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Abstract

Most phylogenetic tree estimation methods assume that there is a single set of hierarchical relation-
ships among sequences in a data set for all sites along an alignment. Mosaic sequences produced
by past recombination events will violate this assumption and may lead to misleading results from
a phylogenetic analysis due to the imposition of a single tree along the entire alignment. Therefore,
the detection of past recombination is an important first step in an analysis. A Bayesian model for
the changes in topology caused by recombination events is described here. This model relaxes the
assumption of one topology for all sites in an alignment and uses the theory of Hidden Markov models
to facilitate calculations, the hidden states begin the underlying topologies at each site in the data set.
Changes in topology along the multiple sequence alignment are estimated by means of the maximum
a posteriori (MAP) estimate. The performance of the MAP estimate is assessed by application of the

model to data sets of four sequences, both simulated and real.

Introduction

Phylogenetic analysis is concerned with the accurate reconstruction of the evolutionary history of a
set of sequences. Given a multiple alignment of DNA sequences from different taxa, various methods
exist which may be used to infer a phylogenetic tree (for an overview see Felsenstein, 1988 or Swofford
et al., 1996). However, these procedures make the assumption that there is only one true tree or
one set of hierarchical relationships for a given set of sequences. If this assumption is violated (e.g.,
through recombination) then the underlying model of inter-sequence relationships used by these me-
thods will be invalid, and the resulting phylogenetic tree will often be misleading. Thus, the detection
of recombination events is important if the evolutionary history of a set of DNA sequences is to be
correctly inferred.

There have been various attempts in the literature to detect evidence of recombination events
in alignments of DNA sequences. Stephens (1985) and Sawyer (1989) use the distribution of poly-
morphic sites along a sequence to detect recombination (but not recombination breakpoints), while
Maynard Smith (1992) proposes the maximum chi-square test which finds the breakpoint maximising
the chi-square statistic of sites before and after supporting different relationships among the sequences.
Salminen et al. (1995) and Lawrence and Hartl (1992) use bootstrapping; the former detect recombi-
nation breakpoints by means of their graphical method, bootscanning, while the latter merely detect
the presence of recombination within a data set. A graphical method was suggested by McGuire et al.
(1997); this detects putative recombination breakpoints by finding changes in the local tree along a
multiple alignment using a sliding window. PLATO (Grassly and Holmes, 1997) detects recombina-
tion by considering the likelihoods at each site in the alignment for the maximum likelihood tree. A
set of sequential sites, with significantly lower site likelihoods may represent a recombination event.
Recently, the homoplasy test (Maynard Smith and Smith, 1998) was suggested; this detects evidence
of recombination but cannot find breakpoints, or estimate the number of recombination events that
have occurred.

One possible way to model recombination within an alignment is to use split decomposition (Ban-



delt and Dress, 1992). This is a method which allows conflicting groupings or splits within a set of
sequences and represents this information as a network diagram. A recombination event is suggested
when sequences are linked by a network. However, Bandelt and Dress (1992) note that it is not obvious
how to distinguish between random or systematic error within a data set, and recombination events,
so this may not be the most powerful tool for detecting recombination.

Hein (1993) considers changes in the most parsimonious tree along an alignment. Given a particular
topology (branching pattern), he describes the set of possible topologies that can arise from it assuming
one or more recombination events have occurred. He then considers the problem in terms of a graph.
Each node (i,T) consists of the data in the i'" column of the alignment and a given topology 7.
The node is assigned a weight, w(i,T"), the weight of position 4 given topology T'. An edge connects
two neighbouring nodes, i and 7 — 1, and is assigned a weight d(T,T"), the recombinational distance
between T (the topology at position 7) and T (the topology at position i — 1). W (4, T) is the weight
of the most parsimonious history of the first 4 positions, given that the topology at position 7 is 7'
The most parsimonious history of the sequences is the path of lowest weight from node 1 to node N,
where NV is the total sequence length, the total weight being found by summing the weights of the
nodes and the edges. This is given by W(N,T') and is found by the following recursion:

W(1,T) = w(1,T) (i=1)
W (i, T) = rr%iln{W(z' 1,7 +d(T,T") +w(i,T)} (i >1). (1)

Thus, the sequence will start in a particular topology and will only change topologies when it becomes
worthwhile to do so. A sensible choice of d(T,T") will prevent changes occurring too frequently.

While the graphical representation of this problem is intuitive, it uses the maximum parsimony
principle, and is likely to suffer from the problems inherent with maximum parsimony (e.g., its incon-
sistency under certain circumstances; Felsenstein, 1978).

This paper describes a Bayesian model for changes in topology due to recombination events. As
such, it uses maximum likelihood methodology to form part of the posterior distribution, while a
Markov chain is used to place a prior probability on a particular sequence of topologies along a
multiple alignment. To facilitate computations, the theory of Hidden Markov models is applied.
Hidden Markov models have been previously used by Felsenstein and Churchill (1996) to incorporate
unknown rate variation into likelihood calculations for phylogenetic trees and by Thorne et al. (1996)
to predict secondary structure from protein alignments. Indeed, the potential use of Hidden Markov
models to tackle the recombination problem has previously been discussed by Felsenstein and Churchill
(1996) and N. Goldman (personal communication). The resulting model is conceptually very similar to
Hein’s (1993) parsimony approach. As before, the nodes will be the columns of the multiple alignment.
w(i, T) will correspond to the likelihood at each site given a particular topology while d(T,T") will be
replaced by the Markov chain probabilities.

Method

Consider an alignment of four DNA sequences, one of which has incorporated genetic material from

another at some point in the past. Thus, this recombination event will result in a change of topology



in the affected region of the alignment. If the likelihoods at each site for each possible topology
are calculated and compared, one topology should correspond to the highest likelihoods in the non-
recombinant region, while another should take over in the recombinant zone. Some noise would be
expected (i.e., incorrect topologies corresponding to the largest site likelihoods for single or for short
runs of sites) but prior beliefs about the relative infrequency of recombination events suggests that
short runs of a particular topology should be ignored. Since both prior information and likelihoods
have been discussed, this suggests a Bayesian approach to the problems of detecting evidence of
recombination events.

Given an alignment of T' DNA sequences, each N bp long, this may be considered as a T' x N
matrix S, with each column of the matrix, S;, representing the nucleotides in each sequence at site
t. Suppose that {Cy}, t = 1,2,... ,N, is a process which allocates an (unobservable) topology ¢,
¢ =1,2,... ,m, to Sy, where m is the number of distinct topologies. Since recombination events may
be detected by their effect on the topology along an alignment, it is clear that the problem of detecting
evidence of recombination becomes that of estimating the most probable combination of topologies
c1,---,cn given the data S.

The process {C;} may be thought of as encoding prior information about recombination events,
while the alignment, S, may be used to calculate the likelihood given a particular sequence of topolo-
gies, ¢y, ca,...,cy along an alignment. Using the fundamental result that the posterior distribution
is proportional to the product of the prior distribution and the likelihood, the following model for

topology change due to recombination events is obtained:

Prob(01 == (31,02 =C2y... ,CN == CN|S) X Prob(01 =Cly... ,CN = CN)

(2)
x Prob(S|C) = ¢1,... ,Cn = cn).

Therefore, to obtain the posterior distribution for a particular sequence of topologies, ci,... ,cn,
along a multiple alignment, a prior distribution for sequences ¢y, ... ,cy and a likelihood for the data
given a particular sequence of c¢q,... ,cy must first be specified. For ease of notation, note that

Ci =c,...,Cn = cy will generally be abbreviated to ¢y, ... ,cy below.

Likelihood

Likelihood methods for constructing phylogenetic trees generally make the assumption that each site

evolves independently of each other. Hence, the likelihood calculation simplifies to

N
Prob(S|e1, ... ,en) = H Prob(S;|c;). (3)

j=1
At first glance, this calculation appears simple: for each site, S;, in the multiple alignment, the likeli-
hoods for all possible topologies are calculated using, for example, the pruning algorithm outlined by
Felsenstein (1981) and implemented in the program DNAML from his PHYLIP package (Felsenstein,
1993). However, to calculate the likelihood values, appropriate values for the branch lengths must be

chosen. It is not immediately obvious how these should be estimated.

One suggestion would be to use the entire data set to estimate the branch lengths for each possible

topology since the more data used, the smaller the variance of the branch lengths estimates should be.



Suppose, however, that a short recombination event relative to the entire sequence has occurred. The
correct signal for the branch lengths for the recombinant topology may be swamped by the incorrect
signal from the sites in the non-recombinant region, leading to incorrect estimates. It is possible that
the resulting site likelihoods in the recombinant region will be reduced as a result. Thus, the method
will lose power.

This problem could be avoided by calculating the site likelihoods using subsets of the data, e.g.,
subalignments of 50 bp, or less. This should minimise conflicting signal from the data but will increase
the variance of the branch lengths. It is not immediately clear whether a trade-off is necessary between
these two effects or whether one will dominate the other. Studies involving four-sequence simulated
data sets and some real data sets containing known recombination events (data not shown) suggest
that for homogeneous data sets (those obeying a single model of nucleotide substitution), reducing
the variance of the branch lengths is the more important. Therefore, for such data sets (used in a
simulation study below), the entire sequence length will be used to estimate the branch lengths. It
must be noted, however, that the results using small subsets of the data for branch length estimation
and likelihood did not greatly decrease the efficiency of the model (data not shown).

For real data sets, containing various heterogeneities in the model of nucleotide substitution,
conflicting phylogenetic signal appeared to be the more important effect. Hence, small subsets of the
data (5-50 bp) were a sensible choice for likelihood calculations. This suggests a rule of thumb: unless
it can be stated with a reasonable degree of certainty that the data set is homogeneous apart from

putative recombination events, small subsets should be used in the calculation of the site likelihoods.

Prior

The prior distribution for the sequence of topologies for a data set of length N bp, should specify
a probability for every possible sequence of N numbers, with the number at each position taking a
value in {1,2,... ;m}, where m is the total number of possible topologies. It should incorporate prior
knowledge about recombination events, e.g., that recombination is a relatively infrequent process. In
mathematical terms, this translates roughly into dependence of the value at a point ¢ on the values in
its neighbourhood.

One way of incorporating a limited form of dependence into the prior distribution is to use a

discrete, first-order Markov model. This is a model having the property that
Prob[N(t + 1)|N(t), N(t — 1),...]= Prob[N(t + 1)|N(t)],

where t € Ny. In other words, the state of the process at time ¢ 4+ 1 depends only on the current state
of the process, N (t).

To define a first-order Markov chain for the sequence of topologies, Cy, 1 < ¢ < N, the transition
probabilities, p;;, that a chain in state ¢ is in state j after one time step may be specified. This has

been done as follows:
pij = Moij + (1 = A) f; (4)

where f; is the stationary frequency of topology j, 7 =1,2,... ,m;

d;j is the Kronecker delta function (1 if i = j; 0 otherwise).



Figure 1: Conditional independence graph of the recombination model.

A is a value between 0 and 1, representing the difficulty of changing topology, with a value of 0
representing no dependence on the topology at the previous site (an easy change of topology), while
a value of 1 makes it impossible to switch topologies. Using (4), the prior probability of a particular

sequence ¢i,... ,CN 18

PrOb(Cl =Cly... 7CN = CN) = f01p6102p6203 ~e-Dey_qen- (5)

It is difficult to select a vague prior. While the stationary frequencies of all the possible topologies may
be allowed to be equal, a value must be selected for A and this may introduce a degree of subjectivity.

Therefore, it will be necessary to investigate the sensitivity of results to the choice of prior.

Posterior

It is now possible to obtain an expression for the posterior distribution. Substituting (5) and (3) into
(2) yields the following;:

N
Prob(ci, ... ,en|S1,--- s SN) X fePeres - - - Pen1en H Prob(S;|c;). (6)

j=1
To be of any use, it must be possible to use the posterior distribution to obtain inferences about the
presence of recombinants in the DN A multiple alignment. It might be thought that to find, for example,
the maximum a posteriori (MAP) estimate (i.e., that sequence of topologies which maximises the
posterior probability), it would be necessary to evaluate the probability of every possible combination
and select the largest one, a calculation which will not usually be feasible in practice. Fortunately the

posterior distribution has some elegant mathematical properties.

The Bayesian model may be represented by the conditional independence graph shown in Figure 1.
In such a graph, the absence of an edge between two vertices indicates that the two variables in
question are conditionally independent given the other variables. The graph displays the independence
of the observations {S;} given the states of the Markov process {C}}; it also shows the conditional
independence of Cpy1 and C;_; given C; (the Markov property). A model with this dependency
structure is known as a Hidden Markov model, a very useful model with a wide range of applications,
e.g., as a tool for discrete time series analysis (MacDonald and Zucchini, 1997) or in the speech
processing literature (Juang and Rabiner, 1991). The advantages of this model lie in the fact that

algorithms have been developed that make certain calculations (e.g., finding the MAP estimate , or



calculating the renormalisation constant for the posterior distribution in eq. 6 above) feasible. These
algorithms are described below.

A sensible way to infer the presence of recombination events in a data set is to use the MAP

estimate, i.e., to find ¢;,... ,¢y which maximise
Prob(Clzcl,... 7C'N:C]\]|Sl,... 7SN). (7)

This is referred to as the global decoding problem in the speech processing literature, and may be
solved using the Viterbi algorithm (see Juang and Rabiner, 1991; MacDonald and Zucchini, 1997, p.
65). An outline of this method is given below.

Finding the MAP estimate is equivalent to maximising the joint probability Prob(Cy = ¢1,... ,Cn =
¢N,S1,...,Sy) which is also equivalent to maximising
N
JerPeies -+ -Pey-1en H PrOb(Sj|Cj = cj)' (8)
7j=1

Define the quantities

R{N) = Prob(Sy|Cy = cn) (9)
and
Rg) = max Prob(S;=s...,Sy =sy.Ci41 =Ci41,.-. ,Cn = cn|Cr =)
Ct41,-sCN
= max Prob(¢i1,...,cn|c)Prob(S; =s¢,...,Sy =snlc, ... ,en) (10)
Ct+1,--sCN

where, for ease of notation, the event that C; = ¢; may also be represented simply as ¢;. Note that
Rg) gives the maximisation over c;y1,... ,cy of the probability of observing a particular sequence of
topologies from site ¢ to the end of the sequences given that site ¢ has topology ¢;.

The maximisation of (8) may be simplified by noting that the following recursion exists between
RE? and Rgi_ll ),

R = Prob(S; = s

t+1
Ct) rcrtli’i( I:pctct+1R£t+1)i| ’ (]‘]‘)

with starting point Rgg). By applying the recursion repeatedly from ¢t = N — 1, N —2,... 2,1, the

quantity Rg}) is obtained for all possible values of ¢;. Selecting the largest of the quantities fcle})
gives the relative size of the maximum probability specified in (8).

To find the MAP estimate (the global decoding step), note that from (11), for each topology ¢
at site ¢, the topology c;,; at the next site, £ + 1, which maximises the contribution to the posterior
probability is known. Once the topology ¢; at the first site which maximises the posterior probability
is known, (11) gives ¢z, and then ¢3 and so on. Hence, the algorithm requires another pass through
the data, this time from positions 1 to V.

This algorithm only yields the relative size of the maximum probability since the posterior distri-
bution has not been renormalised. The renormalisation constant, K, may be found by summing the

contributions of possible terms, or more easily by noting that

K =2 ai(i)b(i) (12)
i=1



where

a1 (Z) = Prob(81 = 81, 01 = Z)
= Prob(01 == i)PI‘Ob(Sl == Sl|Cl = Z)
Bi(i) = Prob(S¢41 = sey1, ..., Sy = sy|Cy =)

implying that
,31(2) = PrOb(SQ = 892,... ,SN = SN‘Cl = 'L)

(1 (t) may be found using the following recursion

m
Bi(i) =Y Prob(Se1 = st41|Cha1 = §)Brs1 (4)pi
j=1
with starting point Sy (i), assumed by convention to be equal to one. Note that this algorithm is one
possible way to calculate the renormalisation constant using the forward [y (7)] and backward [(;(7)]
probabilities. More details are in MacDonald and Zucchini (1997, p. 59).

The forward and backward probabilities may also be used to calculate the probability that the
sequence of topologies changes state at a particular point. The probability that site £ — 1 has topology
i while site ¢ has topology j given the data, Prob(Cy_1 = 4,Cy = j|S1,... ,Sn), is proportional to the
joint probability Prob(C;—1 =i,C; = j,S1,... ,Sy) which can be written as

Prob(Sl, ey Stfl,otfl = Z')pijPI'Ob(St|Ct)PrOb(St+1, cee s SN|Ct == 7)

(13)
= ay—1(4)pi; Prob(S¢|Cy) B (4).

Since the forward and backward probabilities may be found using the recursions described above, this
quantity may be easily calculated, assuming that the posterior distribution has been renormalised.
This probability could be used to find a range of sites for a putative recombination breakpoint.
Programs to implement these calculations for DNA multiple alignments for four sequences have
been written in C and in unix Bourne shell scripts. The likelihood calculations are carried out using
DNAML from the PHYLIP package. Further details or information on how to obtain these programs

may be found at http://www.bioss.sari.ac.uk/~frank/Genetics.

Findings

To investigate the effectiveness of this model and to determine the sensitivity of the results to the
choice of the prior distribution (i.e., the choice of A), a small simulation study was carried out. Data
sets of four sequences were used, there being only three possible unrooted topologies to consider
in this case. Trees were simulated according to the phylogeny shown in Figure 2. The value of =
was chosen to be 0.05 (a realistic branch length for many potentially recombinant sequences), while
sequences were 1000 bp long. The data were simulated using a Kimura two parameter model, with

a transition-transversion ratio of 2. The sequences were evolved along the internal branch, and then
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Figure 2: The tree used to simulate recombinant data sets. The length of each of the exterior branches

is « while the length of the interior branch is 2z.
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lambda=0.75

lambda=0.8

lambda=0.9
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Figure 3: Key to the graphs in Figure 4. The graph on the left shows the horizontal axis, depicting
location along the 1000 bp sequence, while the horizontal blocks correspond to particular values of .

On the right, the different shadings, representing each of the three topologies, are shown.

along the external branches until a fraction b of all nucleotide substitutions had occurred. Then a
recombination event was generated, with a region of sequence 3 replacing the same region in sequence
1. Following that, the sequences were evolved along the remainder of the length of the branches
(z[1 — b] substitutions per position). Values of b were 0.25 (an early recombination event, difficult to
detect) and 0.75 (an easier event to detect). Recombinant regions of lengths 400, 200 and 100 bp were
used.

For each set of conditions, five data sets were simulated. Here, however, only the results from one
data set is reported, since these are generally representative of all the data sets. Full details of the
results from an extended simulation study are contained in McGuire (1998). Six different priors were
used for each data set, corresponding to A taking the values 0.5, 0.6, 0.75, 0.8, 0.9 and 0.999. Since
these data sets are homogeneous apart from the recombination event, the entire alignment is used to
estimate the branch lengths. The key to the graphs and the shading representing each topology is
shown in Figure 3. Topology 2 represents the branching pattern with sequences 1 and 2 clustering
together, topology 3 has sequences 1 and 3 together and topology 4 has sequences 1 and 4 together.
In the recombinant region, topology 3 (the hatching) is the underlying topology while topology 2
is the true topology elsewhere. Topology 4 (the solid filling) is valid nowhere. The results of the
simulation study are shown in Figure 4. Note that the dotted lines in these graphs represent the exact
recombination breakpoints.

In general, the Bayesian model succeeds at detecting evidence of recombination events for a wide

range of conditions. Only the estimation of the shortest (100bp) and more distant (b = 0.25) recom-
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Figure 4: Top graphs: results for a recombinant region of 400 bp, occurring between the dotted lines.
Middle graphs: results for a recombinant region of 20 0 bp, occurring between the dotted lines. Bottom
graphs: results for a recombinant region of 100 bp, occurring between the dotted lines. The graphs
on the left represent recent recombination events (b = 0.75), while those on the right correspond to

distant events (b = 0.25).
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bination event is poor; however, this is a very difficult event to detect so this is not surprising. The
model is most successful for the longer and more recent events, detecting both the breakpoints and
the correct resulting change in topology. Again, this is as expected.

The recombination events are inferred for a wide range of values of A, suggesting that inferences
are not unduly sensitive to the choice of the prior distribution. Low values of A sometimes exhibit a
‘patchy’ effect (incorrect, short switches in topology); these arise due to the relative ease of changing
topologies. For the shorter recombinant regions, higher values of A can lead to no recombination event
being detected, since there is not sufficient support from the likelihood to overcome the prior belief of
topology changes being very rare. Thus, intermediate values of A would appear to be the most useful.
In practice, different values of A should be used. Topology changes which are consistent over a range
of values of )\ suggest a recombination event, whereas other changes may be nothing more than the

‘patchy’ effect.

Application to a real data set

The model described above is now applied to a real data set, containing a known recombinant event.
The data used are a subset of the Neisseria argF gene data set, described by Zhou and Spratt (1992).
They use a data set containing eight Neisseria strains to detect the presence of recombination in N.
meningitidis. Four of these sequences are used here, these being: N. gonorrhoeae (GenBank/EMBL
accession number X64860); N. meningitidis (X64866); N. cinerea (X64869) and N. mucosa (X64873).
The sequences were aligned using CLUSTAL W (Thompson et al., 1994) taking the default settings,
yielding an alignment of length 787 bp. Following the numbering scheme of Zhou and Spratt (1992),
the first nucleotide is labelled as 296 bp while the last is 1082 bp.

According to Zhou and Spratt (1992), there are two anomalous, or more diverged regions in the
DNA alignment. These occur at positions 296 497 bp and 802 833 bp. In the rest of the alignment, N.
meningitidis clusters with N. gonorrhoeae (later referred to as topology 1), while between 296 bp and
497 bp, they found that it is grouped with N. cinerea (topology 3). They were unable to determine
the cause of the other diverged region (802 833 bp).

Before applying the Bayesian model, some parameters must be estimated. The Felsenstein 84 (Fel-
senstein and Churchill, 1996) model was used for the site likelihood calculations, with the stationary
nucleotide frequencies (m;, i = A,C,G,T) estimated as 74 = 0.26, 7¢ = m¢ = 0.28 and mp = 0.18.
The transition-transversion ratio was estimated as 2.3 using the program PUZZLE (Strimmer and
von Haeseler, 1996). The six previously mentioned values of A were used. The branch lengths were
estimated using subsets of 5 bp, since this data set appears to be quite heterogeneous (indeed using
the entire data set to obtain the branch length estimates led to an incorrect recombination event being
inferred; data not shown). The results are shown in Table 1.

Apart from the patchiness in the results when A\ = 0.5, the method finds the known recombination
event successfully over a wide range of values of . It also correctly identifies the change in topology,
with the sequence of topologies at each site starting with topology 3, then changing to topology 1.
The method is not successful at identifying the shorter diverged region. This is not surprising as Zhou

and Spratt (1992) were unable to determine the cause of this diverged region; if it is a recombination
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Table 1: MA_P estimates of recombination events for the Neisseria data set
A 0.5 0.6 0.75 0.8 0.9 0.999

296 342(3)°
357-498(3)  296-498(3) 296-498(3) 296-498(3) 296-498(3) 296-498(3)
827 864 (2)

“Figures in brackets show the topology at this range of sites while unspecified sites have topology 1
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o 4 ° ®
S KL
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site

Figure 5: The probabilities that the topology changes from topology 3 to topology 1, given the data,
at sites 486 to 510 along the Neisseria multiple alignment.

event, the recombinant DNA does not appear to originate from any of the strains in their data set.
There is a change in topology towards the end of this diverged region when A = (0.5. This may be
picking up genuine information in the data, or it may be an artifact due to the low value of A. Since
it does not persist for some of the higher values of A, a reasonable decision would be to ignore it.
The probabilities of the topology changing from state 3 to state 1 (calculated using eq. 13) at
sites in a neighbourhood of the 498" site (the estimated location of the change of topology) are
investigated. A value of 0.8 is used for A. The probabilities at all sites from 486 to 510 are shown in
Figure 5. The probability of change at site 498 is considerably higher than all of the surrounding sites
apart from sites 499 and 500, suggesting a reasonable level of confidence in the estimated location of
the recombination breakpoint. Note that the apparently low value of the probability of change at site
498 (0.066) is due to the very low transition probability of changing topologies in the Markov chain
prior. When A = 0.8, this probability is 0.06. The near equivalence in the two probability values stems
from the fact that product of the the terms in (13) apart from pag7 498 is close to one as the likelihood

at site 498 given topology 1 contributes the most to the posterior distribution at that site.
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Discussion

This paper proposes a Bayesian model for changes in the topology along an alignment caused by
recombination events. It has the potential to be a useful tool for inference. Currently, the maximum a
posteriori (MAP) estimate is used for inferences, with the probabilities of a change in the underlying
topology given the data providing an adhoc way of estimating a range of values for the location
of a putative recombination breakpoint. However, it is possible that a Monte Carlo Markov Chain
approach may be used to simulate from the posterior distribution allowing more scope for inferences.
This is being investigated. If such an approach is feasible, it may remove the need for the model to be
structured as a Hidden Markov model since the MAP estimate could also be found using MCMC. This
would allow a greater range of choices of prior distribution, and thus would permit a more elaborate
dependency structure to be incorporated.

One possible improvement to the prior might be to place a hyper-prior on A to remove the subjective
step of selecting an appropriate value. Assuming MCMC methods (for example) would make this
model tractable, it is unclear whether such an approach is sensible.

To explain this, consider the maximisation of the posterior probability in (6) over A (this is equi-
valent to putting a uniform hyper-prior on A). The object now is to find the combination of topologies
and the value of A which maximises the posterior probability. To investigate the consequences of this
approach, three data sets with different recombination events were generated as described above. The
branch length value z in Figure 2 was again 0.05, while the Kimura two parameter model of nucleotide
substitution was used (transition-transversion ratio of 2). The recombination events occurred three
quarter of the way along the exterior branches and were of lengths 400 bp, 200 bp and 100 bp. The
branch lengths for the site likelihoods calculations were estimated using subalignments of 50 bp.

For each of the three data sets, the maximum posterior probability was found for values of A ranging
between 0 and 1. The results are shown in Figure 6. In all cases, the posterior probability is highest
when A\ = 1. For the highest values of A, no recombination event is found for any of the data sets,
although A gets very close to one before this happens for the 400 bp recombinant data set. This occurs
because the increase in site likelihoods caused by allowing for the recombination event does not offset
the very small transition probabilities of change when A takes on values close to one. A sufficiently
high value of A will mean that the recombination event is not detected by the MAP estimate. Hence,
many choices of hyper-prior are likely to lead to a value of A & 1 being estimated and correspondingly,
no recombination event will be detected. It might be possible to obtain sensible results by using a
hyper-prior which places a very small probability on A being high, but it is questionable whether this
is worth the effort given the ease of finding the MAP estimate over a sensible range of A. In addition,
choosing such a hyper-prior is subjective, so that problem still remains.

The application has only been described for data sets of four sequences in this paper, since this
reduces the computational burden as the model has only three hidden states (topologies). It should be
possible to extend the model to deal with more sequences by restricting the possible topologies consi-
dered at a site to the set of possible topologies which could arise from the existing topology T following
a recombination event. Hein (1993) uses this approach in his parsimony based method, considering

only those topologies which could have arisen from the existing one following one recombination event
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Figure 6: The values of the log posterior probability for different values of A. A triangle means that

the MAP estimate did not find any recombination event for this value of A.
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for larger numbers of sequences. This is the subject of current work.

Initial exploration suggests that this Bayesian model may be applied to short data sets (e.g.,
300-400 bp long) with a reasonable amount of success at detecting recombination events. This is
potentially a very useful application (e.g., analysis of short HIV sequences) and is being investigated

further.
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