
Testing for General Dynamical Stationarity with a SymbolicData Compression TechniqueMatthew B. KennelInstitute for Nonlinear ScienceUniversity of California, San DiegoLa Jolla, CA 92093-0402Alistair I. Mees�Isaac Newton Institute,Cambridge University,Cambridge CB3 0EH, England.We construct a statistic and null test for examining the stationarityof time-series of discrete symbols: whether two data streams appear tooriginate from the same underlying unknown dynamical system, and ifany di�erence is statistically signi�cant. Using principles and compu-tational techniques from the theory of data compression, the methodintelligently accounts for the substantial serial correlation and nonlin-earity found in realistic dynamical data, problems which bedevil naivemethods. Symbolic methods are computationally e�cient and robustto noise. We demonstrate the method on a number of realistic experi-mental datasets. I. BACKGROUNDSymbolic methods have been used in the study of dynamical systems from theearliest days, most notably Kolmogorov and Sinai's [1] use of metric entropy as adynamical invariant, which spawned a signi�cant mathematical industry in symbolicdynamics. Fraser [2] applied information theoretical concepts to construct usefulalgorithms and criteria for time-delay embeddings.Stationarity, the notion that a system may be modeled well without time as anexplicit parameter, is a prerequisite for the vast majority of nonlinear data analysistechniques. Only recently has there been some e�ort in constructing useful hy-pothesis tests suitable for realistic chaotic and nonlinear dynamical data. [3] In thiswork, we advocate a symbolic approach, on account of computational ease, and theconnection to well-studied and powerful techniques of data compression heretoforerarely used in the physics literature which justify our statistical assumptions.Comparing information in the symbolic dynamics observed from time series hasa variety of uses besides stationarity tests [4,5]. One that we mention here is a'time-reversibility' test: is the symbol stream statistically the same as its time-reversed version? This is important because Gaussian linear processes producetime-reversible time series, thus rejecting time-reversibility in an observed symbolstream implies that the data cannot be from that sort of process.�Permanent address: Centre for Applied Dynamics and Optimization, The University ofWestern Australia, Nedlands, Perth 6907, Western Australia.
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II. THE METHODWe have a series of symbols, either quantized from continuous-valued observationsor directly measured, observed in discrete time: s1; s2; s3; : : : sN , each symbol fromsome alphabet A re-expressed as integers s 2 f1; 2; : : : ; jAjg. In symbolic dataanalysis, the distribution of multi-symbol words provides information about time-dependent structure and correlation, just as, with continuous nonlinear data, time-delay embedding provides a vector space revealing dynamical information.A �rst attempt at a stationarity test would be to apply the classical �2-test toobserved counts of distinct multi-symbol words observed in (say) the front and backhalves of the data. Unfortunately, the assumption underlying this inference|thateach datum is randomly and independently drawn from some distribution |is nottrue in realistic dynamical data. Short time correlations in physical data stronglycouple symbols near in time; thus naive application of such tests fail miserably,usually towards spurious rejection. Indeed, dynamical dependence makes it di�cultto construct a proper statistical null test for any hypothesis which allows chaotic orgeneral nonlinear data in the null class, and few examples of this sort exist.This work proposes a test procedure which quanti�es whether two observed sym-bol streams have \the same dynamics" and its statistical signi�cance, even in thepresence of serial correlation and dependence. The algorithm is computationallyrapid and does not require Monte Carlo simulation. There are two phases: con-struction of a symbolic predictive model, and the evaluation of a combination ofclassical statistics, this time on data constructed to be nearly independent.A model based on an universal data compression algorithm factors out learn-able dependence. Good compressors learn the conditional dependencies of symbolscharacteristic of the source process, thus less new information need be transmit-ted to reproduce the input data, assuming the decompresser can reconstruct thesame model using the transmitted symbols. Fundamental results of informationtheory [6,7] require that optimally compressed data are independent: this is thecentral theoretical justi�cation for our subsequent application of classical statisticalinference, and we feel one of the most useful concepts outside the speci�c applicationpresented here.Our model for the symbolic dynamics is a \context tree": the recent symbolsin the stream themselves de�ne the state, known here as the context; contextsare analogous to the states reconstructed by time-delay embedding in conventionalnonlinear dynamical analysis. Context tree modeling is a prominent contemporarydevelopment in the data compression �eld. We describe elsewhere [4,5] other appli-cations to nonlinear dynamics but in the present paper we specialize to stationaritytesting.The tree structure accumulates the statistics of observed symbol vectors downto maximum depth d, with distinct branches corresponding to distinct symbols ofalphabet A which occurred at prior times. The top node corresponds to no history,the �rst jAj nodes a one-dimensional reconstruction of the most recent symbol, theirjAj2 descendents a 2-dimensional reconstruction of the two most recent and so forth.Naturally one only constructs the non-empty nodes.Each node stores jAj integers which record the distribution of every symbol st+1that occurred immediately after its particular context C. From this information wecan estimate the conditional probability for seeing the next symbol at every step:P̂ (st+1jC). Observed data provides a data-based estimate of the emission, and thus,transition, probabilities.In principle we can build a context tree to arbitrary depth: the most recentlyseen symbol can have a context that goes back to the start of the data stream. It ispossible to construct such a tree e�ciently (in time and space linear in the number2



of data [8]) but it is not useful to use the leaves directly to estimate conditionalprobabilities, since each leaf will have only one observation recorded. We need abalance between greater depth, which will reveal more structure, and larger numbersof observations at the nodes, which will give greater robustness against noise: theubiquitous over-�tting issue. There are various methods of either selecting a speci�csubtree [9] or blending [10] di�erent subtrees, all of which have varying compressionproperties. We use a state selection algorithm which is quite convenient for ourstationarity test. We do not claim it is necessarily the state-of-the-art compressor,though its performance usually appears to be competitive on physical time-seriesdata.At each time step t, the time series history so far selects a set of possible contexts,or \excited nodes" of the tree, namely all nodes reachable by following brancheswhich match the symbol history. We use an additional criterion to select from amongthe the excited nodes the \encoding node" at time t, which contains the estimatedP̂ (st+1) to be employed. If one were literally compressing data, one would feedthe successive estimated P̂ for the actual symbols st+1 into an arithmetic coder,a well-studied algorithmic device [7] which generates the output bit stream withtotal code length at most two bits greater than �Pt log2 P̂ (st+1). At a node withobserved counts ci, we use the Krichevsky-Tro�mov [11] estimator,P̂ (j) = (cj + 12)=Xi (ci + 12)for symbol value 1 � j � jAj. P̂ must be estimated before the new future symbol isincluded in the counts, because the decoder must be able to reconstruct the symbolstatistics from previously processed input at every stage. There is no separate modelor dictionary sending step. In our application, this is not essential and it is possibleto envisage batch encoders, which di�er in detail but not in principle from what wedescribe here.Our method of encoding selects a speci�c encoding node for any symbol using a\predictive minimum description length (MDL)" principle due to Rissanen and laterimproved by others [9]. Each node stores a di�erential code length � = Lp � Ls,the di�erence in code lengths which would have been emitted had the symbol beenencoded using estimated distributions P̂ at itself (Ls), or code length Lp estimatedusing the parent's counts. One descends the excited nodes from the top down,computing P�, summing over all of the current node's children's value of �.When this sum �rst becomes negative (assigning � = 0 to nonexistent child nodes)we have found the encoding node. The selection process has found the shortestmatching context for which it would have been cheaper to have encoded past datausing that context than longer matching contexts.After encoding the current symbol, one updates � for each excited node:� � + (� log2 P̂p(st+1) + log2 P̂s(st+1)); (1)the �rst expression using the node's parent's counts and the second using the node'sown counts. Note that � is a quantity maintained for each node independent of anyprevious choice of encoding node. Lastly, the conditional counts cj for all excitednodes are appropriately incremented with the new symbol, and new branches of thetree grafted for histories never seen before. It is important that the three phases becarried out in this particular sequence, repeating all three for each new symbol toencode.Notice that, unlike �xed Markov modeling or the simplest version of time-delayembedding, the number of past symbols which contribute to predicting the futurein a context tree is not uniform. Some past histories need to be deeply exam-ined because there, long-past history inuences the future signi�cantly, whereas for3



other past histories, there is less need, either because future evolution is more un-predictable or there has been less information previously observed regarding thosehistories. In this respect, contexts are like \variable embeddings" [12].III. STATIONARITY TESTAfter encoding all the symbols we carry out the stationarity test. The overallgoal, answering the question \do two data sets appear to arise from the same un-derlying dynamical system", translates to combining hypothesis tests performedat each encoding node regarding whether the encodings observed for both datasets (the distribution of future symbols actually encoded) could have come from asingle underlying probability distribution P (k), and if any apparent di�erence isstatistically signi�cant. At encoding contexts, we may use standard tests becausethese events ought to be nearly independent using a good compression algorithm.(A perfectly compressed data stream would be indistinguishable from a stream ofindependent random Bernoulli bits under any statistical test.)At any node n, we have recorded the frequency with which symbol k was encodedhere, ek;1 in the �rst set and ek;2 in the second. (Note that ek 6= ck, the latteraccumulating frequencies whenever a context was excited.) Assuming independence,the statistic �2 = jAjXk=1 �R1=2ek;1 �R�1=2ek;2�2ek;1 + ek;2 (2)with R = P ek;2=P ek;1 follows the standard �2 distribution with jAj � 1 degreesof freedom under the null hypothesis that both empirical probability distributionscame from the same underlying distribution [13]. Given the value of �2 and thedegrees of freedom, standard numerical algorithms provide a likelihood L asymp-totically uniform L 2 (0; 1) under the null. Small values of L reject the null at thegiven signi�cance level, e.g.  L < 0:01.The asymptotic distribution of the �2 test used in the computation of L be-comes increasingly inaccurate as the number of observations decreases. Thus forP ek < 75 (an arbitrary cuto�) we instead use a combinatorial test for di�erencesin proportions, called Fisher's exact test. As the test is much simpler in the 2� 2case, we keep the observation for the most frequent symbol (bin m which achievesmax(em;1 + em;2)) and merge the others into eo;1; eo;2, resulting in four quantitiesconventionally expressed in a \contingency table", with cumulative row and columnsums: em;1 eo;1 n1em;2 eo;2 n2nm no NUnder the null that the di�erence in proportions between m and o counts is inde-pendent of being in set 1 and 2, the probability for seeing any particular table withthe given marginal sums is:pT = nm!no!n1!n2!=(em;1!em;2!eo;1!eo;2!N !):One directly enumerates all tables with the given observed marginals (only a 1-dsum for a 2� 2 table) and sums pT for every table with a di�erence in proportionsat least as great as that observed [14], resulting in a likelihood L for accepting thenull hypothesis at this node. 4



We combine these M likelihoods, each measuring some aspect of of the same nullhypothesis, into a single overall test. Under the null, the quantityX2 = MXk=1�2 lnLk (3)is �2 distributed with 2M degrees of freedom, from which we compute our �nal L,again uniform in (0; 1) under the null. Especially small values of L imply a smalllikelihood that this level of di�erence would have been observed had the two symboldatasets been generated by the same underlying dynamical process. This completesour desired test procedure. IV. APPLICATIONSWe �rst test the accuracy of the null hypothesis. We produced an ensemble of1000 time series from the x coordinate of the \Lorenz 84" attractor: a tiny geophys-ical model with attractor dimension d � 2:5 [15]. Figure 2 shows the distributionof L comparing the �rst and second halves of each set, demonstrating L is closeto uniform 2 (0; 1). This is a stringent requirement and shows the success of ourindependence assumption, as it is di�cult to get a high-quality null distributionwith complicated arbitrarily correlated chaotic data in the null class. With thisnumber of data, the test is also quite powerful.We demonstrate discrimination power with a set of pressure data from an experi-mental model of a \uidized bed reactor" [16]. This experimental system consists ofa vertical cylindrical tube of granular particles excited from below by an externallyinput gaseous ow. In some parameter regimes (\slugging"), the particles exhibitcomplex motion which appears to be a combination of collective low-dimensionalbulk dynamics and small-scale high-dimensional turbulence of the individual par-ticles [16]. The observed variable was an azimuthally averaged pressure di�erencebetween two vertically separated taps. Figure 3 shows portions of time-delay em-bedding of orbits sections of the dataset taken at the same experimental parameters,and one when the ow was boosted by 5%. The change in the attractor is rathersubtle and di�cult to reliably diagnose by eye. Figure 4 shows the result of calcu-lating L on a data set whose ow was increased at the midpoint. As the alphabetsize increased and hypothesized breakpoint approached the true value of 50%, thestrength of the rejection increased, L ! 0. Even the binary alphabet case showed asigni�cant rejection of the null. On data taken in stationary conditions L uctuatesrandomly in (0; 1), as expected.The Southern Oscillation Index, the normalized pressure di�erence betweenTahiti and Darwin, is a proxy for the El Nino Southern Oscillation, as ocean temper-ature inuences atmospheric dynamics. The period from mid 1990 to 1995 exhibitedan anomalously sustained period of El Nino-like conditions (Fig. 5), perhaps indica-tive of global climate change. One statistical analysis [17] found such an anomalyquite unlikely assuming stationarity, but another group [18] used a di�erent anal-ysis and found it signi�cantly more likely to be a chance uctuation. Both papersused traditional linear forecasting models, with the di�erence centered around anauto-correlation based correction for serial correlation to arbitrarily reduce the de-grees of freedom. We applied our algorithm to the 3-month moving average SOI(binary symbolized) testing the 5.4 year period in question against the rest of theseries, with a resulting L � 0:01, meaning that one would expect to see a regionthis anomalous by chance every 540 years. The result is closer to those of [18] than[17] but we certainly do not want to take any particular position regarding climate;5



rather, we wish to point out an application for our method where correcting forserial correlation automatically is useful.Recent work has successfully used a distance in the symbolic space to �t unknownparameters of a physically motivated continuous model to observed data, includ-ing substantial observational and dynamic noise all in one framework, the situationwhere �tting models directly is di�cult or unreliable. Tang et al [19] �rst proposedminimizing over free parameters the di�erence between an observed distribution ofsymbol words and that produced by discretizing some proposed model's output.Daw et al [20] successfully used employed this technique to �t experimental inter-nal combustion engine measurements to a low-dimensional dynamical model. Theoptimization target was a Euclidean norm in [19] and a chi-squared distance in [20].On account of serial correlation, a true hypothesis test con�rming or rejecting theapparent compatibility of observed data to best-�tting model was not possible inthose works. We feel that our current method ought to provide a more intelligentand less ad hoc optimization goal, either by maximizing average L or perhaps min-imizing the code length of the physical model's output, encoded using the symbolicmodel learned from the observed data.
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FIG. 5. Three month moving average of the Southern Oscillation Index, the normalizedpressure di�erence between Tahiti and Darwin, Australia. Strongly negative values cor-respond to El Nino events. Is the extended negative period from mid 1990 through 1995especially anomalous?
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