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2AbstractMost phylogenetic tree estimation methods assume that there is a single set of hierarchical relation-ships among sequences in a data set for all sites along an alignment. Mosaic sequences producedby past recombination events will violate this assumption and may lead to misleading results froma phylogenetic analysis due to the imposition of a single tree along the entire alignment. Therefore,the detection of past recombination is an important �rst step in an analysis. A Bayesian model forthe changes in topology caused by recombination events is described here. This model relaxes theassumption of one topology for all sites in an alignment and uses the theory of Hidden Markov modelsto facilitate calculations, the hidden states begin the underlying topologies at each site in the data set.Changes in topology along the multiple sequence alignment are estimated by means of the maximuma posteriori (MAP) estimate. The performance of the MAP estimate is assessed by application of themodel to data sets of four sequences, both simulated and real.IntroductionPhylogenetic analysis is concerned with the accurate reconstruction of the evolutionary history of aset of sequences. Given a multiple alignment of DNA sequences from di�erent taxa, various methodsexist which may be used to infer a phylogenetic tree (for an overview see Felsenstein, 1988 or Swo�ordet al., 1996). However, these procedures make the assumption that there is only one true tree orone set of hierarchical relationships for a given set of sequences. If this assumption is violated (e.g.,through recombination) then the underlying model of inter-sequence relationships used by these me-thods will be invalid, and the resulting phylogenetic tree will often be misleading. Thus, the detectionof recombination events is important if the evolutionary history of a set of DNA sequences is to becorrectly inferred.There have been various attempts in the literature to detect evidence of recombination eventsin alignments of DNA sequences. Stephens (1985) and Sawyer (1989) use the distribution of poly-morphic sites along a sequence to detect recombination (but not recombination breakpoints), whileMaynard Smith (1992) proposes the maximum chi-square test which �nds the breakpoint maximisingthe chi-square statistic of sites before and after supporting di�erent relationships among the sequences.Salminen et al. (1995) and Lawrence and Hartl (1992) use bootstrapping; the former detect recombi-nation breakpoints by means of their graphical method, bootscanning, while the latter merely detectthe presence of recombination within a data set. A graphical method was suggested by McGuire et al.(1997); this detects putative recombination breakpoints by �nding changes in the local tree along amultiple alignment using a sliding window. PLATO (Grassly and Holmes, 1997) detects recombina-tion by considering the likelihoods at each site in the alignment for the maximum likelihood tree. Aset of sequential sites, with signi�cantly lower site likelihoods may represent a recombination event.Recently, the homoplasy test (Maynard Smith and Smith, 1998) was suggested; this detects evidenceof recombination but cannot �nd breakpoints, or estimate the number of recombination events thathave occurred.One possible way to model recombination within an alignment is to use split decomposition (Ban-



3delt and Dress, 1992). This is a method which allows conicting groupings or splits within a set ofsequences and represents this information as a network diagram. A recombination event is suggestedwhen sequences are linked by a network. However, Bandelt and Dress (1992) note that it is not obvioushow to distinguish between random or systematic error within a data set, and recombination events,so this may not be the most powerful tool for detecting recombination.Hein (1993) considers changes in the most parsimonious tree along an alignment. Given a particulartopology (branching pattern), he describes the set of possible topologies that can arise from it assumingone or more recombination events have occurred. He then considers the problem in terms of a graph.Each node (i; T ) consists of the data in the ith column of the alignment and a given topology T .The node is assigned a weight, w(i; T ), the weight of position i given topology T . An edge connectstwo neighbouring nodes, i and i � 1, and is assigned a weight d(T; T 0), the recombinational distancebetween T (the topology at position i) and T 0 (the topology at position i� 1). W (i; T ) is the weightof the most parsimonious history of the �rst i positions, given that the topology at position i is T .The most parsimonious history of the sequences is the path of lowest weight from node 1 to node N ,where N is the total sequence length, the total weight being found by summing the weights of thenodes and the edges. This is given by W (N;T ) and is found by the following recursion:W (1; T ) = w(1; T ) (i = 1)W (i; T ) = minT 0 �W (i� 1; T 0) + d(T; T 0) + w(i; T )	 (i > 1): (1)Thus, the sequence will start in a particular topology and will only change topologies when it becomesworthwhile to do so. A sensible choice of d(T; T 0) will prevent changes occurring too frequently.While the graphical representation of this problem is intuitive, it uses the maximum parsimonyprinciple, and is likely to su�er from the problems inherent with maximum parsimony (e.g., its incon-sistency under certain circumstances; Felsenstein, 1978).This paper describes a Bayesian model for changes in topology due to recombination events. Assuch, it uses maximum likelihood methodology to form part of the posterior distribution, while aMarkov chain is used to place a prior probability on a particular sequence of topologies along amultiple alignment. To facilitate computations, the theory of Hidden Markov models is applied.Hidden Markov models have been previously used by Felsenstein and Churchill (1996) to incorporateunknown rate variation into likelihood calculations for phylogenetic trees and by Thorne et al. (1996)to predict secondary structure from protein alignments. Indeed, the potential use of Hidden Markovmodels to tackle the recombination problem has previously been discussed by Felsenstein and Churchill(1996) and N. Goldman (personal communication). The resulting model is conceptually very similar toHein's (1993) parsimony approach. As before, the nodes will be the columns of the multiple alignment.w(i; T ) will correspond to the likelihood at each site given a particular topology while d(T; T 0) will bereplaced by the Markov chain probabilities.MethodConsider an alignment of four DNA sequences, one of which has incorporated genetic material fromanother at some point in the past. Thus, this recombination event will result in a change of topology



4in the a�ected region of the alignment. If the likelihoods at each site for each possible topologyare calculated and compared, one topology should correspond to the highest likelihoods in the non-recombinant region, while another should take over in the recombinant zone. Some noise would beexpected (i.e., incorrect topologies corresponding to the largest site likelihoods for single or for shortruns of sites) but prior beliefs about the relative infrequency of recombination events suggests thatshort runs of a particular topology should be ignored. Since both prior information and likelihoodshave been discussed, this suggests a Bayesian approach to the problems of detecting evidence ofrecombination events.Given an alignment of T DNA sequences, each N bp long, this may be considered as a T � Nmatrix S, with each column of the matrix, St, representing the nucleotides in each sequence at sitet. Suppose that fCtg, t = 1; 2; : : : ; N , is a process which allocates an (unobservable) topology ct,ct = 1; 2; : : : ;m, to St, where m is the number of distinct topologies. Since recombination events maybe detected by their e�ect on the topology along an alignment, it is clear that the problem of detectingevidence of recombination becomes that of estimating the most probable combination of topologiesc1; : : : ; cN given the data S.The process fCtg may be thought of as encoding prior information about recombination events,while the alignment, S, may be used to calculate the likelihood given a particular sequence of topolo-gies, c1; c2; : : : ; cN along an alignment. Using the fundamental result that the posterior distributionis proportional to the product of the prior distribution and the likelihood, the following model fortopology change due to recombination events is obtained:Prob(C1 = c1; C2 = c2; : : : ; CN = cN jS) / Prob(C1 = c1; : : : ; CN = cN )� Prob(SjC1 = c1; : : : ; CN = cN ): (2)Therefore, to obtain the posterior distribution for a particular sequence of topologies, c1; : : : ; cN ,along a multiple alignment, a prior distribution for sequences c1; : : : ; cN and a likelihood for the datagiven a particular sequence of c1; : : : ; cN must �rst be speci�ed. For ease of notation, note thatC1 = c1; : : : ; CN = cN will generally be abbreviated to c1; : : : ; cN below.LikelihoodLikelihood methods for constructing phylogenetic trees generally make the assumption that each siteevolves independently of each other. Hence, the likelihood calculation simpli�es toProb(Sjc1; : : : ; cN ) = NYj=1Prob(Sj jcj): (3)At �rst glance, this calculation appears simple: for each site, St, in the multiple alignment, the likeli-hoods for all possible topologies are calculated using, for example, the pruning algorithm outlined byFelsenstein (1981) and implemented in the program DNAML from his PHYLIP package (Felsenstein,1993). However, to calculate the likelihood values, appropriate values for the branch lengths must bechosen. It is not immediately obvious how these should be estimated.One suggestion would be to use the entire data set to estimate the branch lengths for each possibletopology since the more data used, the smaller the variance of the branch lengths estimates should be.



5Suppose, however, that a short recombination event relative to the entire sequence has occurred. Thecorrect signal for the branch lengths for the recombinant topology may be swamped by the incorrectsignal from the sites in the non-recombinant region, leading to incorrect estimates. It is possible thatthe resulting site likelihoods in the recombinant region will be reduced as a result. Thus, the methodwill lose power.This problem could be avoided by calculating the site likelihoods using subsets of the data, e.g.,subalignments of 50 bp, or less. This should minimise conicting signal from the data but will increasethe variance of the branch lengths. It is not immediately clear whether a trade-o� is necessary betweenthese two e�ects or whether one will dominate the other. Studies involving four-sequence simulateddata sets and some real data sets containing known recombination events (data not shown) suggestthat for homogeneous data sets (those obeying a single model of nucleotide substitution), reducingthe variance of the branch lengths is the more important. Therefore, for such data sets (used in asimulation study below), the entire sequence length will be used to estimate the branch lengths. Itmust be noted, however, that the results using small subsets of the data for branch length estimationand likelihood did not greatly decrease the e�ciency of the model (data not shown).For real data sets, containing various heterogeneities in the model of nucleotide substitution,conicting phylogenetic signal appeared to be the more important e�ect. Hence, small subsets of thedata (5{50 bp) were a sensible choice for likelihood calculations. This suggests a rule of thumb: unlessit can be stated with a reasonable degree of certainty that the data set is homogeneous apart fromputative recombination events, small subsets should be used in the calculation of the site likelihoods.PriorThe prior distribution for the sequence of topologies for a data set of length N bp, should specifya probability for every possible sequence of N numbers, with the number at each position taking avalue in f1; 2; : : : ;mg, where m is the total number of possible topologies. It should incorporate priorknowledge about recombination events, e.g., that recombination is a relatively infrequent process. Inmathematical terms, this translates roughly into dependence of the value at a point t on the values inits neighbourhood.One way of incorporating a limited form of dependence into the prior distribution is to use adiscrete, �rst-order Markov model. This is a model having the property thatProb�N(t+ 1)jN(t); N(t � 1); : : : �= Prob�N(t+ 1)jN(t)�;where t 2 N0 . In other words, the state of the process at time t+1 depends only on the current stateof the process, N(t).To de�ne a �rst-order Markov chain for the sequence of topologies, Ct, 1 � t � N , the transitionprobabilities, pij , that a chain in state i is in state j after one time step may be speci�ed. This hasbeen done as follows: pij = ��ij + (1� �)fj (4)where fj is the stationary frequency of topology j, j = 1; 2; : : : ;m;�ij is the Kronecker delta function (1 if i = j; 0 otherwise).
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Figure 1: Conditional independence graph of the recombination model.� is a value between 0 and 1, representing the di�culty of changing topology, with a value of 0representing no dependence on the topology at the previous site (an easy change of topology), whilea value of 1 makes it impossible to switch topologies. Using (4), the prior probability of a particularsequence c1; : : : ; cN is Prob(C1 = c1; : : : ; CN = cN ) = fc1pc1c2pc2c3 : : : pcN�1cN : (5)It is di�cult to select a vague prior. While the stationary frequencies of all the possible topologies maybe allowed to be equal, a value must be selected for � and this may introduce a degree of subjectivity.Therefore, it will be necessary to investigate the sensitivity of results to the choice of prior.PosteriorIt is now possible to obtain an expression for the posterior distribution. Substituting (5) and (3) into(2) yields the following:Prob(c1; : : : ; cN jS1; : : : ;SN ) / fc1pc1c2 : : : pcN�1cN NYj=1Prob(Sj jcj): (6)To be of any use, it must be possible to use the posterior distribution to obtain inferences about thepresence of recombinants in the DNAmultiple alignment. It might be thought that to �nd, for example,the maximum a posteriori (MAP) estimate (i.e., that sequence of topologies which maximises theposterior probability), it would be necessary to evaluate the probability of every possible combinationand select the largest one, a calculation which will not usually be feasible in practice. Fortunately theposterior distribution has some elegant mathematical properties.The Bayesian model may be represented by the conditional independence graph shown in Figure 1.In such a graph, the absence of an edge between two vertices indicates that the two variables inquestion are conditionally independent given the other variables. The graph displays the independenceof the observations fStg given the states of the Markov process fCtg; it also shows the conditionalindependence of Ct+1 and Ct�1 given Ct (the Markov property). A model with this dependencystructure is known as a Hidden Markov model, a very useful model with a wide range of applications,e.g., as a tool for discrete time series analysis (MacDonald and Zucchini, 1997) or in the speechprocessing literature (Juang and Rabiner, 1991). The advantages of this model lie in the fact thatalgorithms have been developed that make certain calculations (e.g., �nding the MAP estimate , or



7calculating the renormalisation constant for the posterior distribution in eq. 6 above) feasible. Thesealgorithms are described below.A sensible way to infer the presence of recombination events in a data set is to use the MAPestimate, i.e., to �nd bc1; : : : ; bcN which maximiseProb(C1 = c1; : : : ; CN = cN jS1; : : : ;SN ): (7)This is referred to as the global decoding problem in the speech processing literature, and may besolved using the Viterbi algorithm (see Juang and Rabiner, 1991; MacDonald and Zucchini, 1997, p.65). An outline of this method is given below.Finding the MAP estimate is equivalent to maximising the joint probability Prob(C1 = c1; : : : ; CN =cN ;S1; : : : ;SN ) which is also equivalent to maximisingfc1pc1c2 : : : pcN�1cN NYj=1Prob(Sj jCj = cj): (8)De�ne the quantitiesR(N)cN = Prob(SN jCN = cN ) (9)and R(t)ct = maxct+1;::: ;cN Prob(St = st; : : : ;SN = sN ; Ct+1 = ct+1; : : : ; CN = cN jCt = ct)= maxct+1;::: ;cN Prob(ct+1; : : : ; cN jct)Prob(St = st; : : : ;SN = sN jct; : : : ; cN ) (10)where, for ease of notation, the event that Ct = ct may also be represented simply as ct. Note thatR(t)ct gives the maximisation over ct+1; : : : ; cN of the probability of observing a particular sequence oftopologies from site t to the end of the sequences given that site t has topology ct.The maximisation of (8) may be simpli�ed by noting that the following recursion exists betweenR(t)ct and R(t+1)ct+1 : R(t)ct = Prob(St = stjct)maxct+1 hpctct+1R(t+1)ct+1 i ; (11)with starting point R(N)cN . By applying the recursion repeatedly from t = N � 1; N � 2; : : : ; 2; 1, thequantity R(1)c1 is obtained for all possible values of c1. Selecting the largest of the quantities fc1R(1)c1gives the relative size of the maximum probability speci�ed in (8).To �nd the MAP estimate (the global decoding step), note that from (11), for each topology ctat site t, the topology c�t+1 at the next site, t+ 1, which maximises the contribution to the posteriorprobability is known. Once the topology bc1 at the �rst site which maximises the posterior probabilityis known, (11) gives bc2, and then bc3 and so on. Hence, the algorithm requires another pass throughthe data, this time from positions 1 to N .This algorithm only yields the relative size of the maximum probability since the posterior distri-bution has not been renormalised. The renormalisation constant, K, may be found by summing thecontributions of possible terms, or more easily by noting thatK = mXi=1 �1(i)�1(i) (12)



8where �1(i) = Prob(S1 = s1; C1 = i)= Prob(C1 = i)Prob(S1 = s1jC1 = i)�t(i) = Prob(St+1 = st+1; : : : ;SN = sN jCt = i)implying that �1(i) = Prob(S2 = s2; : : : ;SN = sN jC1 = i):�1(t) may be found using the following recursion�t(i) = mXj=1Prob(St+1 = st+1jCt+1 = j)�t+1(j)pij ;with starting point �N (i), assumed by convention to be equal to one. Note that this algorithm is onepossible way to calculate the renormalisation constant using the forward [�t(i)] and backward [�t(i)]probabilities. More details are in MacDonald and Zucchini (1997, p. 59).The forward and backward probabilities may also be used to calculate the probability that thesequence of topologies changes state at a particular point. The probability that site t�1 has topologyi while site t has topology j given the data, Prob(Ct�1 = i; Ct = jjS1; : : : ;SN ), is proportional to thejoint probability Prob(Ct�1 = i; Ct = j;S1; : : : ;SN ) which can be written asProb(S1; : : : ;St�1;Ct�1 = i)pijProb(StjCt)Prob(St+1; : : : ;SN jCt = j)= �t�1(i)pijProb(StjCt)�t(j): (13)Since the forward and backward probabilities may be found using the recursions described above, thisquantity may be easily calculated, assuming that the posterior distribution has been renormalised.This probability could be used to �nd a range of sites for a putative recombination breakpoint.Programs to implement these calculations for DNA multiple alignments for four sequences havebeen written in C and in unix Bourne shell scripts. The likelihood calculations are carried out usingDNAML from the PHYLIP package. Further details or information on how to obtain these programsmay be found at http://www.bioss.sari.ac.uk/�frank/Genetics.FindingsTo investigate the e�ectiveness of this model and to determine the sensitivity of the results to thechoice of the prior distribution (i.e., the choice of �), a small simulation study was carried out. Datasets of four sequences were used, there being only three possible unrooted topologies to considerin this case. Trees were simulated according to the phylogeny shown in Figure 2. The value of xwas chosen to be 0.05 (a realistic branch length for many potentially recombinant sequences), whilesequences were 1000 bp long. The data were simulated using a Kimura two parameter model, witha transition-transversion ratio of 2. The sequences were evolved along the internal branch, and then
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Figure 4: Top graphs: results for a recombinant region of 400 bp, occurring between the dotted lines.Middle graphs: results for a recombinant region of 20 0 bp, occurring between the dotted lines. Bottomgraphs: results for a recombinant region of 100 bp, occurring between the dotted lines. The graphson the left represent recent recombination events (b = 0:75), while those on the right correspond todistant events (b = 0:25).



11bination event is poor; however, this is a very di�cult event to detect so this is not surprising. Themodel is most successful for the longer and more recent events, detecting both the breakpoints andthe correct resulting change in topology. Again, this is as expected.The recombination events are inferred for a wide range of values of �, suggesting that inferencesare not unduly sensitive to the choice of the prior distribution. Low values of � sometimes exhibit a`patchy' e�ect (incorrect, short switches in topology); these arise due to the relative ease of changingtopologies. For the shorter recombinant regions, higher values of � can lead to no recombination eventbeing detected, since there is not su�cient support from the likelihood to overcome the prior belief oftopology changes being very rare. Thus, intermediate values of � would appear to be the most useful.In practice, di�erent values of � should be used. Topology changes which are consistent over a rangeof values of � suggest a recombination event, whereas other changes may be nothing more than the`patchy' e�ect.Application to a real data setThe model described above is now applied to a real data set, containing a known recombinant event.The data used are a subset of the Neisseria argF gene data set, described by Zhou and Spratt (1992).They use a data set containing eight Neisseria strains to detect the presence of recombination in N.meningitidis. Four of these sequences are used here, these being: N. gonorrhoeae (GenBank/EMBLaccession number X64860); N. meningitidis (X64866); N. cinerea (X64869) and N. mucosa (X64873).The sequences were aligned using CLUSTAL W (Thompson et al., 1994) taking the default settings,yielding an alignment of length 787 bp. Following the numbering scheme of Zhou and Spratt (1992),the �rst nucleotide is labelled as 296 bp while the last is 1082 bp.According to Zhou and Spratt (1992), there are two anomalous, or more diverged regions in theDNA alignment. These occur at positions 296{497 bp and 802{833 bp. In the rest of the alignment, N.meningitidis clusters with N. gonorrhoeae (later referred to as topology 1), while between 296 bp and497 bp, they found that it is grouped with N. cinerea (topology 3). They were unable to determinethe cause of the other diverged region (802{833 bp).Before applying the Bayesian model, some parameters must be estimated. The Felsenstein 84 (Fel-senstein and Churchill, 1996) model was used for the site likelihood calculations, with the stationarynucleotide frequencies (�i, i = A;C;G; T ) estimated as �A = 0:26, �C = �G = 0:28 and �T = 0:18.The transition-transversion ratio was estimated as 2.3 using the program PUZZLE (Strimmer andvon Haeseler, 1996). The six previously mentioned values of � were used. The branch lengths wereestimated using subsets of 5 bp, since this data set appears to be quite heterogeneous (indeed usingthe entire data set to obtain the branch length estimates led to an incorrect recombination event beinginferred; data not shown). The results are shown in Table 1.Apart from the patchiness in the results when � = 0:5, the method �nds the known recombinationevent successfully over a wide range of values of �. It also correctly identi�es the change in topology,with the sequence of topologies at each site starting with topology 3, then changing to topology 1.The method is not successful at identifying the shorter diverged region. This is not surprising as Zhouand Spratt (1992) were unable to determine the cause of this diverged region; if it is a recombination



12Table 1: MAP estimates of recombination events for the Neisseria data set� 0.5 0: _6 0.75 0.8 0.9 0.999296{342(3)a357{498(3) 296{498(3) 296{498(3) 296{498(3) 296{498(3) 296{498(3)827{864 (2)aFigures in brackets show the topology at this range of sites while unspeci�ed sites have topology 1
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Figure 5: The probabilities that the topology changes from topology 3 to topology 1, given the data,at sites 486 to 510 along the Neisseria multiple alignment.event, the recombinant DNA does not appear to originate from any of the strains in their data set.There is a change in topology towards the end of this diverged region when � = 0:5. This may bepicking up genuine information in the data, or it may be an artifact due to the low value of �. Sinceit does not persist for some of the higher values of �, a reasonable decision would be to ignore it.The probabilities of the topology changing from state 3 to state 1 (calculated using eq. 13) atsites in a neighbourhood of the 498th site (the estimated location of the change of topology) areinvestigated. A value of 0.8 is used for �. The probabilities at all sites from 486 to 510 are shown inFigure 5. The probability of change at site 498 is considerably higher than all of the surrounding sitesapart from sites 499 and 500, suggesting a reasonable level of con�dence in the estimated location ofthe recombination breakpoint. Note that the apparently low value of the probability of change at site498 (0.066) is due to the very low transition probability of changing topologies in the Markov chainprior. When � = 0:8, this probability is 0:0_6. The near equivalence in the two probability values stemsfrom the fact that product of the the terms in (13) apart from p497;498 is close to one as the likelihoodat site 498 given topology 1 contributes the most to the posterior distribution at that site.



13DiscussionThis paper proposes a Bayesian model for changes in the topology along an alignment caused byrecombination events. It has the potential to be a useful tool for inference. Currently, the maximum aposteriori (MAP) estimate is used for inferences, with the probabilities of a change in the underlyingtopology given the data providing an adhoc way of estimating a range of values for the locationof a putative recombination breakpoint. However, it is possible that a Monte Carlo Markov Chainapproach may be used to simulate from the posterior distribution allowing more scope for inferences.This is being investigated. If such an approach is feasible, it may remove the need for the model to bestructured as a Hidden Markov model since the MAP estimate could also be found using MCMC. Thiswould allow a greater range of choices of prior distribution, and thus would permit a more elaboratedependency structure to be incorporated.One possible improvement to the prior might be to place a hyper-prior on � to remove the subjectivestep of selecting an appropriate value. Assuming MCMC methods (for example) would make thismodel tractable, it is unclear whether such an approach is sensible.To explain this, consider the maximisation of the posterior probability in (6) over � (this is equi-valent to putting a uniform hyper-prior on �). The object now is to �nd the combination of topologiesand the value of � which maximises the posterior probability. To investigate the consequences of thisapproach, three data sets with di�erent recombination events were generated as described above. Thebranch length value x in Figure 2 was again 0.05, while the Kimura two parameter model of nucleotidesubstitution was used (transition-transversion ratio of 2). The recombination events occurred threequarter of the way along the exterior branches and were of lengths 400 bp, 200 bp and 100 bp. Thebranch lengths for the site likelihoods calculations were estimated using subalignments of 50 bp.For each of the three data sets, the maximum posterior probability was found for values of � rangingbetween 0 and 1. The results are shown in Figure 6. In all cases, the posterior probability is highestwhen � = 1. For the highest values of �, no recombination event is found for any of the data sets,although � gets very close to one before this happens for the 400 bp recombinant data set. This occursbecause the increase in site likelihoods caused by allowing for the recombination event does not o�setthe very small transition probabilities of change when � takes on values close to one. A su�cientlyhigh value of � will mean that the recombination event is not detected by the MAP estimate. Hence,many choices of hyper-prior are likely to lead to a value of � � 1 being estimated and correspondingly,no recombination event will be detected. It might be possible to obtain sensible results by using ahyper-prior which places a very small probability on � being high, but it is questionable whether thisis worth the e�ort given the ease of �nding the MAP estimate over a sensible range of �. In addition,choosing such a hyper-prior is subjective, so that problem still remains.The application has only been described for data sets of four sequences in this paper, since thisreduces the computational burden as the model has only three hidden states (topologies). It should bepossible to extend the model to deal with more sequences by restricting the possible topologies consi-dered at a site to the set of possible topologies which could arise from the existing topology T followinga recombination event. Hein (1993) uses this approach in his parsimony based method, consideringonly those topologies which could have arisen from the existing one following one recombination event
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