ing to

‖B̌‖∞ ≤ 2E+

(
|X|2

)
. (66)

Proof — Starting from the definition (41) of the unitary Bertrand distribution and using

the Cauchy-Schwarz inequality, we can write

|B̌X(s, f)|2 =

∣∣∣∣
∫ +∞

−∞

√
f λ(u)X(f λ(u))

√
f λ(−u)X(f λ(−u)) ei2πsu du

∣∣∣∣
2
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≤
(∫ +∞

−∞

f λ(u) |X(f λ(u))|2 du
)2

,

so that we get, after a change of variables, the first majoration

|B̌X(s, f)| ≤
∫ +∞

0
|X(ξ)|2 g

(
ξ

f

)
dξ, (67)

with

g(x) :=
x

λ′(λ−1(x))
. (68)

Another way of obtaining a majoration consists of writing

|B̌X(s, f)|2 =

∣∣∣∣
∫ +∞

−∞

√
f λ(−u)X(f λ(u))

√
f λ(u)X(f λ(−u)) ei2πsu du

∣∣∣∣
2

≤
(∫ +∞

−∞

f λ(−u) |X(f λ(u))|2 du
)2

,

so that, using the relation [7]

λ(u) = eu λ(−u),

we end up this time with the second majoration

|B̌X(s, f)| ≤
∫ +∞

0
|X(ξ)|2 h

(
ξ

f

)
dξ, (69)

with

h(x) := g(x) e−λ−1(x). (70)

In order to study the behaviour of g(x) and h(x) (which are both plotted in Figure 3),

we can first rewrite g(x) as

g(x) =
λ(λ−1(x))

λ′(λ−1(x))

and remark that, λ : IR → IR+ being a strictly increasing function [7], it suffices to restrict

the study to the function

G(u) :=
λ′(u)

λ(u)
=

1

g(λ(u))
. (71)

This auxiliary function G(u) is nothing but the logarithmic derivative of λ(u) and,

together with the explicit form (42), we get

G(u) =
1

u
− 1

eu − 1
(72)

28



        

and

G′(u) =
1

4 sinh2(u/2)
− 1

u2
≤ 0, (73)

and it thus follows from (71) that g(x) is an increasing function.

Considering then the function h(x) defined in (70), it is again enough to restrict the

study to the auxiliary function

H(u) :=
1

G(u)
e−u,

whose derivative expresses as

H ′(u) = − e−u

G2(u)

[
G′(u) + G(u)

]
.

According to the explicit expressions (72) and (73), we have that H ′(u) ≤ 0 and, as

a consequence, h(x) is a decreasing function. Given the definition (70), both functions

intersect for x = λ(0) = 1, taking on the value g(1) = h(1) = 1/λ′(0) = 2. It follows from

(67) and (69) that

‖B̌X‖∞ ≤ sup
f

∫ +∞

0
|X(ξ)|2 κ

(
ξ

f

)
dξ, (74)

with

κ(x) := min {g(x), h(x)} ≤ 2,

whence the claimed result.

Remark — According to (66), the unitary Bertrand distribution turns out to be bounded in

exactly the same way as the Wigner distribution. In the narrowband limit, the integration

in (74) is in fact restricted to ξ ∼ f . It follows that κ(ξ/f) ∼ 2, and the factor 2 in the

upper bound is in accordance with the interpretation of the Wigner distribution as the limit

form of the unitary Bertrand distributions in the case of narrowband signals [7]. In more

general situations, Figure 3 suggests however that the majoration κ(x) ≤ 2 for all x’s is a

crude one and that sharper bounds should be attainable. In fact, while (66) gives a global

bound, supposed to be valid for all frequencies, (74) is indeed frequency-dependent, and it

follows from the form of κ(x) that, for example,

lim
f→0

sup
f

|B̌X(s, f)| = 0,
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provided that X(f) ∈ L2(IR+, df).

Based on the above Lemma 4, we can establish the more general result:

Lemma 5 For any p ≥ 2, the Lp-norm of the unitary Bertrand distribution of an analytic

signal X(f) is bounded according to

‖BX‖p ≤ 2
1− 2

p E+

(
|X|2

)
. (75)

Proof 4 — Given any function G(t, f) ∈ Lr(IR×IR+)∩Ls(IR×IR+), with 1 ≤ r ≤ p ≤ s < ∞,

we can use Hölder’s inequality to show that

‖G‖p ≤ ‖G‖tr ‖G‖us , (76)

with

t =
1 − s/p

1 − s/r
, u =

1 − r/p

1 − r/s
.

This follows from the fact that p can be uniquely written as p = αr + (1 − α)s, with

α ∈ [0, 1], so that Hölder’s inequality gives

∫ +∞

0

∫ +∞

−∞

|G(t, f)|p dt df =

∫ +∞

0

∫ +∞

−∞

|G(t, f)|αr |G(t, f)|(1−α)s dt df

≤
(∫ +∞

0

∫ +∞

−∞

|G(t, f)|r dt df
)α (∫ +∞

0

∫ +∞

−∞

|G(t, f)|s dt df
)1−α

,

whence the inequality (76).

For r = 2, s → ∞ and r ≤ p ≤ s, we get

‖G‖p ≤ ‖G‖
2

p

2 ‖G‖1− 2

p
∞ .

Applying this result to G(t, f) = BX(t, f) thus leads to the claimed inequality (75),

knowing that ‖BX‖2
2 = E+

(
|X|2

)
and that ‖BX‖∞ ≤ 2E+

(
|X|2

)
, from Lemma 4.

Based on Lemma 5, a bound can be obtained for the Shannon entropy of the unitary

Bertrand distribution. This is given by the following

4Thanks to Guido Janssen for having suggested a simplification of the original proof and proposed the
one reproduced here.
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Proposition 8 The squared unitary Bertrand distribution of a unit-energy analytic signal

X(f) has a Shannon entropy such that

H1

(
|B̌X |2

)
≥ log

1

4
. (77)

Proof — Thanks to the unitarity condition (51), the squared Bertrand distribution of a

unit-energy signal integrates to one over the half-plane, so that we can consider its Shannon

entropy as defined in (65).

Using (75) and proceeding as in the proof of Proposition 5, we can consider it as a

function of p, differentiate both members with respect to p and evaluate at p = 2. Doing

so, we get

∂

∂p
‖BX‖pp

∣∣∣∣
p=2

=

∫ +∞

−∞

∫ +∞

0
|BX(t, f)|2 log |BX(t, f)| dt df

=

∫ +∞

−∞

∫ +∞

0
|B̌X(s, f)|2 log |B̌X(s, f)| ds df

f

= − 1

2
H1

(
|B̌X |2

)

≤ ∂

∂p

(
2p−2

)∣∣∣∣
p=2

= log 2,

whence the claimed result.

Remark — Lemma 5 gives a partial (and weaker) counterpart to Lieb’s results given in [24].

In fact, we know that in the narrowband limit, the Bertrand distribution tends to become

identical to the Wigner distribution, for which Lieb’s inequality [24]

‖WX‖p ≤
2
1− 1

p

p
1

p

E+

(
|X|2

)

guarantees that

H1

(
|W̌X |2

)
≥ 1 + log

1

4
.
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4 Conclusion

Investigating limitations in scale-frequency signal analysis, we have considered specific mea-

sures of spread that proved well-adapted to the problem, and we have established a number

of inequalities that can be attached to them. Those inequalities can be classified in two

main groups. Some of them are a direct consequence of a warping equivalence with classi-

cal Fourier and time-frequency analyses. While interesting in giving explicit bounds, they

mostly correspond to a distorded perspective of standard situations. More interestingly,

other inequalities have been derived, that call for specific approaches. Those include a new

form of uncertainty relation for the wavelet transform, as well as an entropy inequality

for the Bertrand distribution. Some of the results presented here are still partial and pre-

liminary, especially with respect to the sharpness of the bounds. Nevertheless, they are

expected to give new insights in scale-frequency analysis, and in particular in its relation

with time-frequency analysis, special emphasis having been put on narrowband limits for

which specificities of scale-frequency analysis tend to fade out.
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Figure 1: Scale-frequency localization on the time-frequency plane — The narrowband limit.
Localization of a signal in frequency (respectively, in scale) amounts to concentrating most
of its energy within a strip of the plane (respectively, a domain limited by two hyperbolae).
The gray shaded areas represent (symbolically) time-frequency domains of simultaneous
localization in scale and frequency, for both wideband (left) and narrowband (right) signals.
In the narrowband limit, classical “rectangular” domains of Fourier analysis are recovered.
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frequency frequency

Figure 2: Most localized signals in scale and frequency — The narrowband limit. Depending
on whether frequency localization is evaluated according to arithmetic or geometric mea-
sures of spread, signals which are most localized in both scale and frequency are either
Klauder wavelets (dashed lines) or Altes wavelets (dotted lines), respectively. In the nar-
rowband limit, they both become undistinguishable from Morlet wavelets (solid line). In
the left diagram (wideband case), the Morlet wavelet correspond to (14) with a = 2 and
log b = 1, the Klauder wavelet to (16) with a = 2 and b = 2, and the Altes wavelet to (22)
with a = 1 and b = 1.3. In the right diagram (narrowbandband case), the Morlet wavelet
correspond to (14) with a = 1.5 and log b = 8, the Klauder wavelet to (16) with a = 192
and b = 24, and the Altes wavelet to (22) with a = 100 and b = 8. In all cases, energy
densities are plotted, normalized to be unit energy.
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Figure 3: Upper bound for the unitary Bertrand distribution. Evaluating an upper bound for
absolute values of the unitary Bertrand distribution involves the two functions g(x) (dotted
line) and h(x) (dashed line), defined in (68) and (70), respectively. Evaluation of the bound
is actually based on the auxiliary function κ(x) = min{g(x), h(x)} (superimposed solid
line), which attains its maximum at the (circled) point (1, 2), thus allowing to guarantee
that the modulus of a Bertrand distribution never exceeds twice the energy of the signal on
which it is constructed (see text).
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