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1 IntroductionThe term component is ubiquitous in the signal processing literature. Intuitively, a component is aconcentration of energy in some domain, but this notion is di�cult to translate into a quantitativeconcept [1{3]. In fact, the concept of a signal component may never be clearly de�ned.The use and abuse of this term is particularly severe in the literature on time-frequency analysis.Time-frequency representations (TFRs) generalize the concept of the time and frequency domainsto a joint time-frequency function Cs(t; f) that indicates how the frequency content of a signals changes over time [4, 5]. Common themes in the literature include the suppression of TFRcross-components, the concentration and resolution of auto-components, and the property that thetime-varying spectral analysis of TFRs separates signal components such as parallel chirps thatoverlap in both time and frequency. Moreover, the quality of particular TFRs is very often judgedbased on subjective criteria related to the components of the signal being analyzed.In this paper, rather than address the question \what is a component?" directly, we will invest-igate a class of quantitative measures of deterministic signal complexity and information content.While they do not yield direct answers regarding the locations and shapes of components, thesemeasures are intimately related to the concept of a signal component, the connection being theintuitively reasonable supposition that signals of high complexity (and therefore high informationcontent) must be constructed from large numbers of elementary components. Viable measuresinclude moments and entropies of the signal represented in the time, frequency, or time-frequencydomains.Moment-based measures, such as the time-bandwidth product and its generalizations to second-order time-frequency moments [4{7] have found wide application, but unfortunately measure neithersignal complexity nor information content [1, 2]. To demonstrate, consider a signal comprised oftwo components of compact support, and note that while the time-bandwidth product increaseswithout bound with separation, signal complexity clearly does not increase once the componentsbecome disjoint.A more promising approach to complexity based on entropy functionals exploits the analogybetween signal energy densities and probability densities [1]. Just as the instantaneous and spectralamplitudes js(t)j2 and jS(f)j2 behave as unidimensional densities of signal energy in time andfrequency, TFRs try very hard to act as bidimensional energy densities in time-frequency. Inparticular, there exist TFRs whose marginal properties parallel those of probability densities:Z Cs(t; f) df = js(t)j2; Z Cs(t; f) dt = jS(f)j2; (1)ZZ Cs(t; f) dt df = Z js(t)j2 dt =: jjsjj22: (2)The quadratic TFRs of the large and useful Cohen's class can be obtained as the convolution [4,5]Cs(t; f) := ZZ Ws(u; v) �(t� u; f � v) du dv := (Ws � �)(t; f) (3)1



of a kernel function � with the Wigner distribution Ws of the signalWs(t; f) := Z s�t+ �2� s��t� �2� e�j2��fd�: (4)The probabilistic analogy evoked by (1) and (2) suggests the classical Shannon entropy [8] (givenhere for unit-energy signals)H(Cs) := � ZZ Cs(t; f) log2Cs(t; f) dt df (5)as a natural candidate for estimating the complexity of a signal through its TFR: The peaky TFRsof signals comprised of small numbers of elementary components would yield small entropy values,while the di�use TFRs of more complicated signals would yield large entropy values. Unfortunately,however, the negative values taken on by most TFRs (including all �xed-kernel Cohen's class TFRssatisfying (1)) prohibit the application of the Shannon entropy due to the logarithm in (5).In [1], Williams, Brown, and Hero sidestepped the negativity issue by employing the generalizedentropies of R�enyi [9] (again for unit-energy signals)H�(Cs) = 11� � log2 ZZ C�s (t; f) dt df: (6)Parameterized by � > 0, this class of information measures is obtained simply by relaxing themean value property of the Shannon entropy from an arithmetic to an exponential mean. (Shannonentropy appears as �! 1.) In several empirical studies, Williams, Brown, and Hero found that inaddition to appearing immune to the negative TFR values that invalidate the Shannon approach,the 3rd-order R�enyi entropy seemed to measure signal complexity. Figure 1 repeats the principalexperiment of [1]: The 3rd-order R�enyi entropy H3(Ws) of the Wigner distribution of the sums(t) = g(t � a) + g(t+ a) of two Gaussian pulses is plotted versus the separation distance 2a. (Ata = 0, the two pulses coincide and therefore, because of the assumed energy renormalization, havethe same information content as a solitary pulse. The time-bandwidth product of s is also plotted.It is clear from the Figure that, unlike the time-bandwidth product, which grows without boundwith a, the R�enyi entropy saturates exactly one bit above the value H3(Wg) = 12 log2(34 ) � �0:208.1Similar results hold for N separated copies of g(t) (log2N bits information gain). To summarize,independent of the de�nition of signal component, the R�enyi entropy indicates a \doubling ofcomplexity" in s as the separation a moves from 0 to 1.This paper comprises a detailed study of the properties and some potential applications of theR�enyi time-frequency information measures (6), with emphasis on the mathematical foundationsfor quadratic TFRs. In Section 2, after reviewing the development of these measures, we examinetheir existence and show that for each odd � � 3 there exist signals for which (6) is not de�ned(due to RR C�s (t; f) dt df < 0). This unprecedented result surprises, for it indicates that the R�enyiformalism is not universally applicable to time-frequency analysis. Counterexample signals are eas-ily constructed for large odd �; however, our � = 3 counterexamples are somewhat contrived. This1Readers should not be alarmed by negative R�enyi entropy values. Even the Shannon entropy takes on negativevalues for certain distributions in the continuous-variable case.2
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displacementFigure 1: Solid curve and axis on left: The 3rd-order R�enyi entropyH3(Ws) of the Wigner distribution of thesum s(t) = g(t�a)+ g(t+a) of two Gaussian components plotted versus the displacement parameter a (see(27) in Section 3.2 for the exact signal de�nition). (The asymptotic H3(Ws) levels are 12 log2(3)�1 � �0:208and 12 log2(3) � 0:792 bits.) Dotted curve and axis on right: Time-bandwidth product of s.is consistent with the ample numerical evidence [1,6,7,10,11] indicating that the 3rd-order entropyis de�ned for a broad class of signals and TFRs, including even those distributions taking locallynegative values. When de�ned, these measures have some striking properties that we investigatein Section 3:1. H�(Cs) counts the \number of components" in a multicomponent signal.2. For odd orders � > 1, H�(Cs) is asymptotically invariant to TFR cross-components andtherefore does not count them.3. H�(Cs) exhibits extreme sensitivity to phase di�erences between closely spaced components.This sensitivity can be reduced through smoothing in time-frequency. We provide analyticalresults for the sum of two Gaussian signals.4. The range of H�(Cs) values is bounded from below. For the Wigner distribution, a singleGaussian pulse attains the lower bound.5. The values of H�(Cs) are invariant to time and frequency shifts of the signal. Certain TFRsprovide an additional invariance to scale changes, while the Wigner distribution boasts com-plete invariance to symplectic transformations on the time-frequency plane. For more generalinvariances, the R�enyi theory extends easily to encompass not only the TFRs of the a�neclass [12] but also the generalized representations of the unitarily equivalent Cohen's anda�ne classes [13, 14].In Section 4, we discuss the rôle of these measures in adaptive time-frequency analysis and introducethe notion of R�enyi dimension. We close with a discussion and conclusions. Proofs of the variousresults are contained in a number of Appendices.3



2 The R�enyi Entropies2.1 R�enyi entropy of a probability densityIn [9] R�enyi introduced an alternative axiomatic derivation of entropy based on incomplete prob-ability mass distributions p = fp1; p2; : : : png whose total probabilities sum to w(p) := Pi pi � 1.He observed that the Shannon entropy H(p) := �1w(p)Pi pi log2 pi uniquely satis�es the axioms ofsymmetry, continuity, normalization, additivity, and, in addition, the mean value conditionH(p [ q) = w(p)H(p) + w(q)H(q)w(p) + w(q) : (7)Here p and q are any two incomplete densities such that w(p) + w(q) � 1, and p [ q signi�es thecomposite density fp1; p2; : : : ; pn; q1; q2; : : : ; qmg.Extending the arithmetic mean in (7) to a generalized mean yields generalized entropies closelyresembling Shannon's. Considering the generalized mean value conditionHR(p [ q) = m�1 w(p)m[HR(p)] + w(q)m[HR(q)]w(p) + w(q) !; (8)with m a continuous monotone function, R�enyi demonstrated that just two types of functions mare compatible with the other four axioms. The �rst, m1(x) = ax + b, yields the arithmetic mean(7) and the Shannon entropy. The second,m2(x) = 2(��1)x; � > 0; � 6= 1; (9)yields the functional HR� (p) := 11� � log2 Pi p�iPi pi (10)now known as the R�enyi entropy of order �. The Shannon entropy can be recovered as lim�!1HR� =H. Extension of HR� (p) to continuous-valued bivariate densities P (x; y) is straightforward:HR� (P ) := 11� � log2 RR P�(x; y) dx dyRR P (x; y) dx dy : (11)We emphasize that since the passage from the Shannon entropy to the class of R�enyi entropiesinvolves only the relaxation of the mean value property from an arithmetic to an exponentialmean, HR� behaves much like H [9].2.2 R�enyi entropy of a time-frequency representationThe central theme of this paper is the application of entropy measures to TFRs to measure thecomplexity and information content of nonstationary signals indirectly via the time-frequency plane.Our primary TFR tools of choice lie in Cohen's class [4,5], which can be expressed as in (3) as theconvolution between the Wigner distribution and a real-valued kernel �.2 The kernel and its inverse2To avoid cumbersome machinations, we will restrict our attention to the Wigner distribution and all TFRsobtained from (3) with � 2 L1(IR2). Since we will be interested in odd powers of TFRs (see (6)), we furthermoreassume that that kernel is a real-valued function. 4



Fourier transform � completely determine the properties of the corresponding TFR. For example,a �xed-kernel TFR possesses the energy preservation property (2) provided �(0; 0) = 1 and themarginal properties (1) provided �(�; 0) = �(0; �) = 1 8 �; � . Besides the Wigner distribution,examples of Cohen's class TFRs include the spectrogram (� = ambiguity function of the time-reversed window function) and the smoothed pseudo-Wigner distributions (�(�; �) = h1(�)h2(�))[4, 5]The analogy between TFRs and bidimensional probability densities discussed in the Introductionbreaks down at at least two key points. First, because of the freedom of choice of kernel function, theTFR of a given signal is nonunique, with many di�erent distributions \explaining" the same data.Second, and more pertinent to the present discussion, most Cohen's class TFRs are nonpositiveand, therefore, cannot be interpreted strictly as densities of signal energy.3 These locally negativevalues will clearly play havoc with the logarithm in the Shannon entropy (5).While the R�enyi entropies (6) appear intriguing and encouraging for time-frequency application[1, 6, 7, 10, 11], it has remained an open question whether in general these measures can cope withthe locally negative values of Cohen's class TFRs. In order for (6) to be de�ned for a signal s, weclearly need C�s (t; f) to be real and such thatZZ C�s (t; f) dt df > 0: (12)Noninteger orders � yield complex C�s (t; f) values and so appear of limited utility. Even integerorders � pose no such hazards, since the integral of the positive function C�s (t; f) remains positive.Unfortunately, odd integer orders are not so robust: For each odd � � 3, there exist signalsin L2(IR) and TFRs such that (12) fails, leaving (6) unde�ned. In Appendix A, we develop thefollowing counterexamples for the Wigner distribution Ws:41. For su�ciently large odd �, (12) fails for any smooth, rapidly decaying, odd signal.2. For odd integers � � 5, (12) fails for the 1st-order Hermite function.3. For � = 3, (12) fails for a particular linear combination of the 3rd and 9th-order Hermitefunctions (see Figure 2).As noted in the Introduction, these surprising results suggest that we must proceed with cautionwhen applying TFR-based R�enyi entropies.Negative results aside, a preponderance of numerical evidence [1, 6, 7, 10] indicates that the 3rdorder entropies are well-de�ned for large classes of signals and TFRs (our counterexamples onlyapply to the Wigner distribution). In Appendix A, we spend a considerable e�ort to �nd a signalfor which (12) fails for � = 3. Also, a small amount of Gaussian smoothing of Ws is generally3While there do exist nonquadratic classes of positive TFRs that satisfy (2) and (1) [4], we will consider onlyquadratic TFRs in this paper.4Clearly these counterexamples invalidate the \proofs" of existence sketched in [6, 7].5
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(a) (b) (c)Figure 2: Example of a signal for which the 3rd-order R�enyi entropy H3(Ws) of the Wigner distributionis not de�ned. (a) The signal s consists of a special combination of two odd-order Hermite functions (seeAppendix A.3). Its Wigner distribution (b) as an image and (c) in 3-d (note the large negative peak).enough for (12) to hold. This indicates that the examples for which (12) fails for � = 3 are ratherexceptional.Throughout the balance of this paper, we will assume that all signals under consideration aresuch that the formula (6) is well-de�ned.We close this section with some important notes on normalization. In their experiments, Willi-ams, Brown, and Hero actually employed notHR� from (11), but a pre-normalized version equivalentto normalizing the signal energy before raising the TFR to the � power:H�(Cs) := 11� � log2 ZZ � Cs(t; f)RR Cs(u; v) du dv��dt df: (13)The two measures are related byHR� (Cs) = H�(Cs) � log2 jjsjj22; (14)and thus HR� (Cs) varies with the signal energy. Since an information measure should be invariantto the energy of the signal being analyzed, we will adhere strictly to the de�nition (13) for theduration of this paper. Discretization of this measure (by setting t = n�t; f = k�f with n; k 2 ZZ)for use with computer generated, discrete TFRs yieldsH�(Cs[n; k]) := 11� � log2Xn Xk � Cs[n; k]Pn0Pk0 Cs[n0; k0]�� + log2 �t�f : (15)The frequency step constant is computed as �f = FK , given K uniform frequency samples span-ning the frequency range of F Hz/sample. For both continuous and discrete TFRs, operationin (t; !) coordinates, with radial frequency ! = 2�f rad/s, introduces an o�set: H�(Cs(t; !)) =H�(Cs(t; f)) + log2 2�. Sang and Williams explore an alternative magnitude normalization of theR�enyi entropy in [11].

6



3 Properties of the R�enyi Time-Frequency Information MeasureWe now conduct a detailed analysis of the properties of the R�enyi entropy (when it exists) that makeit a fascinating and useful tool for studying the information content of time-varying deterministicsignals.3.1 Component counting and cross-component invarianceIf TFRs were \quasi-linear" | such that each signal component contributed essentially separatelyto the overall time-frequency representation with no intervening cross-components | then theanalogy between TFRs and probability density functions would predict an additive or countingbehavior from the R�enyi entropy.To gain more intuition into this most fundamental property ofH�, imagine applying this measure�rst to a compactly supported signal s using an ideal, quasi-linear TFR Is(t; f). Denote the lengthof the supporting interval Jb of s by b and assume that Is(t; f) = 0 for all t =2 Jb and for all f .Form the two-component signal s + T s, where (T s)(t) := s(t � �t) represents translation bytime �t. Assuming that �t > b, the distribution is given byIs+T s(t; f) = Is(t; f) + Is(t��t; f): (16)Since Is(t; f) is compactly supported in the time direction, we can appeal to the analogy betweenthe right hand side of (16) and the composite probability distribution p [ q in (8) to computeH�(Is+T s). In particular, substituting (14) into (8) with m(x) = 2(��1)x and employing the factsH�(IT s) = H�(Is) and jjs+ T sjj22 = 2 jjsjj22, some simple algebra yieldsH�(Is+T s) = H�(Is) + 1: (17)In words, the two-component signal s + T s contains exactly one bit more information than theone-component signal s.5 The saturation levels of the entropy curve in Figure 1 display preciselythis behavior.While this simple analysis provides considerable insight into the counting behavior of H�, it doesnot take into account the nonideal, nonlinear behavior of the quadratic TFRs of Cohen's class. Inparticular, we have ignored the presence of cross-components in these distributions [4, 5], whichviolate the linearity assumption underlying (16). We will broaden our analysis to encompass actualTFRs in two stages.First, consider the Wigner distribution (4) of the compactly supported, two-component signals+ T s: Ws+T s(t; f) = Ws(t; f) + Xs;T s(t; f) + WT s(t; f): (18)The term Xs;T s(t; f), called the cross-component between s and T s, is derived from the cross-Wigner distribution [4, 5] Xs;T s(t; f) := 2ReWs;T s(t; f); (19)5Note that the post-normalized entropy HR� from (11) exhibits the invariance HR� (Is+T s) = HR� (Is), since theenergies of s and s+ T s di�er by a factor of two. 7



with the cross-Wigner distribution between signals r and s de�ned byWr;s(t; f) := Z r�t+ �2� s��t� �2� e�j2��fd�: (20)In general, the R�enyi entropyH�(Ws+T s) = 11� � log2 1jjs+ T sjj2�2 ZZ [Ws(t; f) +Xs;T s(t; f) +WT s(t; f)]� dt df (21)involves a complicated polynomial in Ws, Xs;T s, and WT s. However, due to the compact supportof s and thusWs [4,5], for separations �t > 2b, these terms lie disjoint in the time-frequency plane,and a tremendous simpli�cation results:H�(Ws+T s) = 11� � log2 12�jjsjj2�2 ZZ hW�s (t; f) +X�s;T s(t; f) +W�T s(t; f)i dt df= 11� � log2 12�jjsjj2�2 �ZZ W�s (t; f) dt df + ZZ W�T s(t; f) dt df�= H�(Ws) + 1;provided ZZ X�s;T s(t; f) dt df = 0: (22)While this is obviously not the case for � even, the oscillatory structure of Xs;T s [4,5] cancels underintegration with odd powers for �t su�ciently large. We prove the following in Appendix B.1 as aspecial case of Theorem 2.Proposition 1 Fix odd � � 3 and let s 2 L2(IR) be a signal of compact support such that Ws andWs+T s obey (12). Denoting the length of the supporting interval by b, set �t > 12(� + 1)b. Then(22) holds and thus H�(Ws+T s) = H�(Ws) + 1.The linear growth of the separation condition �t > 12(� + 1)b recommends the �rst of theodd integers � � 3, namely � = 3, as the best order for information analysis with the Wignerdistribution. Problems with (12) and numerical considerations (stability in the face of quantizationerrors) also justify small � values. Using the symplectic transformation properties of the Wignerdistribution (see Appendix C.1 and [5, 15]), Proposition 1 can be easily extended from signals ofcompact time support to signals whose Wigner distributions are supported on a strip of arbitraryorientation in the time-frequency plane.We can extend these counting results to include most Cohen's class TFRs and �nite energysignals. For noncompactly supported signals, the auto- and cross-components in the Cohen's classanalog to (21) will always overlap to some degree, so we should expect only asymptotic expressions.De�ne the time-frequency displacement operator(Ds)(t) := ej2�t�f s(t��t) (23)that translates signals by the distance jDj := p(�t)2 + (�f)2 in the time-frequency plane. Thefollowing is the key result of this section [6, 7]. 8



Theorem 2 (Component counting) Let Cs(t; f) be either the Wigner distribution or a Cohen'sclass TFR de�ned as in (3) with � 2 L1(IR2). Then, for any s 2 L2(IR) and odd � � 3 such thatCs and Cs+Ds obey (12), we havelimjDj!1H�(Cs+Ds) = H�(Cs) + 1: (24)Theorem 2 implies also that the \information" in the cross-components of Cs+Ds must decay tozero asymptotically.Corollary 3 (Asymptotic cross-component invariance) Let Cs(t; f) be either the Wigner dis-tribution or a Cohen's class TFR de�ned as in (3) with � 2 L1(IR2). Then, for any s 2 L2(IR) andodd � � 3 such that Cs and Cs+Ds obey (12), we havelimjDj!1 ZZ hC�s+Ds(t; f) � C�s (t; f) � C�Ds(t; f)i dt df = 0: (25)Proposition 1 extends to N components and log2N bits of information gain, provided thatthe auto- and cross-components become su�ciently disjoint in the time-frequency plane. Thecounting property does not hold generally when the signal cross-components overlap with theauto-components or other cross-components, however. Examples of such signals include s(t� b) +s(t) + s(t + b), where the cross-component Ws(t�b);s(t+b) lies upon the auto-component Ws(t) ands(t�2b)+s(t�b)+s(t+b)+s(t+2b) where the cross-component Ws(t�2b);s(t+2b) coincides with thecross-component Ws(t�b);s(t+b). These examples show that large inter-component spacing (b!1)is not enough for correct component counting. Of course, the spacing in these examples is contrived(too \regular"); with signals of �xed supports and random spacings that tend to in�nity, chancesare much better that the component counting property will hold true.3.2 Phase and amplitude sensitivityThe results of the experiment illustrated in Figure 1 and analyzed in the previous section arevery appealing, but are also incomplete, because we introduced no amplitude or phase di�erencesbetween the two signal components. For instance, set s+ kDs, with k a real scaling factor. Then,an analysis similar to that of Section 3.1 yields [16]limjDj!1H�(Cs+kDs) = H�(Cs) + HR� (pk); (26)with pk = n 11+k2 ; k21+k2o and HR� the discrete R�enyi entropy of (10). HR� (pk) is a continuousfunction of k bounded by 0 and 1 and maximized at k = 1. Thus, amplitude discrepancies alterthe asymptotic saturation levels of the R�enyi entropy. We will see that phase o�sets induce strongoscillations between the saturation levels. 9



To shed further light on this matter, we derive an analytic expansion for the 3rd-order entropyof the Wigner distribution of the sum of two Gaussian pulsess = w g
(a; b) + z g
(c; d); (27)with g
(�; �) the Gaussian g
(�; �)(t) := (2
)1=4 e��
(t��)2+j2��t (28)and 
 > 0, a; b; c; d; t 2 IR, z; w 2 C n f0g, �� < � � �. We considerH3(Ws) = � 12 log2Q
(a; b; w; c; d; z) (29)with Q
(a; b; w; c; d; z) := RR W 3s (t; f) dt df(RR Ws(t; f) dt df)3 : (30)Using symplectic transformations, we show in Appendix C.1 that the complete Q
(a; b; w; c; d; z)can be computed from the values ofQ(x; y; v) := Q1�a; 0; 1;�a; 0; rej'� ; (31)with x := e� 23�a2 2 (0; 1]; y := cos' 2 [�1; 1]; v := cosh(log r) � 1 (32)related to the time displacement, phase change, and amplitude disparity between the two compon-ents, respectively. In Appendix C.2 we derive the following.Proposition 4 For the signal (27) and with H3(Ws) and Q(x; y; v) de�ned as in (29), (31), and(32), we have H3(Ws) = � 12 log2� 43 � (1� x2)3 (1 + x2) (v � xy) (v + x3y)�3 � : (33)This expression is very convenient for studying the e�ects of component time, phase, and amp-litude di�erences on the 3rd-order Wigner entropy. For example, in Appendix C.3 we �nd thebounds 12 log2 3� 1 � H3(Ws) � 12 log2 27� 1: (34)From (33), we can compute the e�ect of component amplitude disparity v on H3(Ws) by �xingy and varying the separation distance via x. For the asymptotic saturation level, we havelima!1H3(Ws) �! � 12 log2�43 � 1v2� ; v � 1: (35)10
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Figure 3: The 3rd-order R�enyi entropy H3(Ws) of the Wigner distribution of the two-component Gaussiansignal (27) plotted versus displacement parameter a and phase ' (in rads). We use (33) with v = 1.Comparison with Figure 1 (which coincides with the ' = 0 slice of the surface) illustrates the sensitivity ofH3(Ws) to relative phase. (The asymptotic levels here are the same as those in Figure 1; the (overestimation)peak value is 12 log2(27)� 1 � 1:377 bits.)The obvious conclusion that equal amplitudes (v = 1) maximize the complexity of signals composedof multiple identical components appears quite reasonable, for smaller components are dominatedby larger ones and therefore carry less information.In the region between saturation levels (where the TFR components overlap and the assumptionsof Section 3.1 fail to hold), the relative phase between components controls the value of the R�enyientropy. Figure 3 extends the experiment of Figure 1 by plotting the H3(Ws) surface as a functionof both inter-component displacement a and phase '. It is apparent from the curves that whilephase changes do not a�ect the saturation levels of the information measure, they allow manypossible trajectories between the two levels, including even trajectories where an \overestimation"(noted numerically in [1] and con�rmed in (34)) of information content occurs. Furthermore, if thephase of each component is �xed relative to the center of its envelope (so that the components donot change shape as they are shifted about), then the corresponding H3(Ws) versus a curve will bea slice of the H3(Ws) surface along an oblique trajectory in the (a; ') plane. Curves of this formcan be multimodal.The phase sensitivity of the H3(Ws) measure for closely spaced components is quite reasonable,given the sensitivity of the signals themselves to relative phase. For example, Figure 4 shows thecomposite signals and their respective Wigner distributions for a �xed o�set a and relative phases' = �2 and ' = 3�2 . The di�erence in appearance is striking; clearly the components in the signalin (b) are more separated than those in (a). Accordingly, the H3(Ws) entropies for the two signalsdi�er widely: from 2:741 to 3:857 bits, respectively.Since the interference pattern generated by cross-components encodes inter-component phaseinformation, signals with low information content (\almost mono-component signals") must exhibitmainly constructive interference in the sense of [5]. Relative phase fades from importance after all11
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Figure 4: Signals and positive parts of the Wigner distributions from the experiment illustrated in Figure 3corresponding to a single �xed separation a and two di�erent phases '. (a) Signal (left) and Wignerdistribution (right) for ' = �2 ; H3(Ws) = 2:741 bits. (b) Signal and Wigner distribution for ' = 3�2 ;H3(Ws) = 3:857 bits.components become disjoint.3.3 E�ects of smoothingTFRs based on lowpass kernels lead to more robust R�enyi information estimates, since smoothingsuppresses the Wigner cross-components that carry the inter-component phase information.In Appendix C.4, we calculate H3(Cs) for the two-component Gaussian signal (s from (27) withw = z = 
 = 1), with Cs the Wigner distribution smoothed by the Gaussian kernel��(t; f) = 2 ��2 e�2���2(t2+f2): (36)The choice � = 1 results in the matched-window spectrogram as in Figure 5, and we obtain from(168) H3(Cs) = � 12 log2" 13 � (1� x2)24(1 + x3y)3 (2x2 + 1 + (x2 + 2)x3y) # ; (37)with x and y as in (32). For general � 2 (0; 1), the upper saturation level (x = 0) is given bylimx!0H3(Cs) = 12 log2 3 + log2(1 + �2) (38)To illustrate, we repeat in Figure 5 the experiment of Figure 3 using a matched-windowspectrogram6 TFR rather than the Wigner distribution. While the spectrogram information es-timate remains somewhat phase sensitive, it climbs more swiftly to the saturation level and with areduced overshoot compared to the Wigner distribution estimate. In general, the ascent to satura-tion accelerates with increasing order � once the cross-components are smoothed to the same peaklevel as the auto-components. (The opposite holds for the Wigner distribution, because Wignercross-components can tower over Wigner auto-components by up to a factor of two.)6A spectrogram computed using the time-reversed signal as the window.12



0 0.5 1 1.5 2

0

2

1

1.5

2

displacement
phase

H
3(W

s)

Figure 5: The 3rd-order R�enyi entropy H3(Cs) of the matched-window spectrogram plotted versus displace-ment parameter a and phase ' (in rads) for the same signal utilized in Figure 3 (see (37)). The reducedsensitivity of the spectrogram to relative phase results in swifter saturation with reduced overshoot. Fur-thermore, for small ' and a, H3(Cs) actually responds sooner than H3(Ws) to small increases in a. Notealso the 1-bit bias in the asymptotic levels of H3(Cs) versus those of H3(Ws). (The asymptotic levels hereare 12 log2(3) � 0:792 and 12 log2(3) + 1 � 1:792.)The price paid for the more robust information estimates derived from smoothed TFRs is asignal-dependent bias of entropy levels compared to those derived from the Wigner distribution,with the amount of bias increasing with the amount of smoothing. This bias is di�cult to quantify,since the convolution in (3) and the power and integral in (6) do not permute in any simplefashion. In the special case of the matched-window spectrogram applied to a sum of Gaussiansignal components, a direct computation �nds a one-bit bias in asymptotic information comparedto that estimated using the Wigner distribution (compare Figure 1 with Figure 5). Despite theintroduction of systematic bias, smoothing is essential when measuring entropies for complicatedmulticomponent signals with overlapping auto- and cross-components.Although it may be intuitively clear that smoothing attenuates the Wigner distribution's neg-ative values, it is by no means an easy matter to get pertinent results on the existence of H�(Cs)for odd �. Even for the case of Hermite functions hn (as considered in Appendix A) and Gaus-sian smoothing (see (36)) this is a hard problem. It can be shown that the well-de�nedness ofH3(Whn ���) for all n = 0; 1; : : : and all 0 � � � 1 requires a Debbi-Gillis type result [17] in whichthe 32 in the exponential of (67) is replaced by p = 32(1 � �2). We can summarize our (partial)results on Hermite function signals as follows:� � 1: In this case, (Whn � ��)(t; f) > 0 [18] and existence of H3 is not an issue.13p3 < � < 1: It was kindly observed to us by Prof. R. Askey that a Debbi-Gillis resultis easily established for 0 < p < 1, which implies that H3(Whn ���) is well-de�nedfor this range of smoothing.0 < � � 13p3: We have been unable to prove results for the case 1 � p < 32 .� = 0: This is the Debbi-Gillis result [17] that shows that H3(Whn) is well-de�ned.13



3.4 Lower bound on signal information contentSimple to derive from Lieb's inequality [19] (see Appendix D.1), a lower bound on the R�enyi entropycorresponds to the \peakiest" Cohen's class TFR.Theorem 5 (Lower bound on information content for Cohen's class) For any Cohen'sclass TFR Cs(t; f) having � 2 L1(IR2), any � � 1, and any s 2 L2(IR)H�(Cs) � log2 ��� 1 � 1 � ��� 1 log2 jj�jj1: (39)In particular, for the Wigner distribution,H�(Ws) � log2 ��� 1 � 1; (40)with equality if and only if s is a Gaussian.Compare the lower saturation level in Figure 1 with the theoretical boundH�(Wg) = 12 log2(34 ) ��0:208 for the Gaussian. Of course, this value also coincides with the lower bound (34).Theorem 5 can be interpreted as an alternative version of the well-known time-frequency uncer-tainty principle [4,5,20] that takes the entire time-frequency plane into account rather than just themarginal distributions js(t)j2 and jS(f)j2. It is also an alternative to the inequality of Hirschmanthat relates the classical principle to the Shannon entropy of the marginals, as [21]H1(jsj2) + H1(jSj2) � log2 e � 1 (41)with equality if and only if s is Gaussian. Note that Theorem 5 marks the third breakdown ofthe analogy between probability density functions and TFRs (the �rst two being nonpositivity andnonuniqueness), since the Dirac delta function probability density minimizes the R�enyi entropiesof all orders.3.5 Information invariant signal transformations and the a�ne classAn information invariant signal transformation M leaves the R�enyi entropy measure unchanged,with H�(CMs) = H�(Cs) [1]. Distributions information invariant to such a transformation M,provided it displaces the center of gravity of the signal in time-frequency, admit a useful generaliz-ation of Theorem 2 to limjMj!1H�(Cs+Ms) = H�(Cs) + 1.The transformations leaving the R�enyi entropy invariant correspond to those that do not changethe value of the integral in (13). For Cohen's class TFRs, the invariance properties of three nestedkernel classes are simple to quantify. All �xed-kernel TFRs are information invariant to time andfrequency shifts. Product-kernel TFRs, having kernels of the form �(t; f) = h(tf) with h a 1-dfunction, are in addition invariant to scale changes of the form s(t) 7! jkj�1=2 s(t=k). The Wignerdistribution is the lone �xed-kernel TFR fully information invariant to time and frequency shifts,scale changes, and the modulation and convolution by linear chirp functions that realize shears in14



the time-frequency plane (the symplectic transformations of (125){(126)). It is not coincidentalthat these same �ve operations leave invariant the form of the (minimum information) Gaussiansignal [15].The a�ne class provides additional TFRs information invariant to time shifts and scale changes[5, 12, 22]. A�ne class TFRs are obtained from the a�ne smoothing
s(t; f) := ZZ Ws(u; v) ��f(t� u); v=f�du dv =: (Ws @�)(t; f) (42)of the Wigner distribution of the signal with a kernel function �.7 Since given proper normal-ization of the kernel we have RR 
s(t; f) dt df = jjsjj22, the R�enyi entropy of an a�ne class TFRcan be de�ned exactly as in (13) (of course with the requirement (12)). The resulting time-scaleinformation measure H�(
s) shares all of the properties discussed above in the context of Cohen'sclass (counting, cross-component invariance, amplitude and phase sensitivity, bounds, etc.), exceptwith time and frequency shifts replaced by time shifts and scale changes. In particular, we havethe following.Theorem 6 (Lower bound on information content for the a�ne class) Let 
s(t; f) be ana�ne class TFR with kernel such that � 2 L1(IR2) and 1f�(t; f) 2 L1(IR2). Then for all integers� � 1 and for all s 2 L2(IR)H�(
s) � log2 ��� 1 � 1 � ��� 1 log2 �������� 1f �(t; f)��������1 : (43)For the proof, see Appendix D.2. The condition 1f�(t; f) 2 L1(IR2) implies �(t; 0) = 0 8 t forcontinuous kernels and ensures that the a�ne smoothing (42) is de�ned. Since the kernel generatingthe scalogram (the squared magnitude of the continuous wavelet transform) corresponds to theWigner distributionW of the wavelet function  , this condition also generalizes the now classical\wavelet admissibility condition" [5]; in particular, we haveZZ ���� 1f �(t; f)���� dt df = ZZ ���� 1f W (t; f)���� dt df � ZZ W (t; f) dt dfjf j = Z j	(f)j2 dfjf j : (44)For information invariances di�erent from time and frequency shifts, scale changes, and chirpmodulations and convolutions, we must look beyond Cohen's class and the a�ne class. Fortunately,all the above results extend easily to the recently developed unitarily equivalent Cohen's and a�neclasses [13, 14]. The TFRs in these new classes are information invariant to generalized time-frequency shifts and time-scale changes.7In order to emphasize the similarity of (42) to (3), we have reparameterized the original time-scale formulationof (42) from [12] in terms of time-frequency coordinates by setting scale a = f0=f , with f0 = 1 Hz.
15



4 Selected ApplicationsThe foregoing properties of the R�enyi entropies (when it is de�ned) make these new informationand complexity measures particularly appropriate for time-frequency analysis. In this section, webrie
y discuss two areas of past and potential application.4.1 Information-based performance measuresThe R�enyi entropies make excellent measures of the information extraction performance of TFRs.By the analogy to probability density functions, minimizing the complexity or information in aparticular TFR is equivalent to maximizing its concentration, peakiness, and, therefore, resolution[23]. Optimization of a TFR (through its kernel) with respect to an information measure yields ahigh performance \information optimal" TFR that changes its form to best match the signal athand [11, 24].Many of the optimal-kernel TFRs in the literature have been based either implicitly or explicitlyon information measures. As noted by Williams and Sang [11,24], the performance index commonto the 1/0 [25], radially Gaussian [26], and adaptive optimal kernel [27] optimization formulationscan be rewritten using Parseval's theorem asZZ j(Ws � �)(t; f)j2 dt df = 2�H2(Ws��): (45)Since the second-order R�enyi entropy squares the TFR, it remains sensitive to cross-componentsand hence can be considered as a measure of their information content [1]. Thus, maximizing(45) over a class of lowpass smoothing kernels � simultaneously minimizes the information inthe cross-components of the optimal-kernel TFR. Maximizing the jjCsjj44 = jjCsjj42 concentration ratioof [28, 29] can also be viewed in information theoretic terms, since this is equivalent to minimizingthe di�erential entropy 3H4(Cs)� 2H2(Cs).Di�erential performance measures formed with odd and even order entropies also prove inter-esting [24]. For example, the di�erential measureH3(Cs) � �H2(Cs); 0 � � � 1 (46)exploits the fact that odd and even order entropies decouple to some degree the information contentin the auto- and cross-components in a TFR. Minimizing this measure balances (i) maximizing theinformation in the auto-components (by keeping them peaky through less smoothing) with (ii) min-imizing the information in the cross-components (by 
attening them through more smoothing). Forpositive TFRs, the special choice � = 34 , minimizing (46) is equivalent to maximizing the concen-tration ratio jjCsjj63 = jjCsjj62, making it an interesting alternative to the jjCsjj44 = jjCsjj42 measure usedin [28, 29].Figure 6 explores the e�ect of time-frequency smoothing on (46) as a function of the parameter�. Forming a signal s from two well-separated Gaussian pulses, we smooth the Wigner distributionof s with a Gaussian kernel (36) of increasing volume � to generate a series of smoothed TFRs16
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at for larger values of �2 (but still decreasing). Among other things, it followsthat the minimum of (47) decreases when � increases and that the minimum point �min(�) shiftsvery slowly towards 1 as � approaches 1. For � extremely close to 1, we have that (47) decreasesin �, whence �min(�) = 1 for these �. More complicated signals will exhibit local minima.
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4.2 R�enyi dimensionsBased on the counting property of the R�enyi entropy (Section 3.1), we can de�ne a R�enyi dimensionD�(Cs) of a signal s in terms of its TFR Cs and a basic building block function b [6, 7]D�(Cs) := 2H�(Cs)�H�(Cb): (48)This dimension attempts to indicate | relative to a highly overcomplete set of building blocksobtained from b by all possible translations and modulations | the number of blocks required to\cover" the TFR of s. For the Wigner TFR, a Gaussian is the natural choice for the building blockfunction, since it has minimum intrinsic information (in the sense of Theorem 5) and leads to analways positive dimension. A similar dimension can be de�ned for a�ne class TFRs.By permitting redundant time-frequency building blocks, the R�enyi time-frequency dimensiongeneralizes the concepts of the number of \independent degrees of freedom" and number of \inde-pendent coherent states" that have proved useful in signal analysis and quantum physics [30, p. 23].Desirable invariance properties result from this redundancy: Cohen's class R�enyi dimension estim-ates remain invariant under time and frequency shifts in the signal, while a�ne class estimatesremain invariant under time and scale changes. Alternative dimensions that measure signal com-plexity with respect to an orthonormal basis of (wavelet or Gabor) functions (see [31], for example)cannot share these invariances without carrying out an optimization over all \nice" bases [2].For the simplest signals, composed of disjoint, equal-amplitude copies of one basic function, theR�enyi dimension simply counts the number of components. As the relative amplitudes of thesecomponents change, however, the dimension estimate will also change, as some components beginto dominate others.5 ConclusionsTaking o� where Williams, Brown, and Hero left o� in [1], this paper has studied a new classof signal analysis tools | the R�enyi entropies. Users must proceed with caution, for as we haveshown, the higher-order entropies are not de�ned for large classes of signals. Counterexamples aremuch harder to �nd for the 3rd-order entropy, however, especially for suitably smoothed TFRs (wehave encountered none). This �nding supports the numerous numerical studies [1,6,7,10] that haveindicated these measures' general utility.When well-de�ned, the accounting, and cross-component and transformation invariance proper-ties of the R�enyi entropies make them natural for estimating the complexity of deterministic signalsthrough TFRs. Simple to apply, these measures also provide new insights into the structure of thetime-frequency plane. For instance, a lower bound on the entropy of the Wigner distribution yieldsa new time-frequency uncertainty principle (Theorems 5 and 6) based on the entire time-frequencyplane as a whole rather than on the time and frequency domains separately.The explorations of Section 4 into TFR performance measures and R�enyi dimensions merelyscratch the surface of potential applications of the R�enyi entropies in time-frequency analysis.18



Worthy of pursuit seems the extension of our results to TFRs outside the quadratic Cohen's anda�ne classes. The positive TFRs of the Cohen-Posch class [4], for example, would allow theunrestricted use of the Shannon entropy. Moreover, an axiomatic derivation of the \ideal" time-frequency complexity measure along the lines of R�enyi's work in probability theory [9] could yieldother entropies meriting investigation.In information theory, entropies form the basis for distance and divergence measures betweenprobability densities. In time-frequency analysis, analogous measures between TFRs would �ndimmediate application in detection and classi�cation problems. Unfortunately, the R�enyi entropycomplicates the formation of distances, because it is neither a concave nor a convex function for� 6= 1. Although the bulk of the work lies ahead, some progress has been made in this directionrecently [16]. By considering only positive TFRs (smoothed spectrograms in Cohen's class), wede�ned in [16] a quasi-Jensen di�erenceJ�(C1; C2) := H� �pC1C2 � � H�(C1) + H�(C2)2 ; (49)that measures the distance between the TFRs C1 and C2 of two di�erent signals s1 and s2. (Here,pC1C2(t; f) := pC1(t; f)C2(t; f).) Currently, we are evaluating the potential of this measure forproblems in nonparametric and blind transient detection.
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A Signals with Unde�ned WD-based R�enyi EntropyIn this appendix we display for any odd integer � � 3 a signal s such thatZZ W�s (t; f) dt df (50)is negative. Hence for such an s the �-order R�enyi entropy H�(Ws) is not de�ned. All of ourexample signals are variations on a theme: peaked, odd functions that create a large negative spikein the Wigner distribution.First, some background on Hermite functions. The nth-order Hermite function [15, Ch. 1, Sec.7] hn(t) := (�1)n 21=4 (n!)�1=2 (4�)�n=2 e�t2 � ddt�n e�2�t2 : (51)has a Wigner distribution that can be written in terms of a Laguerre polynomial; that is [15, p. 66]Wn(t; f) := Whn(t; f) = 2(�1)n e�2�r2 Ln(4�r2); (52)with r2 = t2 + f2 and Ln the nth-order Laguerre polynomialLn(x) := nXj=0 nj ! (�x)jj! : (53)As is well-known, the Hermite functions have Wigner distributions that are (i) strongly peaked atthe origin, with a negative sign when the order n is odd, (ii) small but non-negligible away from theorigin but inside a circle around the origin of radius somewhat larger than ��n+ 12� =��1=2, and(iii) negligibly small outside that circle. Therefore, the odd-order Hermite functions are naturalcandidates for yielding negative values in (50).A.1 Examples for large odd �Throughout this Appendix, let s be a smooth, rapidly decaying, odd signal of unit energy. ThenWs(t; f) is smooth and rapidly decaying as t2 + f2 !1 andjWs(t; f)j < 2 = �Ws(0; 0); (t; f) 6= (0; 0); (54)as one easily sees from the Cauchy-Schwarz inequality (the fact that s 2 L2(IR) causes the inequalityto be strict). It thus follows that the asymptotic behavior of (50) as �!1, � integer, is determinedby the behavior of Ws(t; f) at (t; f) = (0; 0). Since@Ws@t = @Ws@f = 0 = @2Ws@t@f = @2Ws@f@t ; (55)@2Ws@t2 = 8ks0k2; @2Ws@f2 = 32�2kts(t)k2 (56)20



at (t; f) = (0; 0), we havelog��12Ws(t; f)� = � 2t2ks0k2 � 8�2f2kts(t)k2 + o(t2 + f2) (57)as t2 + f2 ! 0. Therefore we have, explicitly,ZZ W�s (t; f) dt df = (�2)� ZZ exp�� log��12Ws(t; f)�� dt df= (�2)�4�ks0kkts(t)k (1 + o(1)) (58)as � ! 1, � integer. Hence (50) is negative for any smooth, rapidly decaying, odd signal s andlarge odd integer �. 2A.2 Example for � = 5; 7; : : :Let s be the 1st-order Hermite functions(t) = h1(t) = 25=4 �1=2 t e��t2 ; t 2 IR (59)with Wigner distributionWs(t; f) = � 2 e�2�(t2+f2) �1� 4�(t2 + f2)� : (60)Using polar coordinates, we have for integer � � 1ZZ W�s (t; f) dt df = 2��1� (�1)� Z 10 e�x �1� 2x� �� dx: (61)For odd � � 1 we haveZ 10 e�x �1� 2x� �� dx = Z �=20 e�x �1� 2x� �� dx � Z 1�=2 e�x �2x� � 1�� dx: (62)The �rst integral on the right-hand side of (62) increases in � � 1, since the (non-negative)integrand and integration range increase in � � 1. The second integral can be evaluated asZ 1�=2 e�x �2x� � 1�� dx = �4e��=2 �!�� ; (63)and this decreases in � � 1. Hence the left-hand side of (62) increases in � � 1, � odd integer.Since Z 10 e�x(1� 2x)dx = � 1; Z 10 e�x �1� 2x3 �3 dx = � 19 (64)and Z 10 e�x �1� 2x5 �5 dx = 127625 ; (65)we see that (61) is negative for all odd � � 5. 221



A.3 Example for � = 3We will have to spend considerable e�ort to �nd an s for which (50) is negative for � = 3. Also,a small amount of Gaussian smoothing of Ws is generally enough to make (50) positive for ouro�ending signal. This indicates that the examples for which (50) fails to be positive for � = 3 arerather exceptional. Moreover, the results of Appendix C show that the 3rd-order R�enyi entropyis well-de�ned for the sum of two Gaussians, irrespective of their mutual phases. See also thediscussion on Hermite functions above.We shall show that (50) is negative for � = 3 ands = a3 h3 + a9 h9 (66)with suitably chosen a3; a9 2 IR and hn the nth-order Hermite function.Using polar coordinates, we obtainZZ W 3n(t; f) dt df = 2(�1)n Z 10 e� 32x L3n(x) dx =: 2Tn: (67)It is a quite non-trivial result from Debbi and Gillis [17] that Tn > 0 for all n = 0; 1; : : : Hence wecannot produce negative values in (50) with a single Hermite function.We now elaborate (50) for the s in (66) and � = 3. We haveWs = ja3j2W3 + ja9j2W9 + a3 a�9W39 + a�3a9W93; (68)with Wnm the cross Wigner distribution8 between hn; hmWnm(t; f) = 8>>><>>>: 2 (�1)m �m!n! �1=2 e�2�jzj2 (2p�z�)n�m L(n�m)m �4�jzj2� ; n � m;2 (�1)n � n!m!�1=2 e�2�jzj2 (2p�z)m�n L(m�n)n �4�jzj2� ; n � m: (69)Here z = t+ if , and L(p)k are the Laguerre polynomialsL(p)k (x) = kXj=0 (k + p)!(k � j)!(p + j)! (�x)jj! : (70)Now expanding W 3s using (70), introducing polar coordinates z = rei� in RR W 3s dt df , andretaining only the triple products of (cross) Wigner distributions that are independent of � (theothers cancel upon integration), we obtainZZ W 3s (t; f) dt df = Z Z �ja3j6W 33 + 3ja3j4ja9j2W 23W9 + 3ja3j2ja9j4W3W 29+ja9j6W 39 + 6ja3j4ja9j2W3jW39j2 + 6ja3j2ja9j4W9jW39j2� dt df; (71)8Formula (69) is due to Groenewold, see [32], formula (5.16), except that Groenewold has incorrectly a (�1)max(n;m)instead of (�1)min(n;m) and calls the L(p)k Legendre polynomials. Formula (69) can also be found in [15, p. 66, (1.105)]except that there is a complex conjugate missing in the case n � m (note that Wnm = W �mn; a similar error occursin [15, p. 64, (1.104)]. 22



where we also have used that W �39 =W93. Inserting the explicit form (69) into the right-hand sideof (71), we obtainZZ W 3s (t; f) dt df = �2 �ja3j2C333 + 3ja3j4ja9j2C339 + 3ja3j2ja9j4C993 + ja9j6C999��12 3!9! �ja3j4ja9j2C(6)333 + ja3j2ja9j4C(6)339� ; (72)where we have set C(p)kkl := Z 10 e� 3s2 sp �L(p)k (s)�2 Ll(s) ds; Ckkl := C(0)kkl: (73)Thus we have 1ja3j6 ZZ W 3s (t; f) dt df = M0 +M1x+M2x2 +M3x3; x := ja9j2ja3j2 ; (74)where M0 := �2C333; M1 := �6C339 � 12 3!9! C(6)333;M2 := �6C993 � 12 3!9! C(6)339; M3 := �2C999: (75)The computation of the C(p)kkl can be done according toC(p)kkl = �(p+ k)!k! �2 �23�p+1� kXj1=0 kXj2=0 lXj3=0 (p+ j1 + j2 + j3)!(p+ j1)! (p+ j2)! j3!  kj1! kj2! lj3!��23�j1+j2+j3 : (76)For this we have used the explicit forms (53), (70) for the Laguerre polynomials and carried outthe integration (see also [33, Sec. 2.a]). It follows thatM0 = 0:107504; M1 = 0:198739; M2 = �0:364632; M3 = 0:067079: (77)The right-hand side of (74) is extremal forx = � M23M3 �  � M23M3�2 � M13M3!1=2 : (78)Taking the + sign in (78) so that x = 3:327073, we obtainM0 +M1x+M2x2 +M3x3 = � 0:797104: (79)This completes the construction of the example. 2Figure 2 illustrates the signal (66) and its Wigner distribution for a3 = 1 and a9 = 1:824026.23



B Proofs on Component CountingB.1 Proof of Proposition 1Let s 2 L2(IR) be supported on the interval [0; b], and let u 2 L2(IR) be supported on [�t; b+�t].We will show that (22) holds: � := ZZ X�s;u(t; f) dt df = 0 (80)when �t > 12(� + 1)b. Here Xs;u is the cross-component between s and u (see (19) and (20)). Weshall initially assume that s and u are smooth, so that the manipulations below are justi�ed.We have by binomial expansion that� = �Xk=0 �k! �k; (81)with �k := ZZ W ks;u(t; f)W��ku;s (t; f) dt df; k = 0; 1; : : : ; �: (82)We will show that each �k vanishes when �t > 12(�+ 1)b.We �rst consider the case when k 6= 0; �. We have by de�nition�k = ZZ �Z e�j2�f�s�t+ �2� u��t� �2� d��k��Z e�j2�f�u�t+ �2� s��t� �2� d����k dt df: (83)We write this as�k = ZZ Z : : : Z| {z }k Z : : : Z| {z }��k e�j2�f(�1+:::+�k+�k+1+:::+��)� s�t+ �12 � u��t� �12 � � � � s�t+ �k2 �u��t� �k2 � d�1 � � � d�k� u�t+ �k+12 � s��t� �k+12 � � � � u�t+ ��2 � s��t� ��2 � d�k+1 � � � d�� dt df: (84)Integrating over f , a Dirac � (�1 + � � �+ ��) term appears. Using this � (�1 + � � � + ��) to cancel theintegration over ��, we obtain�k = Z Z � � � Z| {z }k Z � � � Z| {z }��k s�t+ �12 � u��t� �12 � � � � s�t+ �k2 �u��t� �k2 �� u�t+ �k+12 � s��t� �k+12 � � � � u�t+ ���12 � s��t� ���12 �� u�t� �1 + � � �+ ���12 � s��t+ �1 + � � �+ ���12 � d�1 � � � d�k d�k+1 � � � d���1 dt: (85)24



Now suppose that we have a t 2 IR, �1; : : : ; �k; �k+1; : : : ; ���1 2 IR such that the integrand in (85)is not zero. Since s is supported on [0; b], and u is supported on [�t; b+�t], we havet+ �12 2 [0; b]; t��t� �12 2 [0; b]... ...t+ �k2 2 [0; b]; t��t� �k2 2 [0; b]t� �k+12 2 [0; b]; t��t+ �k+12 2 [0; b]... ...t� ���12 2 [0; b]; t��t+ ���12 2 [0; b]t+ �1+���+���12 2 [0; b]; t��t� �1+���+���12 2 [0; b]:
(86)

Adding the �rst k items in (86) and subtracting the last �� k items, we obtain(2k � �)t 2 [�(�� k)b; kb]; (87)(2k � �)(t��t) 2 [�(�� k)b; kb]: (88)Subtracting (88) from (87) yields (2k � �)�t 2 [�lb; lb]; (89)with l = max(� � k; k) = 12(� + j2k � �j). Since � is odd, we have j2k � �j � 1. Thus we �nallyobtain �t � 12 � �j2k � �j + 1� b � 12(�+ 1) b: (90)Hence, when �t > 12(�+ 1) b, the integrand in (85) vanishes identically, so �k = 0, as required.Next, consider the case k = �. Here the items with index k + 1; � � � ; � � 1 are absent from(86), but the above argument still yields that �t � b � 12(�+ 1) whenever the integrand in (85) isnon-zero for some t 2 IR, �1; � � � ; ���1 2 IR. A similar result holds for the case k = 1.We shall now remove the assumption that s and u are smooth. To this end we give the followingLemma, which will also be used in the proof of Theorem 2 below. We omit the (elementary) proof.Lemma 7 Let s; u; v; w 2 L2(IR), not necessarily compactly supported. Then for all t; f 2 IR wehave jWs;u(t; f)�Wv;w(t; f)j � 2 kuk2 ks� vk2 + 2 kvk2 ku� wk2: (91)Also, Ws;u and Wv;w are in L2(IR2), andkWs;u �Wv;wk2 � kuk2 ks� vk2 + kvk2 ku� wk2: (92)Finally, Ws;u 2 C0(IR2); that is, Ws;u is continuous and bounded with Ws;u(t; f) �! 0 as t2+f2 !1. 25



To complete the proof of Proposition 1, we take smooth v, supported on [0; b], and smooth w,supported on [�t; b+�t], such that ks�vk2 and ku�wk2 are small. Then (91) and (92) show thatWs;u is approximated by Wv;w, both uniformly and in L2(IR2) sense. Hence Ws;u is approximatedby Wv;w in L�(R2) sense, since 2 � � � 1. Now the result follows easily from the fact thatRR X�v;w(t; f) dt df vanishes for smooth v and w when �t > 12(�+ 1) b. 2B.2 Proof of Theorem 2For the proof we will need, in addition to Lemma 7, the Riemann-Lebesgue Lemma.Lemma 8 (Riemann-Lebesgue) For g 2 L1(IRn) and n = 1; 2; : : : ; we haveZ g(x) e�j2�x�y dx �! 0; kyk �! 1: (93)Furthermore, with u := Ds (see (23)), we have the useful formula [5, p. 240],Xs;u(t; f) = 2Ws�t� �t2 ; f � �f2 � cos�2� �t�f � f�t+ 12�t�f�� : (94)Wigner distribution case: We assume odd � � 3 and expand trinomiallyW�s+u = W�s +W�u +X�s;u +X�i c(�1; �2; �3)W�1s X�2s;uW�3u ; (95)where in the latter series we have collected the terms in the expansion with �1 + �2 + �3 = � andat least two of the �i positive (the c(�1; �2; �3) in the series on the right-hand side are constants).For the de�nition of H�(Ws), we should also say what RR Ws(t; f) dt df means in the case thatWs 2 L2(IR2), Ws 62 L1(IR2). Naturally, we de�neZZ Ws(t; f) dt df = ksk22 (96)for such cases. (When Ws does belong to L1(IR2), the identity (96) also holds.) Then it followsthat ZZ Ws+u(t; f) dt df = ks+ uk22 �! 2 ksk22 = 2 ZZ Ws(t; f) dt df (97)when jDj2 = (�t)2 + (�f)2 !1. Here we have used the last item in Lemma 7 and the fact thatthe inner product hs; ui = exp�j��t�f Ws;v�12�t; 12�f�, with v(t) = s(�t). Furthermore, we haveby shift-invariance that ZZ W�s (t; f) dt df = ZZ W�u (t; f) dt df; (98)these two numbers being supposed positive. Hence11� � log2 RR W�s+u(t; f) dt df(RR Ws+u(t; f) dt df)� �! H�(Ws) + 1 (99)26



when jDj ! 1, provided we can show thatZZ X�s;u(t; f) dt df �! 0; (100)ZZ W�1s (t; f)X�2s;u(t; f)W�3u (t; f) dt df �! 0 (101)as jDj ! 1 for the relevant set of (�1; �2; �3).As to (100), we write cos� x = �Xk=�� bk ejkx; (102)where we note that b0 = 0, since � is odd. Then using (94) we getZZ X�s;u(t; f) dt df = 2� �Xk=�� bk ZZ W�s �t� �t2 ; f � �f2 � ej2�k(t�f�f�t+ 12�t�f) dt df: (103)The substitution t� 12�t! t, f � 12�f ! f , which leaves the form t�f � f�t+ 12�t�f invariant,then yields integrals of the form ZZ W�s (t; f) ej2�k(t�f�f�t) dt df (104)in the right-hand side series in (103). From Lemma 7 and � � 3, it follows that W �s 2 L1(IR2),whence by Lemma 8 we see that the integrals (104) tend to zero when jDj ! 1 and k 6= 0. Itfollows then that the expression in (103) tends to zero when jDj ! 1, since b0 = 0.For the expressions in (101) we argue as follows. By (94) we haveJ := 12�2 ���� ZZ W�1s (t; f)X�2s;u(t; f)W�3u (t; f) dt df ����� ZZ jW�1s (t; f)j ����W�2s �t� �t2 ; f � �f2 ����� jW�3s (t��t; f ��f)j dt df: (105)Assume that �1 > 0, �3 > 0 (the other cases go in a similar way). By Lemma 7 there is an A > 0such that J � A ZZ K(t; f)L(�t� t;�f � f) dt df =: M(�t;�f); (106)where we have set K(t; f) := jW�1s (t; f)j ; L(t; f) := jW�3s (�t;�f)j : (107)By Lemma 7, we have that K;L 2 L2(IR2). Now let " > 0 and take smooth, compactly supportedP;Q 2 L2(IR2) such that kK � Pk2 < "; kL�Qk2 < ": (108)Denote R = P � Q, so that R is smooth and compactly supported as well. Then we have for all�t;�f by the Cauchy-Schwarz inequalityjM(�t;�f)�AR(�t;�f)j � A kK � Pk2 kLk2 +A kPk2 kL�Qk2� "A (kLk2 + kPk2) : (109)27



This shows thatM can be approximated uniformly and arbitrarily closely by functions AR(�t;�f)of compact support. It follows that M(�t;�f)! 0 as jDj ! 1. Hence J in (105) tends to zero,as jDj ! 1 and the proof for the Wigner distribution case is complete.Cohen's class TFR case: Next we consider TFRs of the Cohen type with � 2 L1(IR2) andRR �(t; f) dt df = 1. We require Young's Theorem.Lemma 9 (Young) Let 1=p + 1=q = 1=r + 1 with 1 � p; q; r � 1. When g 2 Lp(IRn) andh 2 Lq(IRn), we have g � h 2 Lr(IRn) andkg � hkr � kgkp khkq: (110)Moreover, when g 2 L1(IRn) and h 2 C0(IRn), we have g � h 2 C0(IRn).To prove Theorem 2 for the Cohen distributions, we replace all W and X in the expansion (95)byW �� and X ��, thereby noting that the latter functions are in L2(IR2)\L1(IR2)\C0(IR2), sincethe same holds for W and X, and � 2 L1(IR2) (see Lemmata 7 and 9). As in (97), we have (solvingthe problem of unde�nedness of RR (Ws ��)(t; f) dt df by the assumption RR �(t; f) dt df = 1 in thesame way as was done in (96))ZZ (Ws+u � �) (t; f) dt df �! 2 ZZ (Ws � �) (t; f) dt df: (111)Also the analogue of (98) holds by shift-invariance. We must therefore show thatZZ (Xs;u � �)� dt df �! 0; (112)ZZ (Ws � �)�1 (Xs;u � �)�2 (Wu � �)�3 dt df �! 0 (113)as jDj ! 1 for the set of relevant (�1; �2; �3).For (112), we �rst note that (Xs;u � �)� 2 L1(R2), since � � 2. Next we use (94) to obtain12� ZZ (Xs;u � �)� (t; f) dt df= ZZ �ZZ Ws�u� �t2 ; v � �f2 � �(t� u; f � v)� cos�2��u�t� v�f + 12�t�f�� du dv�� dt df= ZZ U�(t; f ;�t;�f) dt df; (114)where we have setU(t; f ;�t;�f) := ZZ Ws(u; v) cos�2� �u�t� v�f + 12�t�f�� �(t� u; f � v) du dv: (115)28



The identity between the last two lines of (114) is obtained by change of variables according tou� 12�t! u, v � 12�f ! v followed by t� 12�t! t, f � 12�t! f . EvidentlyjU(t; f ;�t;�f)j � (jWsj � j�j) (t; f) 2 L2(IR2) \ L1(IR2): (116)And also, by Lemma 8, for any t; f 2 IRU(t; f ;�t;�f) �! 0 (117)as jDj ! 1. Since � � 2, we conclude from (116), (117) and Lebesgue's theorem on dominatedconvergence that ZZ U�(t; f ;�t;�f) �! 0 (118)as jDj ! 1. This settles (112).As to (113), we can literally repeat the argument used for the Wigner distribution case (seejust after Lemma 9). This proves Theorem 2 for the case of Cohen TFRs with � 2 L1(IR2),RR �(t; f) dt df = 1. 2Finally, we note that the arguments to prove Theorem 2 remain valid when s + Ds = s + u isreplaced by s1 + Ds2, where s1; s2 2 L2(IR) are unrelated. In particular, for odd � � 3, we havethat limjDj!1ZZ W�s1+Ds2(t; f) dt df = ZZ W�s1(t; f) dt df + ZZ W�s2(t; f) dt df: (119)C Third-order R�enyi Entropy for the Sum of Two GaussiansIn this appendix we consider the 3rd-order R�enyi entropy of the sum of two Gaussian pulses in(27){(28). The parameters 
 and/or � in (28) will be suppressed in the case that 
 = 1 and/or� = 0; that is g
(�) := g
(�; 0); g(�; �) := g1(�; �); g(�) := g1(�; 0): (120)C.1 Simpli�cation via symplectic transformationWe �rst note that it is su�cient to consider the case
 = 1; a > 0; b = 0; w = 1; c = �a; d = 0; z 2 C n f0g: (121)To see this, write s ass = z0 Zp
 Rb0 Ta0 �(��)g�ja00 + jb00j� + z00 g��ja00 + jb00j� (122)where z0 = w ej �2 (b�d)(a+c); b0 = b+ d2p
 ; a0 = (a+ c)p
2 (123)29



z00 = zwe�j�(b�d)(a+c); a00 + jb00 = (a� c)p
2 + j b� d2p
 = ja00 + jb00j ej�: (124)The operators Z�; Ry; Tx and �(') in (122) are given by(Z�s) (t) := �1=2 s(�t); (Rys) (t) := ej2�yt s(t); (Txs) (t) := s(t� x) (125)and (�(')s) (t) := � � 1i sin'� 12 Z exp� ��j sin' �u2 cos'� 2ut+ t2 cos'�� s(u) du (126)when sin' 6= 0 and �(')s := � s (127)when sin' = 0. In (126){(127), the operator �(') is given apart from a sign that is irrelevant inthe present context (just like the number z0 in (122)). The operators in (125){(127) are membersof the metaplectic group, [15, Ch. 4], and their action on signals is re
ected by certain symplecticlinear transforms of the time-frequency plane. We have, explicitlyWZ�s(t; f) = Ws(�t; ��1t); (128)WRys(t; f) = Ws(t; f � y); (129)WTxs(t; f) = Ws(t� x; f); (130)W�(')s(t; f) = Ws(t cos'� f sin'; t sin'+ f cos'); (131)showing that integrals of functions of Ws over the entire time-frequency plane are invariant underapplication to s of any of these operators. (See also [34, Secs. 27.3, 27.4.2, 27.12.2].) Hence s andthe signal g (ja00 + jb00j) + z00 g (�ja00 + jb00j), (see (122)), yield the same value for the right-handside of (30). That is,Q
(a; b; w; c; d; z) = Q1�ja00 + jb00j; 0; 1;�ja00 + jb00j; 0; z00� (132)with z00 and a00 + jb00 given in (124).C.2 Proof of Proposition 4In this case, the signal in (30) is given bys(t) = g(a)(t) + r ej'g(�a)(t) = 2 14 e��(t�a)2 + 2 14 r e��(t+a)2+j': (133)We �rst note that Wg(a)(t; f) = 2 exp��2�(t� a)2 � 2�f2� ; (134)Wg(a);g(�a)(t; f) = 2 exp��j4�af � 2�t2 � 2�f2� : (135)30



Therefore Ws(t; f) = 2e�2�f2 �e�2�(t�a)2 + r2e�2�(t+a)2 + 2re�2�t2 cos(4�af + ')� (136):= 2e�2�f2(A1 +A2 + 2A3) (137)with the obvious identi�cations for A1, A2, and A3. We then obtainZZ Ws(t; f) dt df = ksk2 = 1 + r2 + 2rx3y; (138)the de�nitions of x and y from Proposition 4. Expanding,(A1 +A2 + 2A3)3 = (A1 +A2)3 + 6(A1 +A2)2A3 + 12(A1 +A2)A23 + 8A33; (139)we note that A1 +A2 depends on t only. CalculatingZZ e�6�f2(A1 +A2)3 dt df = 16(1 + r6) + 12(r2 + r4)x8; (140)ZZ e�6�f2(A1 +A2)2A3 dt df = 16(rx3 + r5x3 + 2r3x7) cos'; (141)ZZ e�6�f2(A1 +A2)A23 dt df = 112(r2 + r4)(1 + x4 cos 2')x2; (142)ZZ e�6�f2A33 dt df = 18r3 �13x9 cos 3' + x cos'� (143)and using y = cos'; 2y2 � 1 = cos 2'; 4y3 � 3y = cos 3'; (144)leads us to ZZ W 3s (t; f) dt df = 8 �16(1 + r6) + 12(r2 + r4)x8 + (r2 + r4)(x2 � x6) (145)+ (rx3 + r5x3 + 2r3x7 � r3x9 + r3x)y+ 2(r2 + r4)x6y2 + 43r3x9y3� :Therefore, from (138) and (145), we haveRR W 3s (t; f) dt df(RR Ws(t; f) dt df)3 = 43 + RR W 3s (t; f) dt df � 43 (RR Ws(t; f) dt df)3(RR Ws(t; f) dt df)3 (146)= 43 � �1� 2x2 + 2x6 � x8� h4(r2 + r4)� 8xyr3i �1 + r2 + 2rx3y��3= 43 � �1� x2�3 �1 + x2� r�1 + r2 � xy! r�1 + r2 + x3y!�3 ;and (33) follows from the de�nition of v in (32) and from (29). 231



C.3 Properties of Q(x; y; v)The form (33) is very convenient for �nding the minimum and maximum of Q1 and for studyingthe behavior of Q1 as a function of a,r, and '.We have, for instance, that Q(x; y; v) decreases for y 2 [�1; 1] for �xed x 2 (0; 1], v � 1. Hencethe minimum of Q equals the minimum ofQ(x;�1; v) = 43 � (1� x2)3 (1 + x2) v + x(v � x3)3 (147)over x 2 (0; 1], v � 1. The right-hand side of (147) is increasing in v � 1 when x 2 (0; 1] is �xed.Hence the minimum of Q equals the minimum ofQ(x;�1; 1) = 43 �  1� x21� x3!3 (1 + x2)(1 + x) (148)over x 2 (0; 1]. Since @Q@x (x;�1; 1) = � � 1� x1� x3�4 (1� x2)3; (149)we see that Q(x;�1; 1) decreases for x 2 (0; 1], so that its minimum value occurs at x = 1.Therefore, Q(x; y; v) � 427 = Q(1;�1; 1) (150)for x 2 (0; 1], y 2 [�1; 1], v � 1. Thus the maximum value of H3(s) = �12 log2( 427 ) � 1:377 (seeFigure 3).The maximum of Q clearly equals 4=3 and occurs at x = 1, (�1; 1) 6= (y; v) 2 [�1; 1] � [1;1).This bound and (150) combine to give (34). Thus the minimum value of H3(s) = �12 log2(43 ) ��0:208 (see Figure 3).The behavior of Q at (1;�1; 1) is somewhat irregular. We have for � � 0 thatlimx"1;(v+y)(1�x)�1!�Q(x; y; v) = 43 � 32(3 + �)3 : (151)Using (33) it is obvious that Q increases for x 2 (0; 1] when v � 1 and y 2 (0; 1] are �xed. However,from (33) and ddx � v � xy(v + x3y)3� = � y v(1 + 9x2)� 8x3y(v + x3y)3 ; (152)it follows that Q decreases in x near x = 0 and increases in x near x = 1 when y 2 (�1; 0) andv � 1 are �xed (see Figure 3).Finally, Q decreases or increases in v for x 2 (0; 1] and y 2 [�1; 1] according to whether v < or> 12xy(x2 + 3). Furthermore, we note thatQ(0; y; v) = 43 � 1v2 ; � 1 � y � 1; v � 1; (153)32



is the limiting value of Q1 in (33) as a!1.For the cases that y = �1, v = 1, we have the special resultsQ(x; 1; 1) = 13 + 14w2 � 3 + � 14w2 � 3�2 � � 14w2 � 3�3 ; (154)Q(x;�1; 1) = 13 � 14w2 � 1 + � 14w2 � 1�2 + � 14w2 � 1�3 ; (155)where (see Proposition 4) w = 12 �x1=2 + x�1=2� = cosh 13�a2; (156)so that 14w2 � 3 = cosh 13�a2cosh�a2 ; 14w2 � 1 = sinh 13�a2sinh�a2 : (157)This shows, for instance, that when x increases from 0 to 1, Q(x; 1; 1) increases from 1=3 to 4=3and Q(x;�1; 1) decreases from 1=3 to 4=27.C.4 E�ects of Gaussian smoothingWe next present formulas for the quantitiesRR (Ws � ��)n(t; f) dt df(RR (Ws � ��)(t; f) dt df)n ; n = 2; 3; (158)which are required in Sections 3.3 and 4.1. Here we take the signal s to be the sum of two Gaussiansas in (27) with w = z = 
 = 1 and �� to be the 2-d Gaussian (36). Using symplectic transformationsas in Section C.1 and the radial symmetry of both the Wigner distribution of g(0; 0) and ��, it canbe shown that the quantities in (158) remain the same when s is replaced by the signal2 14 e��(t�ja00+jb00)2 + 2 14 e��(t+ja00+jb00)2+j'; (159)with a00 + jb00 = 12(a� c+ j(b� d)) and ' =  � �(a+ c)(b� d). For the resulting signal (133) wecompute(Ws � ��)(t; f) = � e���af2�e���(t�a)2 + e���(t+a)2 + 2Re���t2 cos(2�af + ')� ; (160)with � = 11 + �2 ; R = e����2a2 : (161)Next, with x and y as in (32) and x1 = e� 13��a2 ; (162)the same methods as those employed in Section C.2 yieldZZ (Ws � ��)(t; f) dt df = 2(1 + x3 y); (163)33



ZZ (Ws � ��)2(t; f) dt df = � �1 + x61 + 4Ryx31 +R2(1 + (2y2 � 1)x61)� ; (164)ZZ (Ws � ��)3(t; f) dt df = (165)2�2 �13 + x81 +R2(x21 � x61) + (2Rx31 + 2Rx71 +R3x1 �R3x91)y + 4R2x61y2 + 43R3x91y3� : (166)A few additional simpli�cations lead to the formsRR (Ws � ��)2(t; f) dt df(RR (Ws � ��)(t; f) dt df)2 = 12 � �1� 12(1�R2)(1� x61)(1 + x3y)�2� (167)andRR (Ws � ��)3(t; f) dt df(RR (Ws � ��)(t; f) dt df)3 = �24 "43 � 1� x41(1 + x3y)3 �x41 � 2R2x21 + 1� (x41 � 2R�2x21 + 1)R3x1y�# :(168)To obtain (37), we substitute � = 1, R = x3=2, and x1 = x1=2.Finally, we turn to the expression (47) in Section 4.1. The de�nitions of x in (32) and of x1 in(162) show that we can ignore x and x1 in (167), (168) when a is su�ciently large (in Figure 6 wehave a > 2, and this is su�ciently large). Hence, replacing the right-hand sides of (167) and (168)by 112 �2 and 14 �(1 +R), respectively, and using (161), we obtain, to a good approximation, (47).D Information Lower BoundsD.1 Proof of Theorem 5In addition to Young's Theorem (Lemma 9 in Appendix B above), we will need a relatively recentresult of Lieb [19] (in [19], Lemma 9 is sharpened further).Lemma 10 (Lieb) Given s 2 L2(IR) and p � 2, thenkWskpp � (2p�1=p) ksk2p2 (169)with equality if and only if s is Gaussian.Using �rst Lemma 9 and then Lemma 10, we have for unit-energy sZZ C�s (t; f) dt df � kCsk�� � kWsk�� k�k�1 � 2��1� k�k�1 :Thus, H�(Cs) � 11� � log2 2��1� k�k�1 ;and (39) follows. 34



The bound (40) for the Wigner distribution follows from the same argument but omitting thekernel �. While Gaussian signals saturate the bound (40) for the Wigner distribution (because ofthe second assertion of Lemma 10), the more general bound (39) may be unattainable for otherCohen's class TFRs. 2D.2 Proof of Theorem 6Since the classical Young's theorem (Lemma 9) does not apply to the a�ne smoothing of (42), webegin by stating an analogue matched to the a�ne convolution(g#h)(c; d) := ZZ g(a; b) h�b (c� a) ; db � da db (170)de�ned on the a�ne group. The following was obtained by specializing the general results of[35, pp. 293{8] to the scalar a�ne group having group operation \�" de�ned by (a; b) � (c; d) :=(a+ c=b; bd), b; d > 0, and left Haar measure da db. All integrals and norms in the following can beinterpreted to run over the upper half-plane U := IR� IR+ to account for b > 0 in (a; b).Lemma 11 Let 1=p + 1=q = 1=r + 1 with 1 � p; q; r � 1. When g 2 Lp(U) and h 2 Lq(U), wehave g#h 2 Lr(U) and kg#hkr � kgkp khkq : (171)While the a�ne smoothing (42) is not a group convolution proper, the condition for exist-ence and integrability of an a�ne class TFR follows immediately from this Lemma. Substitut-ing �(tf; 1=f) := �(t; f) into (42) immediately yields the form (170) and the conclusion that
s 2 Lp(U), 1 � p � 1, provided Ws 2 Lp(U) and � 2 L1(U). A change of variable converts theconstraint on � into a constraint on the original kernel ��(t; f) 2 L1(U) , 1f �(t; f) 2 L1(U): (172)Now, using �rst Lemma 11 and then Lemma 10, we have for unit-energy sZZ 
�s (t; f) dt df � k
sk�� � kWsk�� �������� 1f �(t; f)���������1 � 2��1� �������� 1f �(t; f)���������1 : (173)Taking logarithms yields the result. 2
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