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Abstract

We present a model of amino acid sequence evolution, based on a hidden
Markov model, that extends to transmembrane proteins previous methods
that incorporate protein structural information into phylogenetics. Qur
model aims to give a better understanding of processes of molecular
evolution, and to extract structural information from multiple alignments of
transmembrane sequences and use such information to improve phylogenetic
analyses. This should be of value in phylogenetic studies of transmembrane
proteins; for example, mitochondrial proteins have acquired a special
importance in phylogenetics and are mostly transmembrane proteins. The
improvement in fit to example data sets of our new model relative to less
complex models of amino acid sequence evolution is statistically tested. To
further illustrate the potential utility of our method, phylogeny estimation
is performed on primate CCR5 receptor sequences, sequences of ‘1’ and ‘m’
subunits of the light reaction centre in purple bacteria, guinea pig sequence
with respect to lagomorph and rodent sequences of calcitonin receptor and

K-substance receptor, and cetacean sequences of cytochrome-b.



Introduction

Recent phylogenetic analyses of DNA and protein sequences have been
improved by incorporating structural and functional properties into
inferential models. A first approach has considered information only
indirectly related to structure, such as physicochemical properties (e.g.
hydrophobicity, charge, size) of amino acids in mitochondrial proteins
(Naylor and Brown 1997). Rzhetsky (1995) introduced a model that takes
into account rRNA secondary structure elements, namely stem and loop
regions, to estimate base substitution in ribosomal RNA genes and to infer
phylogenetic relationships. Phylogenetic studies could gain great advantage
from the comparison of tertiary structures of homologous proteins belonging
to different species but it seems very unlikely that structural biologists will
soon fill the gap between the explosion in protein sequences and the
relatively slow speed at which experiments can reveal protein structures.

There are several reasons to use protein secondary structure
information in evolutionary models. Selection pressure acts on protein
function that, in turn, is closely related to structure. Hence, incorporating
structure information into evolutionary analyses can assist in incorporating
selective constraints. With respect to the primary structure, secondary
structure of homologous proteins persists long after the statistically
significant sequence similarity has vanished; sequences with 25% sequence
amino acid identity are very likely to have the same secondary structure
organization (Chothia and Lesk 1986; Russell et al. 1997). Secondary
structure is expected to be more useful than tertiary structure in
evolutionary studies since secondary structure elements are more conserved
than the precise atomic structure (Mizuguchi and Go 1995): changes
mainly occur at boundaries of a-helices and S-sheets, and replacements of
hydrophobic residues in the core of the protein are usually accommodated

by small shifts in secondary structure positions rather than compensatory



amino acid substitutions (Lesk and Clothia 1982; Heinz et al. 1993).

Probabilistic evolutionary models that incorporate structural
information for globular proteins have been developed by Thorne,
Goldman, and co-workers (Thorne, Goldman, and Jones 1996; Goldman,
Thorne, and Jones 1996, 1998; Lid et al. 1998). Those models extract
evolutionary and structural information contained in a multiply aligned set
of homologous amino acid sequences, and use this information for both
reconstructing phylogenies and predicting secondary structure of globular
proteins. The models have two main features: Markov processes that
describe amino acid replacements and a Markov chain that describes
features of the secondary structure of globular proteins. The replacement
models are related to those of Dayhoff and coworkers (Dayhoff, Eck, and
Park 1972; Dayhoff, Schwartz, and Orcutt 1978) but whereas the Dayhoff
approach simply considers the ‘average’ structural environment for each
amino acid residue, Thorne, Goldman, and co-workers use a different
Markov process model of amino acid replacement for each of the different
categories of structural environment they want to describe. Underlying (but
typically unobserved—hence ‘hidden’) transitions between the different
categories along a protein-coding sequence are described with the Markov
chain of structure. The resulting hidden Markov models (HMMs) permit
the simultaneous inference of phylogeny and protein structure, allowing
information about each to contribute to and improve inference of the other.
For globular proteins, these models have been shown to fit real data
considerably better than models which ignore structural constraints on
evolution and treat all protein residues as equal and independent
(Goldman, Thorne, and Jones 1998).

The model presented here, referred to as the TM126 model, represents
a substantial extension of the models proposed by Thorne, Goldman, and
Jones (1996) and Goldman, Thorne, and Jones (1996, 1998). We have

focused our attention on transmembrane proteins. These constitute a very



large and important class of proteins, including for example mitochondrial
proteins and membrane receptors. In particular, we note that
mitochondrial proteins are widely used in phylogenetic analysis both for
phylogeny assessment and evolutionary model testing. Thus, we think it is
important to understand if the structure of these proteins should also be
considered in phylogenetic analyses.

In the following sections, we describe in detail the components of the
new TM126 model and their implementation to permit phylogenetic
inference. We then apply the model to a number of example
transmembrane protein alignments, both to estimate phylogenetic
relationships and, more importantly, to evaluate statistically the

improvement in fit to the data of the new model relative to other models.

Methods

Structural Categories

We have considered 10 different categories of structural environment:
residues buried or exposed to solvent in globular a-helices (categories
denoted Hb, He respectively), G-sheets (Eb, Ee), turns (Tb, Te), and coil
(Cb, Ce), and residues in transmembrane helices (TM) and short (typically
less than 10 residues) cytoplasmic loops connecting two transmembrane
domains (CL). The 10 categories seem to have different evolutionary
dynamics, as described by their amino acid replacement models (see below),
and so are expected to be useful in evaluating evolutionary and structural
information.

The first 8 of these structural categories (all but TM and CL)
characterize globular cytoplasmic or extracytoplasmic domains. These
categories are identical to their counterparts in the ‘4/2/38%’ model of
globular protein secondary structure described by Goldman, Thorne, and
Jones (1998), to which the reader is referred for details. The remaining two

structural categories, TM and CL, characterize the structure and topology



of transmembrane domains.
Hidden Markov Model

We adopt a HMM to describe the secondary structure state along a
transmembrane protein amino acid sequence. The states of the model
correspond to the underlying but unobserved (‘hidden’) topology, each state
representing residues belonging to one of the 10 structural categories.
Transitions among the states are modelled with a Markov chain. We have
designed our model to be a probabilistic description of the secondary
structure organization of a wide variety of transmembrane proteins, such as
receptors and integral membrane proteins. The way in which states
identified with the 10 structural categories are connected into a HMM
represents our understanding of the typical or likely secondary structures of
transmembrane proteins. We start the description of the HMM by
indicating how multiple hidden states identified with the same structural
categories are connected to model local structures (a-helices, 3-sheets,
turns, coils, transmembrane helices, short cytoplasmic loops). As shown by
Goldman, Thorne, and Jones (_1998), this can be useful in order to describe
better the typical lengths of sécondary structure elements.

As in that study, a-helices were modelled by concatenating 10 linked
pairs of Hb and He states in a manner which ensured that o-helices are of
length at least four residues and have a distribution of lengths that closely
matches the empirically observed distribution. Also as in Goldman,
Thorne, and Jones (1998), S-sheets were modelled with 6 pairs of Eb and
Ee states (minumum sheet length of two residues), turns with two pairs of
Tb and Te states (minimum turn length two residues) and coils with one
pair of Cb and Ce states (no minimum length).

A choice of 24 TM states to represent transmembrane helices was made
with a likelihood ratio testing procedure that took into account the number

of parameters being estimated and the improvement in goodness of fit as



the number of position-specific states increased, as in Goldman, Thorne,
and Jones (1998). In the following we illustrate the organization of these 24
TM states. We denote the ith of these states by TM;, for i € {1,2,...,24}.
We constrain the HMM to enter a transmembrane helix only through the
TM; state. Once in state TM;, for ¢ € {1,2,...,23}, the HMM must
continue by progressing to either TM;,; (with probability 1 — pI™) or by
leaving the TM states and entering a different category (with probability
piM). Once in the state TMy4, the HMM can remain there (with
probability 1 — pIM) or can leave the transmembrane helix (with
probability pi1). Taking into account the observed distribution of
transmembrane helix lengths, the model enforces a minimum length of 14
states for a transmembrane helix (by setting pT™ = pi™ = ... = pIM = 0),
and exactly matches the observed and expected distributions for lengths
from 14 to 24 (by appropriate choice of pIM, pIM, ..., piM). This
arrangement of 24 TM states is illustrated in figure 1.

The CL category describes residues in short cytoplasmic loops (their
length is generally less than 10 residues) that often join successive
transmembrane helices and have high propensity for positive amino acids.
This category is important mainly for topology assignment, because coil
and turn states in globular domains can also describe loops. Because of
steric constraints on the shortest loop which could join two transmembrane
helices, we used two CL states to represent cytoplasmic loops, which were ~
assigned a minimum length of two residues.

The majority of transmembrane proteins have more than one
transmembrane domain; a large proportion have 6 or 7 transmembrane
domains, generally connected by short loops. At the proteins’ extremities,
but alsc intercalating the transmembrane domains in large proteins (e.g.
the majority of receptor proteins), there can be globular domains: in large
proteins containing both globular and transmembrane domains, the

numbers of transmembrane helices and a-helices in globular domains can



be of the same order. The local structures described above are now linked
in order to make a general model describing the structure of a wide variety
of transmembrane proteins. Figure 2 also indicates how this is done.

We model a transmembrane protein as having one or more
transmembrane helices (24 TM states) spanning the membrane,
interspersed with extra- or intra-cytoplasmic regions. Extra-cytoplasmic
regions are assumed to conform to the ‘4/2/38%’ HMM for globular
proteins described by Goldman, Thorne, and Jones (1998) (a total of
10x2 + 6x2 + 2x2 + 2 = 38 hidden states). Intra-cytoplasmic regions can
conform to this model (a further 38 states), or can adopt a short
cytoplasmic loop conformation (two states). The prevalence of positively
charged residues (Arg and Lys) in short cytoplasmic loops is known as the
‘positive inside’ rule (Gavel and von Heijne 1992; von Heijne 1992). This
pattern may assist in the assessment of protein topology, for example the
direction of insertion of transmembrane helices.

Two copies of each of the 4/2/38% globular protein and transmembrane
helix structures are needed to maintain appropriate directionality (see
fig. 2), e.g. to forbid inadmissable sequences such as cytoplasmic
loop—-transmembrane helix—cytoplasmic loop. The complete model
consequently has a total of 126 states (24x2 + 38x2 + 2), and we refer to
it as the TM126 model. We emphasise that our model requires that all sites
with a particular secondary structure (H, E, T, C, TM, CL) and
accessibility status (b or e suffix for states H, E, T, C) experience the same
amino acid replacement process, regardless of relative position within their
secondary structure element. Thus, each of the 126 HMM states
corresponds to a particular one of the 10 amino acid replacement categories.

To the best of our knowledge, our TM126 model is the first that
attempts to describe the full variety of transmembrane protein structures,
including transmembrane helices, short cytoplasmic loops, and the possible

existence of extra- or intra-cytoplasmic globular regions.



HMM Parameter Estimation

The most natural way to estimate transition probabilities (p;;, the
probability that a residue is in hidden state j given that the preceding
residue in in state 1) among the 126 HMM states is to examine sequences of
known structure, count how many times a site in state 4 is followed by a
site in state j, and divide this count by the number of times sites in state 7
are followed by any site. Previous experience with globular proteins has
suggested that we have insufficient data to make reliable estimates of all
(up to 1262 = 15876) transition probabilities between hidden states. To
reduce the number of parameters, we have made simplifying assumptions in
the manner of Goldman, Thorne, and Jones (1998).

To estimate transition probabilities among states belonging to globular
domains we use exactly the 4/2/38% model of Goldman, Thorne, and Jones
(1998), except for minor modifications where the globular domains meet a
transmembrane domain (see below). Transition probabilities within
transmembrane helices and short cytoplasmic loops have been described
above. Finally, transition probabilities between these regions are estimated

subject to the following simplifications:

e The transition from a globular domain to a transmembrane domain

(and wice versa) occurs only through a coil state (Cb or Ce).

o After exploratory tests comparing predicted and actual structures, we
assign to the transition from coil in a globular extra-cytoplasmic
domain to a transmembrane domain the same probability as that of
moving from coil to globular a-helices. This probability is divided
equally between Cb and Ce states. Because transmembrane domains
have strong signals (e.g. a stretch of hydrophobic residues), we note
that even small, underestimated probabilities of transition to these

domains appear sufficient for their detection.



e Analysis of the flanking regions of transmembrane domains revealed
that the ‘positive inside’ rule is not ubiquitous. We assign values 411’ %,
g respectively to the probabilities, conditional on leaving a
transmembrane helix, of moving to a short positive loop (CL) or the
Cb or Ce states of a cytoplasmic globular domain. Although these
values are probably not correct (in 80% of cases contiguous
transmembrane domains are connected by short loops), we found that
by giving such a high probability to entering a cytoplasmic globular
domain we could increase the sensitivity of the model for detecting
structured cytoplasmic domains. Relative to the 4/2/38% model, we
thus adjusted the coil transition probabilities in order to have the

same probabilities of moving from coil to a-helix, 3-sheet and turn in

both the extra-cytoplasmic and cytoplasmic globular domains.

e The sum of the probabilities of moving from the cytoplasmic globular
coil and CL states to a transmembrane helix is set equal to the
probability of moving from the extra-cytoplasmic coil states to a

transmembrane helix.

e We set the probability of moving from the membrane to the
extra-cytoplasmic globular region equal to the sum of the
probabilities of moving from a transmembrane helix to the CL or
cytoplasmic globular coil states. The Cb and Ce coil states are

reached with equal probability. .. -»

The HMM transition probabilities are conveniently considered as a
126 x126 matrix (p), although the structure of the TM126 model and the
restrictions detailed above mean that p;; = 0 for many pairs (4,7). The

matrix p is available from the authors on request.

Amino Acid Replacement Models

Our models of amino acid replacement are Markovian with respect to
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time; each of the 10 secondary structure categories (k € {TM, CL, Hb, He,
Eb, Ee, Tb, Te, Cb, Ce}) is associated with a different amino acid
replacement process. The process for category k is specified by parameters
ozfj, the rates of instantaneous change from amino acid 7 to j§ within
category k. Writing of; = — ¥, of;, the parameters af; are conveniently
written as matrices o which define amino acid replacement probabilities in
the standard manner, according to P*(t) = exp(ta*) (Lid and Goldman
1998).

For the globular protein categories (k € {Hb, He, Eb, Ee, Tb, Te, Cb,
Ce}), the of used are those described by Goldman, Thorne, and Jones
(1998), estimated from the BRKALN database (see below) using a method
that is a slight modification (Jones, Taylor, and Thornton 1992; Goldman,
Thorne, and Jones 1996) of the approach of Dayhoff and collaborators
(Dayhoff, Eck, and Park 1972; Dayhoff, Schwartz, and Orcutt 1978). For
the TM and CL categories, amino acid replacement rates (¢™ and o)
were estimated by using exactly the procedure of Goldman, Thorne, and
Jones (1996), applied to the TMALN database described below.

Two issues arise regarding scaling of the matrices o*. The first relates
to the derivation of the o from two different databases (BRKALN and
TMALN, described below) which differ in their values of an otherwise
arbitrary constant (XM Nt/ M _ N, as described by Goldman,
Thorne, and Jones 1996: eq. 3). Fortunately, it is possible to relate the two
databases by comparing the combined Cb and Ce categories (BRKALN)
with short extra-cytoplasmic regions neighbouring transmembrane helices
in TMALN. We find good correspondence between amino acid replacement
rates for these two categories, subject to an overall scaling factor
representing the ratio of the two databases’ values of Z,Af:l Nptm/ M N,
(results not shown). This scaling factor can subsequently be applied to

normalize the matrices ™ and o®" to make them comparable with the

matrices corresponding to the 8 globular protein categories.
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Secondly, as in Goldman, Thorne, and Jones (1996, 1998), the
stationary distribution (V) of the HMM transition matrix p is used to scale
all of the matrices o so that the mean rate of amino acid replacement,
with each structure category weighted according to its expected frequencies
of appearance, equals 1. This effectively means that branch lengths are
measured in expected numbers of replacements per residue, averaged over

all structure categories.
Data Sets Used for Model Parameter Estimation

For the components of the HMM derived from the globular protein
model of Goldman, Thorne, and Jones (1998), amino acid replacement
rates and HMM transition probabilities were estimated from the BRKALN
database described in that paper. The BRKALN database consists of 207
families of easily aligned globular protein sequences. The tertiary structure
of at least one member of each protein family has been experimentally
determined and secondary structure assignments are then made using the
DSSP program (Kabsch and Sander 1983).

Parameters of the new model specific to transmembrane proteins were
estimated as described above from the TMALN database (P. Lid, unpubl.
results). This database consists of 181 families of easily aligned
transmembrane domains sequences. Only a few complete transmembrane
tertiary structures are known: problems with their determination include
these proteins’ large size and the hydrophobicity of their membrane
spanning regions. Nevertheless there are experimental methods that allow
investigation of which residues are buried in the membrane (see for example
Ben-Efraim, Bach, and Shai 1993; Jones et al. 1996; Spruijt et al. 1996). In
the TMALN database, each transmembrane domain sequence is recorded
together with the two flanking regions consituted by a number of residues
(10 or more) belonging to intra- or extra-cytoplasmic loop regions.

The BRKALN and TMALN databases are disjoint, but not completely

12



unrelated: as noted above, the extra-cytoplasmic flanking regions in
TMALN are comparable with the globular protein coil category
(considering buried and exposed coils together) of the BRKALN database.

Likelihood Calculations

The amino acid replacement rates (o) and the HMM transition
probabilities (p) estimated from the TMALN and BRKALN databases as
described above are fixed for all subsequent analyses, and are assumed
representative of all transmembrane proteins. The secondary structure of
the particular transmembrane protein under study is assumed to be
unknown, and the phylogenetic tree relating a set of sequences under study
is assumed unknown and is estimated by maximum likelihood (ML)
methods. We calculate the likelihood of a candidate phylogenetic tree T
(representing both topology and branch lengths) as follows. We denote the
aligned data set by S, its length (number of amino acids) by N, the first ¢
columns of the data set by S;, and the ith column itself by s;. Gaps in the
alignments are considered as missing information, as in the ML programs of
the PHYLIP package (Felsenstein 1995). In the equations below many of
the probabilities are actually conditional upon the o* and p, but for the
sake of clarity we omit o and p when this is feasible. The likelihood of the
tree T is given by Pr (S | T'), and this is calculated via the terms
Pr(S;,¢; | T) for each possible HMM state c; at site ¢ using the iteration:

Pr(S,ci|T) =) Pr(Sic1,¢io1| T) pei_yes Pr(si | i, T) (1)
Ci—1
fori> 1.

The terms Pr (s;|c;, T') are evaluated using the Markov process
replacement models (defined by the matrix %) appropriate for each
secondary structure ¢; and the ‘pruning’ algorithm of Felsenstein (1981).

Because the site at the N-terminus tends to be exposed coil (Ce), we
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assume this is the case and start the iteration according to:

1
PI‘(Sl, C1 ‘ T) = PI‘(Sl I C1, T) : E‘Scl,Cey (2)

where J., ce = 1 if ¢; is either of the two Ce states (exposed coil in
cytoplasmic or extra-cytoplasmic globular domains) in the 126-state HMM,
and 0 otherwise. This form assumes that the cytoplasmic and
extra-cytoplasmic exposed coil states are equally likely for the N-terminal
residue; other possibilities (Rost, Fariselli, and Casadio 1996) can easily be
accomodated as required. When completed, the iteration gives the required
Pr (S| T) because
Pr(S|T)=>_Pr(Sv,en | T). (3)
cN

Numerical optimization routines are used to find the ML tree topology
and branch lengths (7). Calculation of a posteriori probabilities of HMM
states for each site of the protein, Pr(c;|S,T), allows prediction of the

secondary structure for each site, as described by Goldman, Thorne, and

Jones (1996).
Statistical Tests

ML methods evaluate competing hypotheses (trees, models and
parameter values) by selecting those with the highest likelihood, as it is
these which render the observed data most plausible. Likelihood also
provides a natural means of hypothesis testing. Suitable choice of null and
alternative hypotheses, for example differing in their model of sequence
evolution, and comparisons of ML scores under these hypotheses in relation
to the distribution expected under the null hypothesis, permit a statistical
assessment of the hypotheses tested. Likelihood ratio tests (LRTs) are a
class of powerful statistical tests that compare the ML values of competing
hypotheses and have proven useful in phylogenetics (Goldman 1993; Yang,
Goldman, and Friday 1994; Huelsenbeck and Rannala 1997).

14



To better understand the extent to which incorporation of structural
information is responsible for improved fits of model to data, we use a LRT

with test statistic Al calculated as
Al = Iryvazs — o (4)

where Iru26 is the maximum log-likelihood for the alternative hypothesis,
i.e. our new model of transmembrane protein evolution, and [ is the
maximum log-likelihood for the null hypothesis, e.g. some other model that
does not use structural information.

In the absence of reliable asymptotic results, we can use simulations to
estimate the distribution of Al under the null hypothesis (Goldman 1993).
The null model of sequence evolution is used, along with the maximum
likelihood topology and branch lengths (Ty) estimated under the null
hypothesis for a data set, to generate each simulated data set. The
simulated data sets have the same number of taxa and are the same length
as the original data set. For each simulated data set, e.g.
i€ {1,2,...,100}, Al; can be calculated via likelihood maximization under
the null and alternative hypotheses. Further details are given by Goldman,
Thorne, and Jones (1998).

If the value of Al observed for the original data set is sufficiently
extreme relative to the distribution of simulated values {Al}, then the null
hypothesis can be rejected in favour of the TM126 model. One measure of
extremity is the proportion of simulated test statistic values that exceed the
actual value, giving an estimated P-value for the observed Al. Sufficiently
low values (e.g. < 0.05) imply rejection of the null hypothesis in favour of
TM126. Since often we find very low P-values (e.g. < 0.01, meaning none
of 100 values of Al; exceed Al), we have also found a z-score to be a useful
measure of extremity. The z-score is calculated by subtracting the mean of
the Al; from the observed value Al and then dividing by the sample
standard deviation of the Al;. This gives a rough estimate of how many

standard deviations the observed test statistic is from the mean of the
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expected distribution. Assuming an approximately Normal distribution of
Al under Hy, then for example a z-score of 2.33 corresponds to a P-value of
0.01, z > 3.09 corresponds to P < 0.001, etc. (one-sided test). For further
details of these tests, see Goldman, Thorne, and Jones (1998).

Results and Discussion

Primate HIV Co-receptor CCR5 Phylogeny

The chemokine receptor type 5 (CCR5) is a G-coupled receptor that
transduces a signal by increasing the level of intracellular calcium ions. In
HIV-infected cells, CCRb acts as a co-receptor with CD4 for the envelope
glycoproteins of HIV. A number of intra- and inter-species studies have
established its importance in HIV and SIV transmission (e.g. Deng et al.
1996; Dragic et al. 1996; Kuhmann et al. 1997; Zhang et al. 1997). The
topology of CCRS5 is known and contains seven transmembrane domains.
We have evaluated the phylogenetic information provided by CCR5 amino
acid sequences in the following species: mouse, chimpanzee, gorilla, human,
rhesus monkey, pig-tailed macaque, baboon, African green monkey, sooty
mangabey. The multiple alignment of these 9 sequences comprised 354
amino acid residues. Figure 3a shows the ML estimate of phylogeny derived
from our HMM method using the TM126 model for this set of CCR5
homologs; table 1 gives the maximum log-likelihood for this tree. The
resulting phylogeny reflects how close the green monkey co-receptors are to
those of the old world monkeys and thus it concurs with the similarity of
evolution of the simian and human immunodeficiency viruses (see also
Kuhmann et al. 1997).

In order for our model to be able to improve over models which do not
incorporate knowledge of transmembrane protein structure, it is evident
that it must be able at least to recognize the major secondary structure
elements of transmembrane proteins. To demonstrate that this is the case,

figure 3b shows a graphical representation of the observed locations of the
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seven transmembrane domains of the CCR5 (human) protein (see
SWISS-PROT P51681) and a comparison between our model and several
others currently used for transmembrane protein prediction. This shows
that our model correctly predicts the locations of all the transmembrane
helices. Of the four methods that correctly identify all seven
transmembrane helices, three (TM126, PHDhtm and HMMTOP; see fig. 3b
for details) use multiple aligned sequences. We believe that the results of
the comparison suggest that programs using multiple aligned sequences

seem to perform generally better than programs using single sequences.
Horizontal Gene Transfer: Additional Insights from Secondary Structure

Purple bacteria (proteobacteria) can be classified into three major
groups, the o, B and « classes; the « class is further classified into four
subclasses, o-1, a-2, a-3 and -4 (Woese 1987). Both 16S rRNA- and
cytochrome-c-based phylogenetic analyses show a clear division between the
« subclasses and the § and v classes. Using nucleotide sequences coding for
the ‘I’ and the ‘m’ subunits of the light reaction centre, Nagashima et al.
(1997a) found discordances with the rRNA and cytochrome-c phylogenies,
showing that the -y class clusters with the a-1 subclass and the 8 class
clusters with the a-2 subclass. They suggested that these discordances
could be explained by assuming a horizontal transfer of genes coding for the
photosyntethic reaction centre among purple bacteria.

We evaluated the phylogenetic and structural information provided by
the amino acid sequence of subunits ‘I’ and ‘m’ of the light reaction centre
in the following 7 purple photosyntethic bacteria: Allochromatium vinosum
(7 class), Rhodobacter sphaeroides (a-3 subclass), Rubrivivaz gelatinosus
(8), Rhodospirillum molischianum (c-1), Erythrobacter longus (a-4),
Rhodomicrobium vannielii (a-2) and Acidophslium rubrum (a-1 subclass,
based on 16S rRNA phylogeny, but not forming a tight cluster (Woese et al.
1984; Woese 1987; Lane et al. 1992; Nagashima et al. 1997b). While all
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known photosynthetic organisms have a chlorophyll complexed with a
magnesium (Mg) atom, A. rubrum has a zinc (Zn)-containing
bacteriochlorophyll as its major photosynthetic pigment (Wakao et al. 1996;
Nagashima et al. 1997b).

Our estimated phylogenies are shown in figures 4a and 4b (maximum
log-likelihood values in table 1). We found that the ‘m’ subunit tree has the
same topology obtained by Nagashima et al. (1997a), while the ‘I’ subunit
tree shows the 7 class closer to the a-3 subclass than to a-1. A. rubrum is
clustered closer to the a-4 subclass in the ‘I’ subunit phylogeny and closer
to the a-2 subclass in the ‘m’ subunit phylogeny.

The fact that the trees for the ‘I’ and ‘m’ subunits are different suggests
that the related genes have been subjected to different evolutionary events.
It is known that the Zn-containing bacteriochlorophyll binds the ‘I’ and ‘h’
subunits and not the ‘m’ subunit (Nagashima et al. 1997b). A. rubrum
contains Glu instead of His at position 168 of the ‘I’ subunit; this position is
known to interact with the chromophore. Probably, because the
. Zn-chlorophyll binds the ‘I’ subunit and not the ‘m’ subunit, A. rubrum can
exchange the ‘m’ subunit gene with Mg-chlorophyll purple bacteria more
easily than the ‘1’ subunit gene. Thus differences in phylogenies constructed
using ‘I’ and ‘m’ subunit amino acid sequences may suggest that these
genes not only underwent horizontal gene transfer but also that the transfer
may have occurred through independent recombination and transfer events.
Branch lengths in the ‘I’ subunit tree are about four times greater than
branch lengths in the ‘m’ subunit tree. This is in good agreement with the
hypothesis of a larger degree of exchange of the ‘m’ subunit gene than of
the ‘I’ subunit gene among purple bacteria. The high sequence identity
among the ‘m’ and ‘I’ subunit amino acid sequences in related species could
be both the result of common stringent selection control and of
recombination events. Thus the fact that these genes are very conserved

among the purple bacteria also suggests that exchange of genetic material
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through recombination could have happened several times in evolution.
Recent work shows that horizontal transfer of rRNA genes is not precluded

(Asai et al. 1999).
The Guinea Pig Challenge

The phylogenetic position of the guinea pig and the monophyly of the
rodents is a matter of debate. Different markers and different methods have
led to different conclusions (see, for instance, Hervé 1997 and references
therein). We estimated the phylogenetic position of guinea pig with respect
Lagomorpha and Rodentia from the amino acid sequences of the calcitonin
receptor and K-substance receptor (neurokinin-2 receptor).

The calcitonin and K-substance receptor genes are both G proteins
with seven transmembrane domains. The proteins have low sequence
identity, are functionally unrelated and do not interact each other, and are
preferentially expressed in different cells and tissues. The K-substance
receptor gene is intronless and is located on chromosome 10 in humans; the
calcitonin receptor gene contains introns and in humans is located on
chromosome 7 (although several paralogous genes are known to exist).
Therefore, these genes have evidently been subject to different mutation
events and different structural and functional selection préésures, and give
completely independent information for phylogenetic analyses. Completely
unrelated sequences, or at least sequences that have very little evolutionary
history in common, may represent the best choice for phylogenetic analysis
based on a multi-sequence approach.

Figure 4c shows the ML estimate of phylogeny among human, rabbit,
guinea pig, pig and rat for the calcitonin receptor sequences, and figure 4d
the ML phylogeny for human, rabbit, guinea pig, hamster and rat from
K-substance receptor sequences, estimated using our new TM126 model.
Tree topologies and branch lengths are similar for these proteins; the guinea

pig is placed among the rodents, in general agreement with other ML
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results (e.g. Cao, Okada, and Hasegawa 1997). Maximum log-likelihood
values are shown in table 1. Simultaneously with phylogeny estimation, our
method predicts seven transmembrane domains, in agreement with

experimental evidence (results not shown).
Cetaceans in a Sea of Trees

The relationships among the major group of cetaceans is still matter of
controversy. The analysis of the cytochrome-b gene sequence using
parsimony methods allowed Arnason and Gullberg (1994) to distinguish
five primary evolutionary lineages of extant cetaceans, one representing the
baleen whales (Mysticeti, denoted M) and four (Platanistoidea,
Physeteroidea, Ziphioidea and Delphinida, respectively denoted Pl, Ph, Z
and D) representing the toothed whales (Odontoceti). They proposed the
evolutionary relationship (M,(P1,(Z,(Ph,D)))), and suggested that the
cetacean lineages had diverged almost simultaneously.

Hasegawa, Adachi, and Milinkovitch (1997) illustrated that often the
analysis of a single gene does not resolve ambiguity of phylogenetic
relationships. For instance, for cetaceans their analysis of myoglobin amino
acid sequence supported the branching order (D,((Z,M),Ph)), whereas
analysis of cytochrome-b amino acid sequence supported (D,((Z,Ph),M)).
Using ML methods, Hasegawa, Adachi, and Milinkovitch (1997) established
an alternative phylogeny of cetaceans, (D,(Z,(M,Ph))), on the basis of the
total maximum likelihood given by the combined analyses of myoglobin
amino acid sequences, 12S and 16S rRNA sequences, and either amino acid
or DNA sequences of cytochrome-b.

We analyzed a data set of amino acid sequences of cytochrome-b, a
mitochondrial membrane protein. Analysis under the TM126 model of 8
sequences from spinner dolphin (D), bottlenose dolphin (D), gray whale
(M), minke whale (M), Peruvian beaked whale (Z), Gervais beaked whale
(Z), pigmy sperm whale (Ph) and sperm whale (Ph), suggested that
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Ziphioidea and Physeteroidea are not monophyletic (fig. 4¢). Our
phylogeny is in agreement with Hasegawa, Adachi, and Milinkovitch’s
(1997) analysis of cytochrome-b amino acid sequences, other than regarding
the monophyly of the Ziphioidea and Physeteroidea.

Note that we have used sequences different from the ones used by
Hasegawa, Adachi, and Milinkovitch (1997). Also, since we only have
available incomplete cytochrome-b sequences for Peruvian beaked whale
and Gervais beaked whale (134 amino acids each, cf. 379 amino acids for
spinner dolphin) this is possibly a source of error in the assignment of the
Ziphioidea and Physeteroidea divergence. Analyses with more sequences
from the Ziphioidea and Physeteroidea are needed to resolve this issue. The
cetacean controversy shows the unsatisfactory results that phylogenetic
methods sometimes present, even when, as in the relationships among
cetaceans, there are large morphological differences that indicate that time

intervals separating the species cannot have been short.

Statistical Tests

We performed statistical tests comparing the goodness of fit of the new
transmembrane protein HMM (TM126) with two other models of
evolutionary change in amino acid sequences. These models are the

following:

e JTT model: this is the model of Jones, Taylor, and Thornton (1992),
which is based on the analysis of a large database of globular protein
amino acid sequences. It is essentially an update of the models of
Dayhoff, Eck, and Park (1972) and Dayhoff, Schwartz, and Orcutt
(1978), and incorporates no structural information: each residue of
sequences analyzed is assumed to conform to some ‘average’
evolutionary dynamics. Such a model is evidently inappropriate for

the analysis of transmembrane proteins, but is included here as a
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convenient baseline and because it is a widely used model which, in
the absence of structurally better-informed models, has in the past

been applied to transmembrane proteins.

e TmHEM model: this is an alternative model we have devised for
transmembrane protein evolution. It incorporates no structural
information, but represents the average dynamics of amino acid
replacements in transmembrane proteins by a single instantaneous
rate matrix (aT™HEM) formed by averaging the 10 structure-specific

matrices (o) of the TM126 model. To be precise,
oTmHEM — $™ 4, o (5)
k

where the weights wy are given by

126
wy = Y ¥, I(HMM state i corresponds to structure category &), (6)

i=1
U is the stationary distribution of p, and the indicator function I(-)
equals 1 if the statement in parentheses is true, and equals 0
otherwise. The TmHEM model is a transmembrane analogue of the
JTT model for globular proteins. Since the TM126 and TmHEM
models were derived from the same sequence databases, but with only
TM126 making use of structural information, comparisons of these
models test the significance of the representation of transmembrane
protein structure in the TM126 model. By analogy with the ‘THEM’
model of Thorne, Goldman, and Jones (1996), devised for a similar
comparison of globular protein models, TmHEM stands for

“TransMembrane Homogeneous Evolutionary Model’.

The statistical comparisons between TM126 and these two models were
designed to test the importance of the use of both transmembrane protein
structural information, as embodied in the 126-state HMM described above,

and of different evolutionary models of amino acid replacement dynamics
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depending on structural context. These tests mirror those of Thorne,
Goldman and Jones (1996) for testing HMMs of globular protein evolution.
Tests of the TM126 model versus the JTT model and of TM126 vs.
TmHEM were performed for all six data sets described above, and the
results are presented in table 1.

The comparison between the TM126 and JTT models clearly indicates
the superiority of the former. In all cases, P-values are less than 0.01, and
the smallest z-score is 3.43 (approximately corresponding to P = 0.0003).
These results are not surprising; the JTT model was devised for application
in circumstances very different from the analysis of transmembrane
proteins.

Similarly, the comparisons of the TM126 and TmHEM models indicate
the superiority of TM126. The largest P-value is 0.03; all others are less
than 0.01 and have z-scores of at least 2.83 (approximately, P < 0.002). It
appears that the new HMM is incorporating appropriate and useful
information about the constraints on sequence evolution imposed by the
maintainance of transmembrane protein structure, relative to a model
based on average transmembrane protein amino acid replacement dynamics
but incorporating no site-specific structural information.

In addition note that of the analogous ‘structure-less’ models TmHEM
and JTT, the one which was designed for transmembrane proteins generally
performs better (TmHEM model having smaller Al than JTT, meaning
I rmmEn > 1 sTT, and smaller z-score, meaning it is rejected in favour of |
TM126 less strongly than is JTT). It is encouraging that basing a model on
average transmembrane protein replacement dynamics is helpful, even
without consideration of site-specific structural information. The only
possible exception is in the analysis of the calcitonin receptor sequences, for
which the z-scores are approximately equal.

Taking all results together, it is evident that for transmembrane protein

sequences the TM126 model may be significantly better than many other
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available models. This may lead to it being preferred for phylogenetic
analyses of transmembrane proteins, and also leads us to hope that it may
be used to aid in the interpretation of the function of sequences with

unknown structure.
Conclusions

Earlier work (Thorne, Goldman, and Jones 1996; Goldman, Thorne,
and Jones 1998) has indicated that the effects of secondary structure and
solvent accessibility on the dynamics of (evolutionary) amino acid
replacement are generally very important. In this paper we have shown
that the incorporation of structural information relevant to transmembrane
proteins can lead to a very much improved fit of the model to
transmembrane protein amino acid sequence data sets. Our results
(table 1) show significantly higher likelihoods for the new TM126 model,
with P-values and z-scores suggesting rejection of the JTT or TmHEM
models in favour of the TM126 model. In addition, good agreement
between the predicted and the observed secondary structures (e.g. CCRS,
fig. 3b) suggests that the new model is able to interpret structural
information available in multiple sequence alignments.

A significant part of any success of a structure-based model depends on
its ability to recognize the structural elements of proteins. Some amino
acids have very similar propensities for different structural categories, as for
instance Ile, Val and Thr in B-sheets in globular domains and in -
transmembrane helices. Some transmembrane domains may have a weak
transmembrane ‘signature’, being somewhat atypical themselves but
stabilized by neighbouring transmembrane domains. Moreover, the
majority of methods for secondary structure prediction show a general lack
of power in §-sheet prediction; this may be related to underestimation of
B-sheet sequence heterogeneity.

The differences in transmembrane domain prediction performance
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reported above and in figure 3b stimulate further consideration of several
limitations in the prediction of transmembrane helices. The transmembrane
pattern may be weaker for some sequences in a multiple alignment and
stronger for others and in these cases, the averaged signal obtained from
the multiple alignment is generally stronger, over all the transmembrane
domain, than that for a single sequences. In multiple spanning segment
proteins, contacts between helices affect stabilization and homologous
sequences may show differences in inter-helix stabilization. A potential
drawback in algorithms that use a set of multiple aligned sequences may
concern the possible unreliability in the structure assignment at the
boundaries of secondary structure elements due to small variations in the
location of transmembrane domains among proteins belonging to distantly
related species. Moreover, it is known that transmembrane helix cap
regions have slightly different amino acid replacement dynamics (Jones,
Taylor, and Thornton 1994).

Light reaction centre subunits ‘I’ and ‘m’ contain transmembrane
helices and large globular a-helix and (-sheet domains. It is in cases like
these that the TM126 model, which incorporates both transmembrane and
globular domain components, may be especially successful. We find TM126
to-be strongly supported (table 1) in preferenée to both JTT and TmHEM
(e.g. all z-scores at least 6.37; approx. P < 0.0001).

Some of the o-helices of ‘m’ subunit of the light reaction centre -lie
along the membrane surface and thus they are amphipathic helices with an
average hydrophobicity that resembles transmembrane helices. Since no
amphipathic property is included in any of our 10 structural categories this
may induce inaccuracies that are reflected by the model comparisons in
table 1, where TM126 is less strongly preferred (lower z-scores) over the
other models for the ‘m’ subunit than for the ‘I’ subunit.

Cytochrome-b is a mitochondrial inner membrane protein (Xia et al.

1997). This characteristic makes the structural categories related to
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globular domains inefficient in describing any part of the protein. Therefore,
it is not surprising that the JTT model is very strongly rejected in favour of
TM126 for these sequences (table 1; P < 0.01; z = 5.98). TmHEM also
appears preferable to JTT (2 = 2.83 for TmHEM, cf. 5.98 for JTT).

When a statistical comparison indicates that one evolutionary model is
superior to a simpler model, this implies that features possessed by the
more complex model and absent in the simpler model may be evolutionarily
important. The examples we report show that the new model of evolution
of transmembrane protein amino acid sequences, based on secondary
structure and topology information and implemented in a ML framework,
performs better than the JTT model (which ignores protein structure and
assumes all residues are subject to identical evolutionary dynamics inferred
from globular proteins) and the TmHEM model (which is similar to JTT
but assumes amino acid replacement dynamics inferred from
transmembrane protein data). It is in itself interesting to have improved
understanding of evolutionary pressures and constraints, in this case due to
structural (and hence functional) constraints in transmembrane proteins.
Improved models are expected to give improved results in phylogenetic
analyses (Yang, Goldman, and Friday 1994, 1995).

Additionally, in the case that little or nothing is known about a gene
under study, statistical tests such as those above may be used to decide the
most appropriate model to use.

At the same time, it has been shown that phylogeny can be an
important tool in investigating protein structure (Goldman, Thorne, and
Jones 1996). Algorithms that use multiple alignments of biological
sequences as data should take into account the evolutionary relationships
among the sequences in the alignment in order to allow correctly for the
correlations in the data due to shared ancestry. Current methods for
secondary structure prediction of proteins seem not to be able to pass an

upper threshold of 70-80% in prediction accuracy of globular proteins and

26



90% for transmembrane proteins; probably this limit can also be
attributable to natural variation of secondary structure among homologous
proteins. Thus a deeper understanding of phylogenetic relationships and
historical changes of secondary structure may suggest ways to overcome
this limit.

There are, of course, numerous assumptions and approximations made
in our model, in order to make it practical. We describe some of these here,
to illustrate directions in which this research could be continued and
improved. While in globular proteins long stretches of hydrophobic amino
acids are quite rare, transmembrane domains usually have a long stretch of
hydrophobic amino acids in order to span the lipid layer. Our model can
allow for this, in its amino acid replacement model specific to
transmembrane helices (™). However, this pattern is not always well
conserved; for example, charged amino acids are usually absent in the
middle of the transmembrane helices but two residues of opposite charges
may be found close together inside the membrane, neutralizing each other’s
charge. Moreover, in many cases it is not easy to distinguish between
transmembrane helix and transmembrane (-sheet structures (as found in
porins). We have not yet been able to consider a replacement matrix for
transmembrane [ structures because of lack of data. Generally
transmembrane § structures form membrane proteins by the cooperative
effect of distant (-sheets along the sequence and the assembling of several
subunits (e.g. Kreusch and Schulz 1994); this kind of process may make
prediction very difficult.

Our model currently assumes that there has been no change in protein
structure or accessibility status since sequence divergence. Advanced
models that explicitly address the evolution of structure would be of great
interest for the study of evolutionary processes, for phylogenetic estimation,
and for structure prediction. The step from secondary to tertiary structure

(in some ways analogous to understanding correlations between molecular
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and morphological evolution, e.g. Pagel 1994; Omland 1997) will be yet
more difficult to implement in evolutionary models (see for instance Qu et
al. 1993; Grishin 1997). Eventual understanding of links between evolution
and 3-D structure may allow us to extend our understanding of homologous
proteins to those that have diverged to the so-called ‘twilight zone’, i.e. that

have almost completely lost their primary structure homology.
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Table 1
Statistical Tests Comparing the TM126 Model with Two Other
Evolutionary Models

TM126 JTT TmHEM

dataset ZTMlQﬁ Al P z Al P z

CCR5 -1449.49 15.21 0.00 4.75 10.30 0.00 3.21
LRC 1" -2534.97 52.37 0.00 7.83 33.44 0.00 6.72
LRC ‘m” -3127.18 41.02 0.00 7.21 35.46 0.00 6.37
Calc R -2685.12 9.55 0.00 5.02 37.28 0.00 5.14
K-sub R -2002.48 8.70 0.00 3.43 2.04 0.03 242

Cyt-b -1623.55 40.96 0.00 5.98 10.93 0.00 2.83

NOTE.—As described in the text, we have performed statistical tests
comparing the TM126 mode] with the JT'T and TmHEM models for each
of six data sets (CCRS5: primate chemokine receptor; LRC ‘I’ and LRC ‘m’:
purple bacteria ‘I’ and ‘m’ subunits of the light reaction centre; Calc R and
K-sub R: lagomorph and rodent calcitonin and K-substance receptors;
Cyt-b: cetacean cytochrome-b). Table entries are iTM]_zs, the observed
maximum log-likelihood under the TM126 model and, for the tests of
TM126 vs. each null hypothesis model JTT and TmHEM, Al, the
maximum log-likelihood under TM126 minus the maximum log-likelihood
under the null model; P, the proportion of times (from 100 simulations)
that a value of Al simulated under the null hypothesis exceeded the
observed value; and a z-score, described in the text, which is the estimated
number of standard deviations by which the observed value of Al exceeds

the mean of the simulated values.
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FIGURE LEGENDS

Figure 1.—Examples of permitted transitions among the 24 hidden TM
states comprising a transmembrane helix. Arrows indicate the permitted
transitions among the states illustrated, and are labelled with the
parameter combinations that define the transition probabilities p;;. After
entry via state TM; (upper part of fig: from extra-cytoplasmic region‘ext.’;
lower part: from cytoplasmic region ‘cyt.’), the HMM must progress
through the transmembrane domain until TM;4; it may then remain in the
transmembrane helix, progressing through the subsequent TM states (TM;5
to TMay), or may at any stage leave the transmembrane helix and enter
(upper part of fig.) a cytoplasmic region, via the states CL, Cb or Ce, or

(lower) an extra-cytoplasmic region, via the states Cb or Ce.

Figure 2.—General features of the 126-state transmembrane HMM model.
Arrows indicate the permitted transitions among the regions of the model.
Structures/domains are labelled (in parentheses) with the number of HMM
states comprsing them. The cartoon to the left represents a hypothetical
transmembrane protein with seven transmembrane helices and three

globular domains.

Figure 3.—(a) The ML estimate of ph-ylogeny derived from the TM126
model for the set of CCR5 homologs from mouse, chimpanzee, gorilla,
human, rhesus monkey, pig-tailed macaque, baboon, African green monkey,
sooty mangabey. The scale bar refers to the branch lengths, measured in
units of expected numbers of replacements per site. (b) Comparison of
CCR5 observed transmembrane domain locations and the predictions of our
TM126 model and other methods currently used in transmembrane protein
prediction, namely PHDhtm (Rost et al. 1995), HMMTOP (Tusnady and
Simon 1998), TMHMM (Sonnhammer, von Heijne, and Krogh 1998),

36



MEMSAT (Jones 1994), SOSUI (Hirokawa, Boon-Chieng, and Mikatu
1998), Split35 (Juretic and Lucin 1998), TopPred2 (von Heijne 1992),
TMpred (Hofmann and Stoffel 1993) and DAS (Cserzo et al. 1997).
Methods marked with an asterisk use multiple aligned sequences; other

methods use only single sequence input.

Figure 4.—Other ML phylogenies derived from the TM126 model. Branch
lengths are measured in units of expected numbers of replacements per site.
Trees are for data sets of (a) purple bacteria ‘1’ and (b) ‘m’ subunits of the
light reaction centre; (c) calcitonin receptor homologs from human, rabbit,
guinea pig, pig and rat; (d) K-substance receptor homologs from human,
rabbit, guinea pig, hamster and rat; and (e) cytochrome-b homologs from
spinner dolphin, bottlenose dolphin, gray whale, minke whale, Peruvian

beaked whale, Gervais beaked whale, pigmy sperm whale and sperm whale.
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