PATCHING UP X-TREES
SEBASTIAN BOCKER, ANDREAS W.M. DRESS, AND MIKE A. STEEL

ABSTRACT. A fundamental problem in many areas of classification, and partic-
ularly in biology, is the reconstruction of a leaf-labeled tree from just a subset
of its induced subtrees. Without loss of generality, we may assume that these
induced subtrees all have precisely four leaves. Of particular interest is the ques-
tion of determining whether a collection of quartet subtrees uniquely defines a
parent tree. Here, we solve this question in case the collection of quartet trees
is of minimal size, by studying encodings of binary trees by such quartet trees.
We obtain a characterization of minimal encodings that exploits an underlying
“patchwork” structure. We thereby obtain a polynomial time algorithm for
certain instances of the problem of reconstructing trees from subtrees.

1. INTRODUCTION

Trees are widely used to represent evolutionary, historical, or hierarchical re-
lationships in various fields of classification. In biology for example, such trees
(“phylogenies”) typically represent the evolutionary history of a collection of ex-
tant species or the line of descent of some gene [17]. They may also be used to
classify individuals (or populations) of the same species. In historical linguistics,
trees have been used to represent the evolution of languages [18], while in the
branch of philology known as stemmatology, trees may represent the way in which
different versions of a manuscript arose through successive copying [13].

In most of these applications, the objects of interest occur at the tips (leaves) of
the tree, and all other vertices of the tree correspond to a branching (or speciation)
event. From a mathematical perspective, we have a finite set X V) of objects of
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interest (species, languages, etc), and we consider triples T' = (V, E; ¢) consisting
of a tree (V, E) with finite vertex set V = Vg and edge set E = Er C (), and a
map ¢ = ¢r : X — V such that

(1) vEHX) holdsforall veV with degp(v) <2,

where degy(v) denotes the degree #{e € Ep: v € e} of the vertex v € V.

A triple T = (V, E; ¢) which satisfies these conditions is henceforth called an
X-tree. Denoting the set of vertices of degree 7 by V;, we define an X-tree T' =
(V, E; ¢) to be a phylogenetic X -tree if ¢ is a bijection from X onto the set V; of
leaves of (V, E); if, in addition, every vertex in V is of degree 1 or 3 (in which
case (V, E) is called a binary tree), then we will say that T = (V, E; ¢) is a binary
X-tree. Two X-trees T = (V,E;¢) and TV = (V', E'; ¢') are isomorphic if there
exists a bijection @ : V — V' which induces a bijection between E and E’ and
which satisfies ¢’ = a0 ¢ (in which case there is exactly one such map ).

Clearly, every X-tree T = (V, E; ¢) gives rise to a unique phylogenetic X-tree
Tphyl = (Vohyl, Ephyl; ¢phy1) defined by

Vot ==V U {z € X : degr(d(z)) # 1},
Ephyl =EU {{¢($)5$} : z€ X and degT(¢(a:)) 7é 1} )
¢(z) if degr(¢(z)) =1,

and ¢phyl X - Vi)hyl HE i o .
T otherwise.

As is well known, there is a canonical and useful one-to-one correspondence
between (isomorphism classes of) X-trees and certain set systems, due to Bune-
man [5], which we shall now recall:

A split of X is a subset {4, B} C p(X) such that A, B is a bipartition of X
into two non-empty, disjoint subsets; a partial split of X is a split of some non-
empty subset of X. We let S(X) (resp. Spart(X)) denote the set of all splits of X
(resp. all partial splits of X). Two splits 51,52 are called compatible if there
exist A; € S; and Az € Sy with A; N Ay = 0. A partial split {4, B} is trivial if
min{#A, #B} = 1. A partial split S; = {A;, B;} is said to eztend a partial split
Sy = {Az,B2} if Sy = {(A2 UBs)NA;, (A2 U By) N B} holds (that is, A2 C 4,
and By C By, or Ay C B; and Bz C A;) in which case we will also write S3 < Sj.

Now, each edge e in an X-tree T = (V, E; ¢) gives rise to a split of X —simply
delete e from E and apply ¢! to the two connected components of the resulting
graph (V,E — {e}) to obtain a split, which we will call a T-split and denote
by S[e] = Srle]. Let S[T} denote the set of all T-splits. It is easily checked that
distinct edges induce distinct splits and that the set S[T'] is compatible, that is, any
two splits from S[T'] are compatible. Furthermore, we have #S[T| < 2#X —3 with
equality precisely if 7' is a binary X-tree which follows easily from the following
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fundamental property of trees: if, for a tree (V| E), we denote the set of inner
edges not incident with a leaf by ¥ C E, then

(2) H#E<#V +#V3 -3

for every finite tree (V, E) while equality holds for a tree with #V, = 0 if and only
if that tree is binary.
Buneman established the following fundamental correspondences in [5):

Lemma 1. The map T ~+ S[T] induces bijections between:

(i) the set of (isomorphism classes of) X-trees and the set of compatible split
systems S C §(X);
(ii) the set of (isomorphism classes of) phylogenetic X -trees and the set of all
those compatible split systems S C S(X) that contain all trivial splits of X ;
(iii) the set of (isomorphism classes of) binary X -trees and the set of compatible
split systems S C S(X) for which #S = 2#X — 3 holds, or—equivalently—
the set of mazximal compatible split systems.

This correspondence between X-trees and compatible split systems provides a
convenient partial order on the set of (isomorphism classes of) X-trees: we write
T' < T precisely if S[T] C S[T]. Informally, T/ < T states that 7’ can be obtained
from T by contracting edges, and identifying corresponding vertices—so, ¢ may
be Jess “refined” than ¢r.

Note for instance that T < Tphy holds for every X-tree T and that Tppy is
uniquely determined (up to isomorphisms) by the equation

(3) S{Tphy] = S[T]U {{{x},X —{5}}: ze X}

Now, given an X-tree T' = (V, E; ¢) and a non-empty subset Y C X, we obtain
an induced Y-tree T|y as follows: first construct the minimal subtree (V’, E')
of (V, E) that connects all vertices from ¢(Y). Then, make this tree “homeomor-
phically irreducible” by replacing each maximal path running (except for its two
end points) through degree-two vertices from V' — ¢(Y") only, by a single edge
(and deleting the superfluous vertices and edges) to obtain a tree (Vy, Ey). The
restriction ¢ly =: ¢y maps Y into Vy and satisfies condition (1) (with X,V
and T replaced by Y, Vy, and T|y, respectively). We call the resulting Y-tree
T|y = (Vv, By; ¢y) the induced (Y-)subtree of T. We will say that an X-tree T
displays a Y-tree T if 7" < T'|y holds.

A more succinct, but less visual description of T'|y is, in view of Lemma 1, to
describe its set of splits:

S[T|y]= {9 € S(Y): 8§’ < S holds for some S € S[T]}
) = {{ANY,BNY}: {A,B)} €S[T] and ANY,BNY #0}.
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QOur interest lies in the reverse reconstruction problem: Given as input a col-
lection of subtrees, we wish to determine whether there exists some X-tree which
induces or—at least—displays these subtrees, and if so, whether there exists ex-
actly one such tree. Formally, let (Y1,...,Y;) be a family of non-empty subsets
of X, and consider a family F := (T1,... ,T;) where T} is a Yj-treefor j = 1,... , k.
We may wish to consider the set 7(F) of all (isomorphism classes of) phylogenetic
X-trees T that display every tree in F.

As we will see in the following section, the related and seemingly more special
task of reconstructing trees from partial splits is actually equivalent to the task
described above; so, the problem of computing 7(F) can always be reduced to
this particular version of the reconstruction problem.

There are several reasons why such reconstruction problems arise naturally in
applications such as biology. Firstly, we may wish to combine trees that have
been reconstructed using distinct, though overlapping collections of species (usu-
ally by different researchers, using different data and, as often as not, different
reconstruction methods). A second reason is that it is, in general, difficult to ac-
curately reconstruct large trees directly, and we may choose instead to reconstruct
trees for small subsets and then combine these in a parent tree (or parent trees),
see [2,9,10,16,19]). A third reason is that, for genetic data, the number of sites
that can be accurately aligned across a small number of closely related sequences
is generally much larger than the corresponding number of sites for a set that is
large and includes rather diverse sequences.

If we were to construct F by estimating a tree for every subset of size 4, then,
as #T(F) < 1 must hold (cf. [2]), we could easily compute 7(F) and would
usually find that 7(F) = @ holds—that is, some of the subtrees must have been
incorrectly estimated (this was already known to Colonius and Schulze [6, 7], see
also [19]). Thus, we may wish to use only those subtrees which are strongly
supported by the data (usually involving closely related objects)—and so we will
generally have available trees for only a small number of subsets of X. This makes
the reconstruction problem more difficult computationally, but—of course—also
more gratifying whenever one is lead this way to a simultaneously non-empty and
well-supported set of trees.

Of course, we could examine all X-trees to determine which (if any) of them
display (every tree in) F; however, this is computationally infeasible, since even
the number of non-isomorphic binary X-trees grows super-exponentially with the
number of leaves. Indeed, this number is precisely the product 1-3--- (2#X — 5)
of the first (#X — 2) odd numbers, a result which dates back to 1870, see [14].
This motivates the results described below.
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2. PARTIAL SPLITS

Given a partial split S = {4, B} € Spart(X), we define the support of S by
S := AU B, and for every z € S, we define S(z) := Aifz € A and S(z) := B
else; for § C Spart(X), we define S :=Jgc5 S.

For natural numbers i, j, let
(5) 8ij(X) = {{A, B} € Spart(X) : {#A,#B} = {i,4}}.

A partial split Q@ € Q(X) := S22(X) is called a quartet split, and we write
Q@ = zy|wz as shorthand for Q@ = {{z,y}, {w, 2}}.

Given a subset § C Spari(X) of pé.rtia.l splits of X and an X-tree T, we say
that T is concordant with S if, for every {A, B} € S, there exists at least one edge
e of T that separates ¢(A) from ¢(B), that is, with {4, B} < S[e]. Clearly, T is
concordant with § if and only if it displays, for every S € S, the corresponding
2-vertex S-tree

(6) (5,{Shi¢s: S—S: z— 5(z)) .

Let Tx(S) = T(S) denote the set of all (isomorphism classes of) phylogenetic
X-trees concordant with S. We will say that S is strictly arboreal if 7(S) = {T}
holds for some X-tree T in which case S will also be said to be strictly T-arboreal,
while any set S with 7(S) # 0 will just be called arboreal, or T-arboreal if
T € T(S).

Note that T € 7(S) and T < T’ implies 7’ € 7(S), hence any X-tree T for
which a set & C Spart(X) exists which is strictly T-arboreal must be a binary
X-tree.

Note also that a collection S of partial splits that is strictly T-arboreal for
some binary X-tree T' = (V, E) must contain at least one partial split for every
inner edge which specifically “fits” this edge and, hence, S must contain at least
#E = #X — 3 distinct non-trivial splits in view of inequality (2). It is easily
shown [2,15] that, for § C Spart(X) and

(7) Q(S):={Q € &(X): Q LS for some S € S},
the relation

T(5) =T(Q(S))
must hold. Thus, there is no loss of generality in restricting one’s attention to
quartet splits when reconstructing (phylogenetic) trees from partial splits. Simi-
larly, we have

(8) TE =T(U., ST = T(Q(Uiﬂ,... s))
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for any family F = (T3, ... ,Tx) as above, so the problem of reconstructing trees
from subtrees also reduces to the problem of reconstructing them from (quartet)

splits.
3. QUARTET ENCODINGS

In this section, we analyze conditions under which a binary X-tree is uniquely
determined by selecting, for each inner edge e, a corresponding representative
quartet split @ with @ < S[e]. In order to describe our main result (Theorem 1),
we must introduce some more terminology and preliminary results.

Definition 1. Let T = (V, E; ¢) denote a binary X-tree. A map
q: E— Q(X)

is called a guartet encoding of T if S{e] extends g(e) for each e € E. For every
e € E and F C E, we define
gale) := g(e), g(F):={q(e): e€ F}, and g¢(F):= U q(e).
ecF
We will say that ¢ defines T if T' is the only phylogenetic X-tree concordant with
q(E), that is, if g(E) is strictly T-arboreal. A quartet encoding g is tight if, for
each edge e € E, there exists no other edge in E separating the two subsets in g(e).

It is easy to see (cf. [15]) that a quartet encoding that defines a tree T is tight;
furthermore, given a binary X-tree T' and a tight quartet encoding g of T', then
¢(E) = X and #q(F) = #X — 3 holds. It is also easy to see that a set of quartet
splits Q with #Q = #X — 3 is strictly T-arboreal for some (necessarily binary)
X-tree T if and only if there exists a quartet encoding g of T with @ = g(E) that
defines 7.

We now present three instructive examples of tight encodings.

Examples.
1. For X := {1,... ,6}, consider the binary X-tree T} = (V, E; ¢1 := Idx) with
E :={ey,..., €9} having the nontrivial splits
Sled] = {{1,2},{3,4,5,6}},
Slea] = {{3,4},{1,2,5,6}},
and  Sles] = {{5,6},{1,2,3,4}},

plus the six trivial splits as depicted in Fig. 1 (a). Consider the quartet
encoding q : E = {e1, e3,e3} = Q(X) defined by

(9) g(e1) :== 12|45, g(e2) := 34|16 and g(es) := 56|23.

Then g is a tight encoding of T}, but does not define 73, as it also encodes
the X-tree T, depicied in Fig. 1 (b).
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(@ (b)
FIGURE 1. Two possible binary trees for Example 1; also the trees
T, and T from the proof of Lemma, 2.

2. Suppose that X := {1,...,7}, that T = (V, E; ¢ := Idx) is a caterpillar
with seven leaves as depicted in Fig. 2, and that ¢ : £ — Q({1,...,7}) is
the following quartet encoding:

q(e1) := 12|36, g(ez) := 13|46, g(e3) := 24|57 and g(e4) := 25|67
Then it is easy to check that ¢ defines T

oo ow
o s oo

FI1GURE 2. Caterpillar with seven leaves.

3. Suppose ¢ is any tight quartet encoding of a binary X-tree with

mg(e) #0.

ecE
Then it has been observed in [15] that g defines T'; see also Corollary 9.

At this point, we want to include a remark on the non-existence of consen-
sus methods that are equivariant and Pareto on subtrees: In phylogenetic anal-
ysis, a consensus method M is a function that takes a collection of X-trees
and returns a single X-tree (which—hopefully—represents some “consensus” or
common agreement between the trees). Clearly, a desirable property of such a
method is that it should be independent of how the objects in X are ordered.
More precisely, given a collection F of X-trees and a permutation 7w of X, let
F* := {(V,E;¢on) : (V,E;¢) € F}. Then M should satisfy the following prop-
erty of equivariance:

(10) M[F] = (V,E;¢) = M[F"|=(V,E;¢eon)
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A variety of equivariant consensus methods have been proposed, and in case X
has a distinguished (out-group) element o € X (in which case we may regard the
trees as rooted), there exist methods which satisfy a further desirable “Paretc”
condition: if all the input trees in F display the same A-tree for a subset 4 of X
containing o, then the consensus tree should display this A-tree, too. Formally,
such a method satisfies the following property: whenever o € A C X, T4 is an
A-tree, and F is a set of X-trees, then:

(11) Ta<T|a fora.llTE}-=>TASM[.7:]|A

Despite some attempts by practitioners, no equivariant method has been found
which satisfies (11) if the restriction o € A is lifted. In fact, as we now show, no
such method can exist, even if one restricts oneself to sets F of phylogenetic or
binary trees:

Lemma 2. When #X > 6, there is no equivariant consensus method M which
satisfies (11) for all subsets A of X of size 4, even if M is restricted to sets F of
binary or phylogenetic X -trees.

Proof. We consider the case X = {1,2,3,4,5,6}, the general case is similar. Let
Ty = (V,E;¢1 = Idx) denote the tree depicted in Fig. 1 (a), let ¢2 denote
the permutation 7 := (2,6)(3,5) of X, put Ty := (V, E;¢2) and, finally, put
F := {T1,T2} (cf. Figure 1). Now, it can be checked that if an X-tree T displays
Ti|a for A € {q(e;) : i = 1,2,3} (where g is given as in (9)), then T must be
isomorphic to either 7} or T,. So, any tree M[F] satisfying the condition

Ti|la < M[F]|4 forall AC X with #A =4 and Tj|4 = Th|a

must be isomorphic to either 77 or T,, and, hence, it cannot remain invariant
under 7, while we do have F* = {T1,T3}" = {T5,T1 } = F. |

To exploit inequality (2), we now introduce the following definition:

Definition 2. Given a binary X-tree T = (V, E;¢), a subset F C E, and a
quartet encoding ¢ : E — Q(X), the (g-)ezcess of F is given by

(12) exc(F) = excy(F) := #q(F) — #F - 3.
We say F is (g-) ezcess-free if exc(F) = 0 holds.
Note that exc({e}) = 0 holds for every e € E, and that exc(f) = —3.

Lemma 3. Suppose that g is a tight quartet encoding of a binary X-tree T =
(V,E;¢). Then,

(i) exc(E) =0;
(ii) for every non-empty subset F' C E, one has exc(F) > 0;
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(iii) if F 1is ezcess-free, then F is a connected subset of edges in T', and F equals
the set of inner edges of T|q(F).

Sketch of proof. (i) This is merely the statement that a binary tree with n leaves
has n — 3 inner edges.

(#) Consider T|y = (Vy, By; ¢y) with Y := g(F) and note that, as g is tight,
we have F C (Ey)°. Hence, (2) implies

#F < #(By) < #Y —3=#4(F) - 3,

as claimed.

(iii) As above, we consider T|y = (Vy, Ey;¢y) for Y := ¢(F). If F were not
connected, then F' C (Ey)’ since (Ey)’ is connected. From (2), we would conclude
#F < #(Ey)’ < #Y — 3 and, hence, exc(F) > 0. O

To illustrate the usefulness of these concepts, we show now how they provide
further constructions of encodings that define a binary X-tree T'. First, we make
a further definition: let us say that two distinct elements z,y of X are (a pair
of) twins of T if the two edges incident with ¢(z) and ¢(y), respectively, share
a vertex v = v(z,y)—in which case the third edge incident with v is denoted
by e(z,y). In Example 1, for instance, () and (@) are a pair of twins for the tree
depicted in Fig. 1 (a) with e(@,®) = e1. If #X > 4, every binary X-tree has at
least two pairs of twins, and one has e(z,y) € E for every pair z,y of twins.

Examples.

4. Suppose that T = (V, E; ¢) is a binary X-tree such that the inner edges of T
are labeled E = {ej1,... ,en—3}, and that ¢ is a tight quartet encoding of T'
with

(13) #(c_](e,;)\Ug(ej))=1 for 1=2,...,n~-3.
j<i
Then q defines 7. To prove this, we apply induction on n. The result holds
for n = 4, so suppose it holds for 4,...,n — 1 and that #X = n. Let 7"
denote another binary X-tree that is concordant with ¢(E). By assumption,
there exists z € X with z € g(ep—3), but = ¢ g(e;) for j=1,...,n—4. We
define Y := X — {z} and F := {e1,... ,en—4}; then ¢|r defines T'|y as well
as T'|y and, hence, T'|ly & T'|y by the induction hypothesis. It remains to
show that z is attached to the same edge of T' and 7". To this end, we infer
from Lemma 3 (iii) that F is connected, since ¢ is tight and exc(F) = 0. So,
z must have a twin in T, denoted y € Y, and {z,y} € ¢(e,—3) must hold.
But the same holds true for 7" which indeed implies T = 7". O
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5. For a binary X-tree T = (V, E;¢), define clus(T) := |, g Sle], the set of
clusters of T'. Suppose f : clus(T) — X is any function which satisfies the
condition

(14) f(A)e A forall Ae€clus(T).

Then, f defines a tight quartet encoding of ', denoted ¢y, as follows: for each
inner edge e = {v1,v2}, deletion of v; and vy and their incident edges par-
titions T into four connected components and, thereby, it partitions X into
four sets {A;, A3, B1, B2}, where we may suppose, without loss of generality,
that S[e] = {{A1 U Az}, {Bl U Bz}} Let

gs(e) == f(A1)f(A2)|f(B1)f(B2) .

Clearly, not every tight quartet encoding is of this form; furthermore, g¢ does
not necessarily define T'. However, if we impose a further condition we can
achieve this, as follows: suppose f satisfies the condition:

(15) f(A)e BC A= f(A)=f(B) forall A,B €clus(T)

Then g; satisfies the condition described in Example 4. In particular, gf
defines T'.

Sketch of proof. It suffices to show that the edges of T' can be labeled as de-
scribed in Example 4 (and so as to satisfy (13)) which is again achieved by in-
duction on n := #X. Let {z,2'} be a twin in T', and suppose f({z,z'}) = z'.
We define Y := X — {z} and T' := T'|y. Then, by the condition placed on f
we obtain a corresponding function f': clus(7"') — Y that satisfies (14) with
f, T replaced by f,T’, and hence the edges of 7' can be ordered {e,. .. en—4}
so as to satisfy the condition (15). We then label the edge e(z, ') of T inci-
dent with the twin {z,z'} as e,_3, and verify that this also satisfies (13) for
i=n-—3. O

This last example generalizes a result from [8] where a specific function f satisfying
(15) is considered. In that setting, T' has an associated edge weighting, X is given
a total ordering, and f selects, for each cluster A, the minimal element (under the
imposed ordering on X), taken over all elements of the set A that are nearest to
that edge e for which S[e] = {4, X — A} holds.

The excess-free subsets of E for a tight quartet encoding g have a useful “patch-
work” structure, which we now discuss. Following [3], a collection C of subsets of
a set M is called an M-patchwork if it satisfies the following condition:

(16) ABeC and ANB#0 = ANB,AUBeC
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There are quite a number of distinct characterizations of patchworks that are
ample, that is (cf. [3]), of patchworks C that satisfy the condition

(17) ABeC and #{Ce€C: ACCCB}=2 = B-A€C;
in particular, if M is finite, then
(i) a patchwork C C p(M) with {m} € C for all m € M is ample if and only if,
for every cluster C € C with #C' > 2, there exist disjoint non-empty clusters
A,BeCwithC=AUB; ‘
(ii) given a patchwork C C p(M) with {m} € Cfor allm € M and §, M € C, then

C is ample if and only if C contains a mazimal hierarchy C', that is a maximal
subset C’ of p(M) for which AN B € {0, A, B} holds for all A, B € C'.

Note that for n = #M, we can check whether an arbitrary patchwork C C p(M)
is ample in O(k - n?) steps, provided we can compute, for every N C M, the value
xc(IN) of the characteristic function xc : C — {0,1} in at most k steps (see [3]).

Lemma 4. Suppose that g is an arbitrary quartet encoding of a binary X-tree
T = (V,E;¢) and assume F1,Fy C E. Then,

(18) exc(Fi U Fy) + exc(F1 N ) < exc(F) + exc(F) .

Proof. In view of g(Fy N F3) C ¢(F1) N g(F3), we have

exc(Fi U Fs) + exc(Fy N Fy) + 6
=#9(F1U F) — #(F1 U F) + #q(F1 N Fp) — #(FL N F)
< #(g(F1) U g(F2)) + #(a(F1) N'q(F2))

- (#(FLUFR) +#(FLNF))
= #q(F1) + #q9(F2) — #F1 — #F,
= exc(F1) + exc(F2) + 6. O

Lemma 5. If q is a tight quartet encoding of T = (V, E; ¢), then the excess-free
subsets of E form a patchwork denoted by C(q).

Proof. Let Fy, Fy C E denote subsets with exc(F}) = exc(F2) =0and F1NF, # 0.
By Lemma 3 (ii), we have

exc(F1NFy) >0 and exc(FiUF) >0,
yet by Lemma. 4,
exc(F1 n Fz) + EXC(Fl U Fg) <0.

Consequently, exc(F) N Fy) = exc(F] U F») = 0, as required. O
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It is tempting to conjecture that if g defines a binary tree T', then there always
exists an edge e € E such that E — {e} is g-excess-free. In some cases (eg. for
encodings constructed as in Examples 4 and 5 above), this is indeed the case,
but in general it is not (Example 2 provides a counterexample with seven leaves).
Nevertheless, we can still hope that the excess-free subsets of E form at least an
ample patchwork, and this turns out to be indeed the case, as we state now as
part of our main result:

Theorem 1. Given a quartet encoding q of a binary X-tree T = (V, E; ¢), then
the following two statements are equivalent:

(i) T is defined by q;
(ii) q is tight, and the patchwork C(q) of excess-free subsets of E is ample.

While the proof that (ii) implies (i) is relatively easy, following the lines of
thought used already in the previous examples, the converse—except for the fact
that ¢ must be tight—is far from trivial: One proceeds by induction relative to
n := #X which allows one to assume that

Clg)cr :={F' €C(q): F' CF}
is an ample patchwork for all subsets F’ of X contained in
Clo)ex :={F' €C(g): F ¢ X}.
It then follows easily (cf. [3]) that
max (C(g)cx) == {F € C(9)cx : F C F' €C(g)cx implies F = F'}
must be a partition of X into at least three distinct subsets.

The next step consists of applying the induction hypothesis to trees one derives
from T by identifying pairs of twins z,y € X. This way, one is led to study
decompositions of F into two disjoint and connected subsets Fy, = Fi(z,y) and
Fy = Fy(z,y) with e(z,y) € F,

#(Q(Fl - {e(way)}) U {m’y}) = #Fl + 37

and exc(F) = 0 or #(q(F2) —{z,y}) = #F>+2. Next, one shows—and this is the
most tricky part of the whole proof—that (i) by choosing F; = Fj(z,y) maximal
subject to these conditions, one can always assume exc(F;) = 0, and (ii) that
exc(F2) = 0 and #F; > 2 would in turn imply the existence of a connected subset
F} € C(q) with F, C F; and I — F} € C(qg) in contradiction to # max(C(g)cx) > 3.
Consequently, we can assume that, for every pair z,y of twins in T, there exists
a single edge f(z,y) € E — {e(z,y)} such that F} := E — {f(z,y)} and Fy :=
{f(z,y)} is a pair as above, that is, with

#(a(E - {e(z,9), £2,9)}) Uz, u}) = #(E = {f(z,)}) +3
=#X -4 +3 = #X -1
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which in turn implies that f(z,y) must be of the form e(z’, y') for some pair z’, 3’
of twins (because F; = E — {f(z,y)} is connected) and with, say, =’ the unique
element in X missing in ¢ (E—{e(z,y), f(z,y)})- Applying the same argument now
to the twins z’,3’ and repeating this process iteratively will therefore eventually
‘produce a sequence of distinct pairs x1,y1; 2,¥2; ...; Tk, Yx of twins such that,
for i =1,...,k (mod k) we have

g(E — {e(zi, 1), (@it vir1)}) U{zi, 0} = X — {zip1}

which in turn implies easily that we can construct a second X-tree (V', E'; ¢')
which is concordant with g(¥): Note first that our assumptions imply that, for
each i = 1,...,k, there must exist some z; € X with z;y;|z;i 112 = g(e(zs,v:)),

and that z; € {z1,...,z;} cannot hold because—according to our construction—
e(zi,y;) is the only edge in F — {e(zit1,¥i+1)} with zi41 € g(e(zi, ;). Hence,
we can cut off, for every 2 = 1,...,k (mod k), the edge incident with ¢(z;+1) and

implant it instead into the edge incident with ¢(z;) as depicted in Fig. 3 below.

Xis1

/7 Yist / Yis1
= <

Xis1 4

F1GURE 3. Cutting off and re-implanting edges.

If z; = 241, we have to make sure that the edge leading to ¢(z;42) gets im-
planted closer to ¢(z;) than the edge leading to ¢(z;;+1)—no further special care
needs to be taken (and because we cannot have z; = 23 = - -+ = 2, this require-
ment can always be fulfilled).

Finally, defining V', E' and ¢’ accordingly, we find a second X-tree (V', E'; ¢')
which is clearly non-isomorphic with (V, E; ¢)—the final contradiction. O

Remark 6. Note that for the tree 7 considered in Example 1 and in the proof of
Lemma. 2 (see also Fig. 1), we can choose f(2i —1,2i) € {e;,ex} for all {4,5,k} =
{1,2,3}, so we can use the twin sequence 1,2; 4,3 as well as the twin sequence
2,1;4,3; 6,5, leading to z; = 5 and 23 = 6 or 21 = 5, 23 = 1, and 23 = 3,
respectively; and indeed, both rearrangements lead to a tree isomorphic to 7%.
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The detailed proof will take up more than 20 pages of reasoning, and so it will
be published elsewhere (see [4]). The equivalence of the conditions of the following
corollary is proven in [3].

Corollary 7. Suppose we are given a binary X-tree T = (V,E; ¢) and a set of
quartet splits Q such that #Q = #Q — 3. Then, Q is strictly T-arboreal if and
only if there exists a tight quartel encoding q of T with Q = q(E’), and one of the
following (equivalent) conditions holds true:

(i) the patchwork C(q) of g-excess-free subsets of E is ample;
(ii) for every subset F € C(g) with #F > 2, there exist disjoint subsets Fi,Fo C F
with F UF, = F and F,, F; € C(q);
(iii) given a family F = (F})icr (with indez set I of cardinality #I > 2) of disjoint
subsets F; € C(q) for i € I such that | J;c; F; € C(q) holds, there exist distinct
indices i,j € I with F; U Fj € C(qg).

Corollary 8. Suppose a set of quartet splits Q with #Q = #Q —3 > 2 is strictly
arboreal. Then, Q is the disjoint union of two proper subsets Q) and Qg with
#0Q; = #Q; — 3 for i =1,2 that are strictly arboreal.

4. TMPLICATIONS FOR TREE RECONSTRUCTION

We return now to the problem that motivated our analysis of minimal quartet
encodings of binary trees, namely the problem of reconstructing trees from a col-
lection of quartet splits. As a corollary to Theorem 1, we can derive the following
result already mentioned in Example 3:

Corollary 9. Suppose Q C Q(X) is a subset of cardinality #Q = #Q — 3 such
that Ngeg @ # 0 holds. If there exists a binary X-tree T and a tight quartet
encoding q of T with ¢(E) = Q, then Q is strictly T-arboreal.
Proof. Assume z € (oo @, define v <u for u,v € V if the path from ¢(z) to u
. passes through v, and put

Viv):={ueV:v<u} and

Ew):={e€cE: eCV(v)}.
Now, it is easy to see that

C':={E@): veV}

is a maximal E-hiera.rchy, and that every non-empty element from C’ is in C(q).

In view of the results in 3], this implies that C(g) is ample. O

Suppose we have a set Q of quartet splits, and we wish to determine whether
or not Q is strictly arboreal, and if so to construct the unique (binary) tree T' that
is concordant with Q, where both tasks are to be carried out in polynomial time
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in n := #X. If the conditions of Corollary 9 are fulfilled, this can be achieved
using the algorithm of Aho et al. [1]. However, in general, even the problem of
determining whether or not 7(Q) is non-empty is an NP-complete problem [15].
Nevertheless, Theorem 1 allows us to construct a polynomial time algorithm which
has the following property: in case Q contains a strictly arboreal subset @' C Q °
with @ = X and #Q = #X — 3, then the algorithm determines whether Q is
arboreal, and if so reconstructs the unique (necessarily binary) tree in 7(Q).

At this point, two comments are in order. Firstly, even if we suppose that
#T(Q) =1 holds, this does not imply that Q contains a strictly (T-)arboreal
subset of size #Q — 3 as the following example demonstrates.

Example.

6. The set Q := {12|35,24|57,13]47,34|56,15|67} C Q({1,...,7}) is strictly
arboreal for the caterpillar with seven leaves as depicted in Fig. 2, but, for
any subset of Q of size 7 — 3 = 4, there are at least two trees concordant
with the resulting collection. (from [15})

In [4], we will present an algorithm that checks—given a quartet encoding
g: E = Q(X) of some binary X-tree T = (V, E; ¢)—whether C(q) forms an am-
ple patchwork in O(n2) time for n = #X. Furthermore, if Q@ C Q(X) is strictly
arboreal and has size n = #Q — 3, it is relatively simple to formulate a recursive,
polynomial time (in n) algorithm for reconstructing T from Q using Theorem 1.
However, a much more useful algorithm would reconstruct 7' when Q merely con-
tains such a strictly arboreal set of size n—3 as a(n unknown) subset. The following
approach achieves this objective in polynomial time.

Definition 3. The dyadic closure of a collection @ C Q(X) of quartet splits,
denoted cls(Q), is the minimal subset of Q(X) that contains Q and is closed
under the following two rules:

(del) ab|cd, ablce € cla(Q) = ablde € cl2(Q)
(de2) ab|cd, ac|de € cla(Q) = ablce, ab|de, be|de € cla(Q)

It is clear that the dyadic closure cl3(Q) of @ C Q(X) can be computed in
polynomial time in n := #X (for a particular algorithm, see [8]). It is of course
possible that ¢l3(Q) may contain both zy|wz and zw|yz for z,y,w, z € X—such a
pair of quartet splits we say is contradictory. In this case, it is clear that 7(Q) = 0
since any tree that induces the input splits to either rule, must also induce the
output split, and no tree can induce contradictory splits. Note also that 7' can be
reconstructed from Q(S[T]) in O(nlog(n)) steps, see [11,12]. Thus, the following
theorem (which relies on Corollary 8 to Theorem 1, and whose proof we also defer
to [4]) provides a polynomial time solution to the tree reconstruction problem
under certain conditions:
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Theorem 2. Suppose there ezist collections Q' C Q C Q(X) with @ = X and
#Q = #X — 3, and a binary X-tree T such that Q' is strictly T-arboreal. If
T(Q) # 0, then cla(Q) = Q[T holds; otherwise cla(Q) contains a contradictory
pair of quartet splits.

Example 6 shows that even when Q is strictly T-arboreal, it may not neces-
sarily be the case that cl2(Q) = Q[T]. Indeed, the computational complexity of
determining whether a general set @ C Q(X) is strictly arboreal (or even strictly
T-arboreal for T' given) is still not resolved. We also note that cl2(Q) can equal
QT even if Q does not contain a strictly T-arboreal subset of size #Q — 3 as the
set Q* := {12|34,12|45,26(15,45|36} testifies. Notice that this example relies on
both dyadic rules to reconstruct Q[T’]. However, it can be shown that Theorem 2
remains true when cly(Q) is replaced by the “semi-dyadic closure” of Q, which is
defined in the same way as clo(Q), except allowing just rule (dc2). If we denote
the semi-dyadic closure of Q by scla(Q) then scla(Q*) = Q* holds for the example
mentioned above.
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