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Fubini-type theorems for general measure constructions

1. Method I and Method II measures

Throughout this paper (X, d) and (T, p) will be Polish spaces, that is, complete separable
metric spaces. If B C T x X, and t € T, then by B;, the t-section or fiber of B, we mean
the set {z € X : (¢t,z) € B}. It is sometimes convenient to regard B; as the set {t} x By;
it should be clear from the context which interpretation is intended.

Let 7 be a nonnegative set function defined on the subsets of X, such that (@) = 0,
and 7(E) = oo if E is not compact. Let v be a complete Borel probability measure on
T'. This means that ¥, the o-algebra of subsets on which v is defined, includes the Borel
subsets of T'and if N C M and v(M) = 0, then N € X. Since v is complete, every analytic
subset of T is v-measurable and consequently every set in BA(T'), the o-algebra generated
by the analytic subsets of T', is v-measurable.

We first consider the Method I measure induced by 7 and then the Method II
measure, see Rogers [Ro] for a general treatment of such measures. Method I measures
will be denoted by an asterisk, *. Thus 7*, the usual Method I measure induced by T, is
defined by setting

™ (FE) = Egbe,; T(E3),
for E C X, where, as always, {F;} is a countable cover. (Often Method I measures are
defined in terms of coverings by sets E; from a restricted class of sets C. However, the
same definition of 7* may be achieved by setting 7(E) = oo for all E ¢ C, and this allows
the convenience of having 7(F) defined for all E.)
We define the set function u on T' x X by setting

um = [ " H(B(e), 0

where [ * denotes the upper integral. Let u* be the outer measure on 7' x X constructed
from p by Method 1. Thus, for B C T x X,

W(B) = inf 3" u(B). (2)

A major aim of this paper is to establish conditions that enable u*(B) to be expressed as
an integral of the sectional measures 7*(B;) with respect to v, that is to obtain identities
such as

u(B) = /T r(By)dv(t).

for certain sets B. There a basic inequality relating these set functions:

Lemma 1. Let BC T x X. Then

i " (Bydu(t) < u*(B). 3)
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Proof.
/ " (B)dv(t) = / ( inf T(Ef)) dv(t)

B:C UE;’

= BichfBi /* D T(Bi)e)dv(t) < Biclbe,. Z/* 7((B;):)dv(t)
= inf > u(Bi) = p*(B),

BCUB;

where we take the cover of B defined by B; = Uier{t} x Ef¥. B

We seek conditions for equality in (3). We note that for a given set B C T' x X
inequality (3) becomes an equality provided for each € > 0, there is a sequence of sets
{Bi}$2, such that (i) B C UB;, (ii) for each i, t — 7((B;):) is v-measurable, and (iii) for
vae t, > 17((B;):) < 7(Bt) + €. These are very general conditions and it is desirable to
have some more easily-checked conditions on 7 that lead to equality in (3) for a reasonably
large class of sets B. Thus we list below various verifable conditions on 7. We denote the
space of compact subsets of X endowed with the topology inherited from the Hausdorff
metric by K(X).

(C1) 7 is monotone,

(C2) 7(E) = 7(E),

(C3) for each closed set F, 7(F) =sup{7(K) : K € K(X) and K C F},
(C4) K — 7(K) is a Borel measurable map on the space K(X),

(C5) For each compact set K, 7(K) = inf{r(V) : V is open, K C V}.

The best known examples of Method I measures are the pre-Hausdorfl measures.
Fixing X = R" and s,6 > 0, we define, for E C X, 7(E) = |E|° if |E| < § and 7(E) = o0
if |[E| > &, where |E| denotes the diameter of E. Thus only sets E with |E| < § provide
useful covering sets. (Later on we will consider Method II which takes the limit as § — 0 to
give Hausdorff measures.) This example may be generalised, by taking an outer measure
Aon X and s,q > 0, and setting, for £ C X, 7(E) = |[E|*A(E)? if |E| < § and 7(E) = 00
if |E| > 6. In this case 7 will satisfy (C1) and (C3) if X is regular and (C4) and (C5) if A
is outer regular.

Theorem 2. Suppose 7 satisfies conditions (C2) and (C4). Let A be an analytic subset of
T x X such that A; is compact for each ¢t € T. Then the map t — 7(A4;) is v-measurable.
Indeed, this map is measurable with respect to the o-algebra BA(T) of subsets of T
generated by the analytic subsets of T'.

Proof. Let G be the sectionwise closure of A. Thus (¢,z) € G if and only if there
is some sequence {z,}32; with {z,} converging to = and (¢,z,) € A for all n. Since
G = mprxx({(t,x,z1,22,23,...) € T x X x XN : Vn(t,z,) € A and z,, — z}) where
7 denotes projection, the set G is the projection of an analytic set and so is analytic.
We check that the map g : T — K(X) given by g(t) = G; is BA(T)—measurable. Fix
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a nonempty open subset U of X. Let I(U) = {K € K(X) : KNU # 0} and let
CU)={KeK(X):KcU}. Then g '(I(U))={t:G:nNU #£0} =m0 ((T x U)NG)
is an analytic set and g~} (C(U)) = T\ {t : G N X \ U # 0} is a coanalytic set. Since
the sets of the form I(U) and C(U) form a subbasis for the topology of K(X), g is a
BA(T)-measurable function. Finally, ¢t — 7(A4;) = 7(G:) is BA(T)-measurable, since it is
the composition of g with a Borel measurable map. Il

Theorem 3. Suppose X is locally compact and 7 satisfies conditions (C1), (C2), (C3) and
(C4). Let B be an analytic subset of T'x X, then the map t — 7(B;) is BA(T)-measurable.

Proof. Let G be the sectionwise closure of B. Let {U,} be an ascending sequence of
open subsets of X such that U, is compact for each n, and UU, = X. For each n, let
fn(t) = 7(G:NT,) for t € T. By Theorem 2, f,, is BA(T)-measurable for each n. Note
that by property (C1) and the local compactness of X, for each ¢, f(t) := limy_,00 fn(t) =
sup{7(K) : K € K(X) and K C G,}. By properties (C2) and (C3), f(t) = 7(G:) = 7(By).
Since f is BA(T)-measurable, the proof is finished.

We use the following theorem of Saint Raymond [Ra] in several places. Let T and
X be complete separable metric spaces and let B be a Borel subset of T' x X such that
for each t € T, the t-section of B, By, is o-compact. Then 7r(B) is a Borel set, and there
exist Borel sets B, C T' x X such that B = U, B,,, and (B,); is compact for each ¢.

Theorem 4. Let X be locally compact. Let B be a Borel subset of T' x X such that each
t-section of B is o-compact. Let

F =F(B)={(t,(K,)) € T x K(X)N : UintK,, D B;}.

Then F'is a Borel set.

Proof. Notice T x K(X)N\ F = mpy g (xy~n (H), where H = {(t, (K,),z) € T x K(X)N x
X : (t,z) € Band Vn, z ¢ intK,}). Thus, H is a Borel subset of T x K(X)N x X Also, for
each (¢, (Ky)), the section H (k,)) = B: \ UintK, is o-compact. So, by Saint Raymond’s
theorem, F' is a Borel set. B

We recall that a map f : D — K(X), where D is a Borel subset of T' is Borel
measurable if and only if the graph of f,Gr(f) = {(t,z) : =z € f(¢)}, is a Borel set in
T x X. This fact also follows easily from Saint Raymond’s theorem.

Theorem 5. Let X be locally compact and let 7 satisfy conditions (C1)-(C5). Let
B be a Borel subset of T' x X such that each t-section of B is o-compact. Then the
map t — 7%(B:) is BA(T)-measurable. Moreover, for each € > 0, there are Borel sets
B, CcTxX, i=1,23,.., with compact sections, and a Borel set N C np(B) with
v(N) =0, such that if t € T\ N, then B; C U;(B;); and X;7((B;):) < 7*(By) + €.

Proof. Since the theorem is trivially true if v(77(B)) = 0, we may assume the projection
7 (B) has positive measure. It follows from assumption (C4) that the map f : K(X)N
R defined by f((K,)) = L7(K,) is Borel measurable. It also follows from (C5) and the
local compactness of X that for each ¢t € T,g(t) = 7*(B:) = inf{f((K»)) : (¢, (Ky)) €
F(B)}, where F' = F(B) is defined in Theorem 4. If ¢ is a positive rational or co, FN(f <
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q) is a Borel set, where (f < q) = {(¢, (Ky)) : >_7(Kn) < q}. Therefore, by the Jankov-von
Neumann Theorem [K], there is a function s, : Dy — K(X)N where D, = mp(FN(f < q))
is analytic, such that s, is a BA(T) measurable selector for F'N (f < q). Let s4 be the
i-th coordinate function of s,. Noting that g(¢) = inf{q : t € D, and q is rational}, it
follows that g is BA(T)-measurable. Next, fix € > 0 and enumerate the rationals as {gy}.
For each p, let A, = {t : g, is the first rational with s, (t) < g(t) + €¢}. We may find a
set N C mp(B) such that #(N) =0 and s4,|Ap \ N is Borel measurable for each p. Since
for each p and ¢ the map sg,; is a Borel measurable map of A, \ NV into K(X), the graph
Bpi = {(t,z} : & € 54,4(t)} is a Borel set. For each i, setting B; = U;2, By gives sets with
the required properties. l

Doubtless these theorems or variants hold under more general conditions on X or
by relaxing some of the conditions on 7. For example, let X be o-compact, let B be a
Borel subset of T' x X, and suppose 7 satisfies conditions (C1)-(C5). Is it true that the
map t — 7*(By) is BA(T)-measurable or universally measurable? Does the second part of
Theorem 5 hold for B? What is the situation if 7 only satisfies conditions (C1)-(C4)?

Theorem 6. Let X be locally compact and let 7 satisfy conditions (C1)-(C5). Let
B C T x X be a Borel set with each t-section B; o-compact. Then we have equality in

(3): -
u*(B) = /T 7 (By)du (). (4)

Proof. Let € > 0. Let B; be the Borel sets and N the v-null set given by Theorem 5. By
Theorem 2, t — 7((B;):) is v-measurable, so by definition

W(B) S Y uB) = / 7((Bi)e)du(t) < / r (B)du(t) + e,

where we have interchanged summation and integration and used the final conclusion of
Theorem 5. Taking e arbitrarily small and combining with Lemma 1 gives the result. ll

Equation (4) specialises to the following product fromula for Borel rectangles U x E:
p*(U x E) =v(U)T*(E).

Thus, the outer measure pu* on T X X, defined in terms of yu using Method I, may be
regarded as a product measure of v and 7*. However, for 7 non-o-finite (as occurs
in many applications) a product measure is generally far from uniquely defined by the
product formula on rectangles. It also follows from (4) that a Borel set B C T' x X is
p*-measurable if and only if B; C X is 7*-measurable for v-almost all ¢, see Rogers [Ro,
Chapter 1.2].

The following refinement of Theorem 6, which restricts covering sets to Borel rect-
angles, is required for the Method II results which follow.

Theorem 7. Let X be locally compact and let 7 satisfy conditions (C1)-(C5). Let
B C T x X be a Borel set such that each ¢-section B; is o-compact. Then

p*(B) = inf {Z u(B;) : B C U;B; and B; are Borel rectangles} . (5)
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Proof. Let ¢ > 0. By Theorem 5, there are a Borel set N with v(N) = 0 and a
sequence of Borel sets G;, such that for t € T'\ N, each (G;); is compact, By C U;(G;):
and ), 7((Gi)e) < 7*(B:) + €. Let {Up}32,; be a sequence of sets forming a base for the
topology of X such that U, is compact for each n, and with this sequence closed under
finite unions. For each i,n, let T, = {t € T\ N : n is the first integer such that U, D
(G;): and 7(U,,) < 7((G;):) + €}. Then Ry, = Tj, x U, is a Borel rectangle. By Theorem
6,

W (B) = [ Bant) 2 [(Sr((Ge) - davtt)
253 /T (Gd() — ¢

>y Y /T (r(T) - () — ¢
= 30 3 iBin) + (N x X) — 2,

as ¥(N) = 0. Since € > 0 is arbitrary, and B C U; U, R;, U (N x X) is a cover of B by
rectangles,

p*(B) > inf {Z u(B;) : B C U;B; and B; are Borel rectangles} ,

with the opposite inequality immediate from (2). H

We now introduce Method II constructions which by their definition depend on the
metric structure of the sets. For these constructions we make the additional assumption
that d is a metric on X with the property that for some & > 0, if |E| < 8o, then FE is
compact. We work with the metric dy = max{d, p} on T'x X, and write |-| for the diameter

of a set in any of the metric spaces.
For 6 > 0, define for E C X

16(E) = 7(E) if |E| < § and 75(FE) = oo if |E| > 6.

This is equivalent to seeking covers by sets of diameters at most §. As before, we set

3 (B) = inf > rs(By)=__ inf 3 7s(E).

ECUE;,'EiIS&
The Method II measure on X constructed from the set function 7 is then defined by
T(E) = %1_1)1(1)7'6 (E).

This is a metric outer measure on X and thus all the Borel sets and analytic sets are
measurable, see Rogers [Ro|. Proceeding as before, we set, for BC T x X,

us(B) = /; 73(B)dv(t) (6)
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and
Wi(B) = inf 3" us(B). 7)

The set function u; may be presented in several different ways for certain Borel
sets.

Lemma 8. Let X be locally compact and let 7 satisfy conditions (C1)-(C5). Let B C
T x X be a Borel set with each t-section B; o-compact. For each § > 0,

ws(B) = inf {Z ps(B;) : B C U;B; and B; are Borel rectangles} (8)

— inf {Zm(Bi) . BC U;B; and |Bi| < 5} 9)
= inf {Z us(B;) : B C U;B;, |B;| < 6 and B; are Borel rectangles} . (10)

Proof. The equality in (8) is just Theorem 7. Certainly, the right-hand side of (8) is no
greater than expression (10), and if (8) is infinite then these two expressions are equal.
So suppose (8) is finite and B; = T; X FE; is a family of Borel rectangles covering B with
ps(B;) < oo. We may decompose T; = U352, 755, where the T;; are disjoint Borel subsets of
T with |T;;| < 6. Then B; = U, T;; x E;. Since B; is a rectangle,

ps(Bi) =Y 1s(Ei)v(Ty;) = Y ps(Tij x Ei). (11)
j=1 j=1

If 75(E;) = oo, we must have v(T;;) = 0 for all j, so us(Ti; x E;) = ps(B;) = 0 for all j.
Otherwise, 75(E;) < 0o, so |E;| < 6 and |T;; x E;| < 6 for all j. It follows, using (11) that
the sum in (8) is unchanged if we replace each set B; = T; x E; by the countable union
U;T;; % E; of sets of diameter at most §. Thus expressions (8) and (10) are equal. Finally,
expression (9) lies between p}(B) as defined by (7) and (10). W

We now relate the Method Il measure on the sections X; obtained from 7 to the
Method II measure on T' X X obtained from p. Thus we set

w7 (B) = lim p5(B); (12)

this is the Method II measure on T x X obtained from i by virtue of (9).

Theorem 9. Let X be locally compact and let 7 satisfy conditions (C1)-(C5). Let
B C T x X be a Borel set with each t-section B; og-compact. Then

w(B) = [ B (13)
T
Proof. For each § > 0, applying Theorem 6 to 75 gives

W3(B) = [ i (Bdu(o)
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Letting 6 — 0 we have 75(B;) — 7**(B;) for all ¢, and u3(B) — p**(B). Identity (13)
follows by the monotone convergence theorem.

Since p** is a Method II measure, it is a metric measure, and all Borel and analytic
subsets of T'x X are pu** measurable. We again have a product formula for Borel rectangles,

u" (U x B) = (U)r* (),

so p** is a product of ¥ and 7**, though once again extensions to X may be far from
unique given that 7** is likely to be non-co-finite.

Example I Our principle example is Hausdorff measure. For s > 0, setting 7(F) = |E|®,
where, as usual, |- | denotes diameter, we get that 7** is the usual s-dimensional Hausdorff
measure, H® on X, see Rogers [Ro|. Thus, by Theorem 9, if B is a Borel set with o-compact
t-sections,

NWE=LW@MWL

where p** is the Method II measure constructed from the set function u(B) = [ |B:|*dv(¢).
It follows from Lemma 8 that we may use Borel rectangles R; = U; X E; in covers for finding
py and p**, so
p(B)=liminf Y p(Ri)
BCUR;,|Ri|<é
— 3 1 . . s
= tlsgr(x) inf Z v(U;) | Eil®.
BCUR;,|Ri|<6

Now let v be the restriction of d-dimensional Hausdorff measure H¢ to a compact set
T C R™ with 0 < H%(T) < oo; we lose little by assuming that H%(T) = 1. By a standard
result on upper densities, see [Ma], we have that limsup,_,qv(B(z,7))(2r)~¢ < 1 for v-
almost all z. Thus, if € > 0, we may take an increasing sequence of Borel sets T; — Ty,
where v(Tp) = 0, and 6; — 0, such that v(U) < (1 + €)2¢4|U|¢ if {U| < & and U NT; # 0.
Then
#* (BN (Ti x X)) < lim inf Yo @42 Uil B
BCUR;,|R;|<6
< gi_xfrl) inf Z (1+ €)2%| R;|4+®
BCUR;,|R;|<8
= (1 + €)2¢H4T5(B)

for all 4. Using Theorem 9 and taking the limit as i — oo, u**(B) < (1 + €)2¢H**(B) so,
since € may be taken arbitraily small,

p**(B) = /T H(B,)dH(t) < 2¢H4T*(B).

The right-hand inequality is well-known, see [Ma]. Here we have given an alternative
derivation of a somewhat stronger fact, that B [ H*(B;)dH%(t) is itself a Method II
measure on T X E constructed from the set function u(B) = [ |B:|*dH%(t)

8



Example II Let A be a given probability measure on R™ which we assume satisfies
(C1)-(C5), and let s,¢ > 0. In connection with multifractal measures, several authors,
for example Olsen [Ol], have considered measures of Hausdorff type which are Method II
measures constructed from the set functions such as 7(E) = |E|*A(E)? for E C R". (For
certain purposes, this 7 may be modified so that 7(E) = oo unless E is a ball.) This leads
to Borel measures H? given by

H3(E) = r**(E) = liminf > BT A(E).
ECUE;

Just as in Example I, we get a formula for the integral of sections of a Borel sets B with
o-compact sections as a Method II measure. Thus

p(B)= [ B,

where p** is the Method II measure constructed from the set function
pu(B) = [T |B¢|* (B;)dv(t). Such formulae may be applied to problems on sections of
multifractal measures.

2. Analytic operators and packing dimensions

In this section we use properties of analytic operators to obtain some stronger results
relating to packing dimensions of sections. For our purposes, it is enough to use the
definition of packing dimension via upper box-counting dimension. For K a compact
subset of some seperable metric space Y we set N,.(K) for the least number of open balls
of radius r that are needed to cover K. The upper boz-counting dimension dimpK of K

is defined by
dimg K = limsuplog N,.(K)/ — log . (14)
r—0

We define the packing dimension dimp B of B C Y by
dimp B = inf {squi_mBKi : B C U;K; with K compact} . (15)

For further properties of these dimensions, and the equivalent definition of packing dimen-
sion via packing measure, see [Fa,Mal].

We recall that the Borel operators over a Polish space X are generated in much the
same way as the Borel sets [CM]. Thus, a function A mapping P(X), the power set of X,
into itself is said to be a Borel operator provided it is in the smallest family F of operators
containing the following operators:

(a) A(K)= B, B is a fixed Borel subset of X,
(b) A(K)=f"Y(K), where f is a fixed Borel map from X into X,
(c) A(K)=X\K,



and such that the family is closed under the operations of composition and countable

unions: (d) A(K) =A(Az(K)), AL,AeF

(e) A(K)=UAn(K), ApeF.
An operator © : P(X) — P(X) is said to be analytic if and only if there is a Polish space

Y and a Borel operator A : P(X xY) — P(X x Y) such that ©(M) = nx (A(M x Y))

for each M C X.
For each d > 0, let T =I'9) : P(X) — P(X) be the operator defined by

r € (M) <= Ve> 0 [dimp(M N B(z,¢)) > d].

Theorem 10. The operator I' is analytic, that is 1.
Proof. For each n, defining I, : P(X) — P(X) by

z € Tn(M) <= dimp(M N B(z,1/n)) > d,

we have

T(M) = (| Tn(M).

Since the intersection of a sequence of analytic operators is analytic, it suffices to show
that each operator IT',, is analytic. To this end, we consider the Polish space Y = XN,

Let D = {(yp) € XN : dimp{y, : p € N} > d}. We note that D is a Borel
subset of Y. There are several ways to prove this. For example, one can easily check that
I ={(yp) €Y : {yp : p € N} is not conditionally compact} is a Borel set and the map
¢: Y\ I— K(X), defined by ¢((yp)) = {yp : p € N} is Borel measurable. In [MM] it is
shown that the map K — dimp(K) is Borel measurable, and composing these maps gives
that B is a Borel set.

Next, define the the operator A over X x Y by:

o0

A(A) = (X xD)n [ (BeN 7 (4)),

k=1

where By = {(z,(yp)) : d(z,yx) < 1/n} is a Borel subset of X x Y for each k, and
f: X xY — X xY given by fi(z, (yp)) = (yx, (¥p)) is a Borel measurable map. Thus
A:P(X xY)— P(X xY) is a Borel operator, see [CM, p. 58|. Since

€ Pn(M) <= EI(yp) ey [(.’L‘, (yp)) € A(M X Y)]:

Fpn(M) =nx(A(M xY)),

the operator I, is an analytic, that is X1, operator [CM, p. 58]. Therefore, I' = (T, is
an analytic operator. Il
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Let ['o(M) = M NIT(M), so z € I'o(M) if and only if z € M and, for every
neighborhood U of z,dimg(U N M) > d. As the intersection of two analytic operators, I'o
is an analytic, or ¥}, operator and therefore the dual operator ¥ defined by

(M) = X\Io(X\M)

is a coanalytic, or II, operator. The operator ¥ is also monotone, that is M C ¥(M),
since

U(M)=MU {z € X\M : 3 an open set U [z € U and dimg(U N (X \ M)) < d]}.

Thus ¥ adds to M all points z of X \ M at which X \ M is small in the sense that there
is some neighborhood U of z such that U N (X \ M) has upper box counting dimension
less than d. An important feature of this operator is that ¥ adds to M a relatively open
subset of X \ M. _

We next consider the effect of iterating the operator ¥. By transfinite recursion, we
set UO(E) = E, and *t1(E) = ¥(¥%(E)) for each ordinal o, and U*(E) = Uy, ¥ (E)
if XA is a limit ordinal. We note some properties of the operator ¥ including a simple
boundedness principle or stabilization property.

Lemma 11. For each M C X, there is an ordinal o < wj, where w, is the first uncountable
ordinal, such that ¥*(M) = ¥>+1(M). If X \ M is compact, then for each ordinal «, the
set X \ U*(M) is compact, and if in addition dimp(X \ M) < d, then there is a countable
ordinal a such that ¥*(M) = X.

Proof. Let (U,)nen be a base for the topology of X. Suppose that for each countable
ordinal o, U®(M) is a proper subset of ¥**t1(M). For each such a choose n(a) such that
Un(ay N X \ U%(M) C ¥>*+1(M). Thus we may choose two countable ordinals a < 8 such
that n = n(a) = n(8), and z € U, N (X \ ¥P(M)), so that z € TP+ (M)\ ¥#(M). On the
other hand, z € ¥*+t(M) c ¥P(M). This contradiction establishes the first part of the
lemma.

For the second part, suppose X \ M is compact. Since ¥ adds to M a relatively
open subset of X \ M, the set X \ ¥(M) is compact. It follows by transfinite induction that
X\ U*(M) is compact for each ordinal a. Finally, suppose in addition that dimp(X\ M) <
d, that ¥*(M) = U*t1(M) and that Z = X \ ¥*(M) # 0. Since dimp(Z) < d, there
is a cover of Z by compact sets K, such that for each n,dimg(K,) < d. By Baire’s
category theorem, for some n, the set K, has nonempty interior U with respect to Z.
Then () # U C ¥H1(M)\ *(M). This last contradiction completes the proof of the
lemma. B

We need a parametrized version of the operator ¥. Let us define the operator ®
over P(T x X) by:

(M) = | J{t} x T (M)

teT

We note some of the basic properties of this operator.

11



Lemma 12. The operator ¢ is monotone and coanalytic. Let M be a Borel subset of
T x X such that for each t € T, X \ M; is compact. Then ®(M) is a Borel set and for each
t,X \ (2(M)); is compact. Moreover, for each countable ordinal a, ®*(M) is a Borel set,
and for each ¢, X \ (2*(M)); is compact.

Proof. Clearly, ® is monotone and it is shown in [CM] that such operators are coanalytic.
Let (U,) be a basis for the topology of X. We note

(t,z) € ®(M) <> (t,z) € M or U,[z € U, N X \ M; and dimp(U, N X \ M;) < d].

For each n, set S, = (T x X)\ M) N (T x U,). Then S, is a Borel subset of T' x X
and each t-section of S, is o-compact. Thus, D, = 77(S,) is a Borel set. So, G, =
(Dp x X)NT x X \ M is a Borel set and each t-section of Gy, is compact. Therefore, the
map ¢, : D, — K(X) defined by ¢(t) = (Gp): is a Borel measurable map. Since the map
K — K NU, is Borel measurable and the map K ~ dimpg(K) is Borel measurable [MM],
the set E,, = {t € D, : dimp(Gy,):NU, = dimp((X\M;)NU,,) = dimp(X \ M; N U,) < d}
is a Borel set. Since

S(M)=MUU,(E, xUp,)N(T x X \ M),

it follows that ®(M) is a Borel set. This finishes the proof of the middle part of the lemma.
The last part follows by transfinite induction using the middle conclusion of the lemma. Hl

We now deduce that reasonable Borel sets B C T X X have a countable decompo-
sition into subsets, such that the packing dimension of the sections of B are determined
by the upper box-counting dimensions of the sections of the subsets.

Theorem 13. Let T and X be Polish spaces and let B be a Borel subset of T' x X such
that for all t € T, the t-section B; is o-compact with dimp(B;) < d. Then there is a
sequence of Borel sets {E,}52, such that B = J,,cn En, and for allt € T and n € N the

section (E,); is compact with dimp(E,); < d.

Proof. By Saint Raymond’s theorem the Borel set B can be expressed as a countable
union of Borel sets each of which have all t-sections compact. Thus it suffices to prove
the theorem under the assumption that each t-section of B is compact. For each ordinal
a,let B, = ®*((T x X)\B) C T x X. For each t € T, Lemma 11 implies that there is
some countable ordinal o(t) such that B, = X. In the terminology of [CM] this means
T x X is the closure of the operator ® on the Borel set 7" x X \ B which is defined to
be U @*((T x X) \ B). By the boundedness principle for monotone coanalytic operators,
[CM, Theorem 1.6(e)], there is a countable ordinal « such that

T x X = B,

SO
B= ] Bys1\B,.

y<o

By Lemma 12, for each v, the set B,,\B, is Borel, and for each ¢, the set (By+1\By):
is o-compact. Also, if K is compact and K C (By+1\By):, then dimgK < d. Applying

12



Saint Raymond’s theorem (see Section 1), we can express each set By41\B, as a countable
union of Borel sets each with every t-section compact. The theorem now follows. I

We now apply Theorem 13 to give an alternative derivation of a formula for the
essential supremum of the packing dimension of sections of sets, originally presented in
[FJ]. For this illustration we take ' = R™ and X = R" with v as m-dimensional Lebesgue
measure, although the results extend to other homogeneous metric spaces.

We express our results in terms of a generalised packing dimension defined anal-
ogously to the usual packing dimension, see[FJ]. For K a compact subset of T' x X we
set

N (K) = inf {Zv(wT(K NU;) : K ¢ U;U; with |U;] < 7‘} :

)

The generalised upper box-counting dimension MBK of K is defined by

dimpK = limsuplog N*(K)/ —logr.

r—0

Analogously to the usual dimensions, we define the generalised packing dimension dimp B
of BC'Tx X by

dimp B = inf {sqmeKi : B C U;K; with K; compact} .

For further properties and a measure approach to these dimensions see [FJ].
As in [FJ, Proposition 3.5], a straightforward integration argument establishes that
for all B C T x X we have
dimpB; < dimp B (16)

for v-almost all . Another integration argument gives that for B bounded and analytic,
dim} B < esssup,dimpg(B;). (17)

A much more technical argument is used in [FJ, Proposition 9] to obtain the natural and
useful identity
dimp B = esssup,dimp(B;) (18)

which gives an expression for the packing dimension of a typical section of a compact set
B.

Equation (18) may alternatively be obtained as a simple corollary of Theorem 13.
Let B be a compact subset of T' X X, and let d > esssup,dimp(B;) so dimp(B;) < d for
almost all ¢. Theorem 13 applied to a subset of T' of full measure (noting that dimp(By)
is measurable) gives a Borel decomposition B = UB,, with dimgB,,: < d for almost all
t, for all n. By (17), dimp B, < d for all n, so dimpB < sup,, dimpB, < d. This gives
dimp B < esssup,dimp(B;) and the opposite inequality is immediate from (16).

13
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EXAMPLES ILLUSTRATING THE INSTABILITY
OF PACKING DIMENSIONS OF SECTIONS

K. J. FALCONER!, M. JARVENPAAZ, AND P. MATTILA?

Mathematical Institute, University of St Andrews,
North Haugh, St Andrews, Fife, KY16 9SS, UK!
University of Jyviaskyld, Department of Mathematics,
P.O. Box 35, FIN-40351 Jyviskyld, Finland?

ABsTrRACT. We shall use the “iterated Venetian blind” construction to show that
the packing dimensions of plane sections of subsets of R” can depend essentially on
the directions of the planes. We shall also establish the instability of the packing
dimension of sections under smooth diffeomorphisms.

1. INTRODUCTION AND NOTATION

Let m and n be integers with 0 < m < n. We use the notation <y, ,,, for the unique
orthogonally invariant Radon probability measure on the Grassmann manifold G, »,
consisting of all m-dimensional linear subspaces of R®. The uniqueness of v, m
implies that there is a positive and finite constant ¢ depending on m and n such
that for all A C G

Yam(A) = c(H® X -+ x H")({(y1, .- ym) € R*)™: |y <1foralli=1,...,m

(1.1) and V(y1,...,¥m) € A})
where H™ is the n-dimensional Hausdorff measure and V(y1,...,ym) is the m-
dimensional linear subspace spanned by the vectors yi,...,ym. For V € G, , we

denote by projy the orthogonal projection onto V, by V1 the orthogonal comple-
ment of V, and by V, the m-plane {v+a:v €V} fora e V%

For Borel sets £ C R™ one has the following very precise information about
the Hausdorff dimension, dimy (for the definition see [F2, Chapter 2] or [Mat3,
Chapter 4]), of projections and plane sections of E (see [K], [Mar], and [Mat1]): for
Ynm-almost all V € Gn m

(1.2) dimpg projy (E) = min{m, dimyg E'}
and
(1.3) H " {a e VL :dimg(ENV,) =dimg E — (n—m)}) >0

1991 Mathematics Subject Classification. 28A12, 28A80.
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2 K. J. Falconer, M. Jarvenpéi, and P. Mattila

provided that in (1.3) dimg F > n — m and 0 < H4¥™=2 F(E) < oo.

Note that for the Hausdorff and packing dimensions, dimy, (for the definition
see [F2, Chapter 3] or [Mat3, Chapter 5]), of sections we have the following natural
upper bounds: if E C R® and V € G, y, then

(1.4) dimg(E NV,) < max{0,dimyg E — (n —m)}
and
(1.5) dimy (£ NV,) £ max{0,dimy, F — (n — m)}

for " ™-almost all a € V- (see [F3, Lemma 5] and [Mat3, Chapter 10]). For the
packing dimension, the formulae (1.2) and (1.3) are false, but there are weaker re-
sults for both sets and measures (see [FH1-2], [FJ], [FM], and [JM]). Although there
is no formula such as (1.2) for the packing dimensions of projections, Falconer and
Howroyd showed in [FH2] that given an analytic set E C R®, dimy, projy (E) is al-
most surely a constant, that is, there is a number d,, (E) such that dim;, projy,(E) =
dm(E) for v, m-almost all V' € Gy ,. The purpose of this paper is to show that
there is no such result for plane sections. We shall prove that there exists a com-
pact set E C R™ and compact subsets A and B of G,y with v, m(A) > 0 and
Yn,m(B) > 0 such that for all V € A we have H™ (projy. (E)) =0, that is, ENV, =
@ for H™ ™-almost all @ € VL, and for all V € B we have dimy,(E N V,) = m for
points @ in a non-empty open subset of VL. Quite likely, but perhaps with con-
siderable technical complications, it would be possible to show that given a Borel
function f from the space of affine m-planes in R™ into the closed interval [0, m]
there is a Borel set £ C R" such that dim,(E N V) = f(V) for almost all affine
m-planes V. This would be analogous to the results of Davies [D] and Falconer [F1]
where Ay C V is given in an arbitrary but measurable way and then E is found
such that for 7, m-almost all V € Gy, projy (E) agrees with Ay up to a set of
m-dimensional measure zero.

In Section 5 we shall establish the instability of the packing dimensions of sec-
tions under smooth “bending” diffeomorphisms. We shall show that given a C?-
diffeomorphism f : A — B between two plane domains A and B which does not
map every line segment onto a line segment there is a compact subset E of A such
that H!(projz(E)) = 0 for v, 1-almost all L € Ga,1, that is, almost all sections
E N L, are empty, but for all L € G5 1 we have dimy(f(E)N L,) =1 for all points
a in some non-empty open subset of LL.

2. THE BASIC RESULT FOR HYPERPLANES IN R"™

In this section we begin a two-stage induction process that proves the result on
which our first construction is based. Here we consider hyperplanes in R" and in
the next section we work with general m-planes in R”.

Let P C [0,1]" be a non-degenerate closed parallelepiped. We name the edges
of P such that the shortest parallel edges are called 1-edges, the second shortest
parallel edges are 2-edges and so on. This numbering distinguishes edges which are
not parallel, that is, if two edges have the same length but they are not parallel then
they have different numbers. For all i = 1,...,n we call P} and P2 the (n—1)-faces
of P which are generated by the edges numbered by 1,...,1—1,2+1,...,n.
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For our purposes it is enough to consider a specific class of subparallelepipeds of
[0,1]". Let {z1,...,Tn} be the standard basis of R*. For alli =1,...,n we denote
by W; the hyperplane spanned by {z1,...,%i—1,Zit1,...,Zn}. We call P C [0,1]"
a hyperregular parallelepiped in R™ if P! and P? are parallel to W; for all i # n—1;
let P! be the one that is nearest to W;. For a hyperregular parallelepiped P and
6 > 0 we define

Apn-1(P) ={V : V is an affine (n — 1)-plane meeting both P and P?
for all ¢ # n but not P! and P2}

and
Ab L (P) ={V € Appi(P): dist(V N P, P2) > 6}

where dist(V N P, P2) = inf{la —b| : a € VN P,b € P2} is the distance between
VNP and P2

The following lemma from [Mat2] describes the plane case underlying the basic
construction for hyperplanes in higher dimensions.

Lemma 2.1. There are disjoint compact sets A, B C Ga,1 with v3,1(A) > 0 and
¥2,1(B) > 0 such that for all hyperregular parallelograms P C |0, 1) and for all
€ > 0 there exists a finite family P. of hyperregular subparallelograms of P with the
following properties:
(1) HY(projp.(UP.)) <e for all L € A.
(2) There is 6 > 0 such that if L € A3 1(P) N A31([0,1]%) is parallel to some
line belonging to B, then there exists Q € P, such that L € Ag’l(Q).

Proof. See [Mat2, Lemma 2]. Note that in the plane we can parametrize the lines
through the origin by the angle they make with the positive z;-axis. Using this
parametrization [Mat2, Lemma 2] gives A = [a,a+b] and B = [0,a —b]U[a + 2b, 7]
where a and b are real numbers with 0 <b<aanda+2b<w. O

Next we prove the higher-dimensional version of Lemma 2.1 for hyperplanes.

Lemma 2.2. There are disjoint compact sets A, B C Gp n—1 with ¥pn—1(4) >0
and Yp n—1(B) > 0 such that for all hyperregular parallelepipeds P C [0,1]" and for
all € > 0 there exists a finite family P. of hyperregular subparallelepipeds of P with
the following properties:
(1) H(projyL(UP)) <e for all V € A.
(2) There is 6 > 0 such that if V € Ay n_1(P) N Apn—1([0,1]") is parallel
to some hyperplane belonging to B, then there exists (Q € P. such that
14 € ‘Afl,'n.—l(Q)'

Proof. If n = 2, the result is a restatement of Lemma 2.1. We assume inductively
that the claim holds in R*! and deduce the result in R".

We may restrict our consideration to hyperregular parallelepipeds P with P! C
W1. We use the notation yw, n—2 for the invariant measure on the Grassmann man-
ifold Gw, ,n—2 of all (n—2)-dimensional linear subspaces of W;. Applying the induc-
tion hypothems to W, which is identified with R*~! and deﬁmng Aw,, n_z(P) and
Al ._2(P) in the obvious way for hyperregular parallelepipeds Pc[0,1]* Yin W,

and for é > 0, we find disjoint compact sets A, Bc Gw, ,n—2 With fywhn_z(A) >0
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and Yw, n—2(B) > 0 such that for all hyperregular parallelepipeds P C [0, 1]~}
and for all £ > 0 there exists a finite family P, of hyperregular subparallelepipeds
of P such that

(2.3) H (projy-L.w, (Uﬁ;)) <eg

for all V € A. Here projy 1w, : Wi — VLW ig the orthogonal projection onto the
orthogonal complement VW1 ¢ Gw,,1 of V. Further, there is § > 0 such that if
V € Aw, n_2(P) N Aw, n_2([0,1]*1) is parallel to some (n — 2)-plane belonging
to E, then

(2-4) V€AY, na(Q)

for some @ € P..
Define _
A={VeGun1:VNW; € A}

and
B={V €Gnn_1:VNW; € B,0< angle(z:,VN(VNW)t) < x/4},

where angle(z;,V N (V N W;)1) is the angle between the z;-axis and the line
VN (VN W)t measured on (V NW1)t+ € G, 2. Here the positivity of the angle
is determined by requiring that the half-line VN (VN W)t N {(y1,...,y,) € R* :
y1 > 0} intersects the (n — 1)-plane where z,, = 1. In this way we fix the positive
direction of the angle for all (V NWy)+ € Gr,2 which are not subsets of W,,. For
the rest of the 2-planes (V N W;)1 we do this in some fixed sense; it turns out that
either of the two possibilities will do. _

Clearly A and B are disjoint. Since Y, n_2(A) > 6 and Y, n_2(B) > 0, it is
easy to see from (1.1) that vy, n_1(A) > 0 and 7y, ,_1(B) > 0.

Let P C [0,1]™ be a hyperregular parallelepiped with P} C W; and let € > 0.
Since P = PNW; is a hyperregular_parallelepiped in Wi, there exists by the
induction hypothesis a finite family P. of hyperregular subparallelepipeds of P
such that (2.3) and (2.4) hold. Let V' € A. Since

Projy . (U’ﬁ&:) = projy. PI'Oj(VnWl)L (U:ﬁE) = projy. Proj(Vnwl)L’Wl (U’ﬁE)
we obtain from (2.3) that
(2.5) #H (projy . (UP,)) < e.

Let P. be a finite family of hyperregular subparallelepipeds of P obtained by ex-
tending the parallelepipeds of P, to very thin parallelepipeds to the direction of
the positive z;-axis. Then (1) holds by (2.5).

Let § > 0 be as in (2.4). f V € A, n—1(P) N Ap n—1([0,1]") is parallel to some
hyperplane belonging to B, then VNW; € AWl,n_z(ﬁ) N Aw, n—2([0,1]"71) is
parallel to some (n — 2)-plane belonging to B. Using (2.4), we find Q € P, such
that VNWy € A%th—z(é)- Since 0 < angle(z1, V N (V NW;)t) < w/4 and since
we may choose the length of the 1-edges of the parallelepipeds of P. to be less than
0/2, we have V € Ai{ 3_1(Q) where Q € P, is the enlargement of Q. Note that
since here V € A, ,_1({0,1]") is parallel to some V,, € B, the z,-axis cannot be
a subset of V, N W1. Thus (V, N W1)L is not a subset of W,,. In this case the
positiveness of angle(z1, V, N (V, N W1)71) is explicitly defined. O
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3. THE EXTENSION OF THE BASIC RESULT TO m-PLANES IN R"

In order to extend the result of Lemma 2.2 for general m-planes in R® we do
a two-stage induction process: first we use the results of the previous section for
hyperplanes and then we prove the general case. As before we restrict our at-
tention to a certain class of parallelepipeds. We say that a non-degenerate closed
parallelepiped P C [0,1]" is an m-regular parallelepiped in R™ if P is of the form
S x [0,1]*=(m+1) where S C [0,1]™! is a hyperregular parallelepiped in R™+1. We
number the edges of P in the same way as before and define for all¢ =1,...,n the
(n — 1)-faces P! and P? as before. Note that for all ¢ # m both P! and P? are

2

parallel to W;. For an m-regular parallelepiped P C [0, 1]™ we set

Apm(P) = {V :V is an affine m-plane meeting both P} and P? for all
i=1,...,mbut not P} and P? wheni=m+1,...,n}.

Lemma 3.1. There are disjoint compact sets A, B C Gpm with Yo m(A) > 0
and Ynm(B) > 0 such that for all m-regular parallelepipeds P C [0,1]" and for all
€ > 0 there exists a finite family P. of m-regular subparallelepipeds of P with the
following properties:
(1) H* ™(projy . (UP:)) <€ forall V € A.
(2) If V e Ap m(P) N Ap m([0,1]™) is parallel to some m-plane belonging to B,
then there erists Q € P. such that V € A, n(Q).

Proof. If n = m + 1, the result is a consequence of Lemma 2.2. Keeping m fixed,
we assume inductively that the result holds in R*~! and prove it in R".
Identifying W, with R™~ ! and using the induction hypothesis, we find disjoint

compact sets A, B C Gw, m with vy, m(A) > 0 and yw, m(B) > 0 such that for
all m—regular parallelepipeds PcC [0,1]*~! and for all € > 0 there exists a finite
family 'P of m-regular subparallelepipeds of P such that forall V € A

(3.2) H 1™ (projy,wa (UP)) < &.

Further, if V € Aw, m(P)NAw, =([0,1]*"?) is parallel to some m-plane belonging
to B, then

(3.3) Ve Aw, m(Q)
for some @ € 735.
Define _
A={V € Gnm : projy, (V) € A}
and

B ={V € Gnm : Projy, (V) € B}.

Clearly A and B are disjoint compact sets with v, ,(A) > 0 and v, m(B) > 0.
Let P C [0,1]™ be an m-regular parallelepiped and let € >.0. Using the in-
duction hypothesis for the m-regular parallelepiped P=Pn W, in W,, we find a
finite family {PZ,..., 13;“} of m-regular subparallelepipeds of P such that (3.2) and
(3.3) hold. Now P, = {P! x [0,1], .. x [0,1]} is a finite family of m-regular
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subparallelepipeds of P. Consider V' € A. Note that for W = projy, (V) € A we
have WHW» c V4. Since H"* ™ (projy 1 (UP:)) < 2nH" 1™ (projy 1w, (UP:))
and projyy.ws (UP:) = projyL.w, (UP.), we obtain (1) from (3.2). Finally, if
V € Apm(P) N An m([0,1]") is parallel to some m-plane belonging to B, then for
alli=1,...,n— 1 we have projy;_ (V' N Pl = projy, (V) N PJ for j =1,2. Since
PrOjy,, (V) € Aw, m(P) N Aw, m([0,1]""1) is parallel to some m-plane belonging
to B, we obtain by (3.3) that projy, (V) € Aw, m(PY) for some 1 <[ < k giving
V € Anm(Pt x[0,1]). O

4. THE MAIN CONSTRUCTION

Using Lemma 3.1 we prove our main result:

Theorem 4.1. There ezist compact sets E C R* and A, B C Gp ym with yp m(A4) >
0 and yn,m(B) > 0 such that
(1) for allV € A we have H" ™ (projy.(E)) =0, and
(2) for all V € B there ezists a non-empty open subset Uy of V4 such that
dim,(ENV,) =m for alla € Uy.

Proof. Let A, B C Gy m be as in Lemma 3.1. Setting P; ; = [0,1]" and using
Lemma 3.1 we find m-regular parallelepipeds Q2,1,...,Q2,, C P11 such that for
allVeA

Iz

H* ™ (projy. (| @2,0)) <

q=1

er—l

Further, if V € A, ,(P1,1) is parallel to some m-plane belonging to B, then V €
Anm(Q2,4) for some 1 < g <ly. Foralll <g¢g<lyand1<i<mlet e(Qz,) be
the length of the i-edges of (J2,4. Let k2 be the smallest positive integer such that
foralll < g<ly

k2 > e1(Qa,q) ™.

Dividing each Q2 4 into (k2)™ m-regular parallelepipeds with all the edges parallel
to the corresponding edges of ()2 , and with the length of the i-edges equal to
%ei(Qz,q) for all 1 < i < m, we obtain m-regular parallelepipeds P, 1,...,P2 N,
where Ny = [3(k2)™. Clearly

N3
H* ™ (projy . (| Prg)) <

q=1

L
2

for all V € A. By Lemma 3.1 we find for all 1 < g < N m-regular parallelepipeds
Q315+, Q8 12 C Pag such that forall V € A

lq
(4.2 = orojy+ (1 Q4,)) < g

p=1

Further, whenever V' € Ay, (P2 g) N Anm(P1,1) is an m-plane parallel to some
m-plane belonging to B, then V € An,m(Qg’p) for some 1 < p < I3. As before,
divide each Qg,p into (k3)™ m-regular parallelepipeds with all edges parallel to the
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corresponding edges of Q3 , and with the length of the i-edges equal to k—lse.i(ng)
for all 1 <1 < m. Here k3 is the smallest integer such that for all 1 < ¢ < N3 and
1<p<i3

ks > e1(QF )7

This gives us m-regular parallelepipeds P31, ..., Ps n, Where N3 = Eff:zl 13(k3)™.
Since

Ny N, 1§

U P3,q C U U lep’

g=1 g=1p=1

we have by (4.2)
n—m : & 1
H* ™ (projy 1 (U Ps)) < 3
q=1

Continue in this way and define a compact set

OONp

E=( U P

p=1lg=1
If V € A, then for all positive integers p

Np

H" ™ (projy . (E)) < 'H"—m(PI’OJ'vL(U Ppg)) <
g=1

SR

giving the first claim.

Finally, let V € Ap m(P1,1) be parallel to some m-plane belonging to B. By
the construction for all 7 we have V € .An,m(Q;{p) for some 1 < ¢ < N;_; and
1<p< l;? and therefore V € A, (P;;) for all Pj; C Q;{p. Since there are (k;)™
such parallelepipeds P;; and since ENV N P;; # @ for all of them, we need at least
(%L)m m~cubes with side-length

1
d;=-— min e (Q?
7 kj 1<9<N; 1 1(@55)
1<p<]

to cover E NV. Using the fact that

i q —jm+1
;> ( min e; (@5 )
7= 1<q<N;1 (QJ’p)

1<p<i?

we have (k;)7™ > (d;)'~9™ which gives dimg(ENV) = m where dimg is the upper
box-counting dimension (for the definition see [F2, Chapter 3] or [Mat3, Chapter
5]). Similarly we see that dimg(E NV N O) = m for all open sets O C R™® with
ENVNO #0, and so [F2, Corollary 3.9] gives dim,(E N V) = m. This completes
the proof since in Lemma 3.1 the set B can be chosen in such a way that for all
VeBtheset {acV+Lt:V, € A, m(Pr1)} isopen. O
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5. BENDING MAPS AND PACKING DIMENSIONS OF SECTIONS

In this section we shall indicate another difference between the behaviour of
Hausdorff and packing dimensions of sections of sets. By (1.3), (1.4), and the
preservation of Hausdorff dimension under smooth mappings, the typical Hausdorff
dimension of sections of a smooth image of a set is the same as the typical Hausdorff
dimension of sections of the original set. We shall show that the packing dimensions
of sections can change very radically under smooth diffeomorphisms. For simplicity,
we shall do this only in the plane, although the techniques of the previous sections
could certainly be used to prove similar results in higher dimensions.

Theorem 5.1. Let f : A = B be a C?-diffeomorphism between open subsets A
and B of R%. Suppose that f does not map every line segment of A onto a line
segment. Then there is a compact subset EE of A such that
(1) H'(projz.(E)) =0 for y2,1-almost all L € G5 1, and
(2) for all L € G3,1 we have dimy(f(E) N L,) = 1 for all a € I, where Iy, is
some non-empty open subinterval of L*.

The proof is a slight modification of the methods of Section 4 and [Mat2] and
therefore we shall only sketch it. We recall some terminology and notation from
[Mat2]. From now on a parallelogram will always mean a non-degenerate closed
parallelogram in R? whose shorter sides are parallel to the z;-axis. Given a C'-curve
C and a parallelogram P, we say that C € I'(P) if CN P has a connected component
meeting both of the longer sides of P but neither of the shorter ones. We denote
by dir(C, ) the direction of the tangent of C at = € C. Finally, pg = proj it where
lp = {t(cosB,sinf) : t € R} for 4 € [0, 7).

Lemma 5.2. Let P be a parallelogram, ¢ > 0,0 < s <1, 0 < a < {5, and let
ko > 1 be the largest integer with 5(kq + 1)oe < w. Then there is a finite family P
of subparallelograms of P with the following properties:
(1) HY(pe(UP)) <€ forbia <0< (5i+1)a,i=1,...,kq-
(2) IfC e T(P) with dir(C,z) ¢ ((5t—1)e, (55+2)a) foralli=1,...,ka, z €C,
then there are parallelograms Py, ..., P, € P having the same side-length d
for their shorter sides such that ld®* > 1 and C € T'(F;) for alli =1,...,1.

Proof. [Mat2, Lemma 3] gives a finite family R of subparallelograms of P for which
(1) is satisfied and if C is as in (2), then C € I'(Q) for some @ € R. Subdividing each
parallelogram of R into sufficiently many subparallelograms we get the required
family P. O

We can now use the argument in [Mat2, pp. 307-309]. First we choose a small
open subset U of A such that f bends many line segments in U. We may not be
able to get this for all line segments in U, but if we stay away from some exceptional
directions as described in [Mat2, Lemma 1] we find a subinterval I of [0, ) of length
1 such that for line segments J whose direction is in I, f(J) is not a line segment.
Using Lemma 5.2 we construct a compact set F' with the following properties:

(5.3) F = Noo_;|UPm where (Py,) is a nested sequence of subparallelograms of
U.

(5.4) H(pg(F)) = 0 for almost all & € [0, 7).

(5.5) For all @ € I we have dimy(f(F)N(lg+a)) =1 for all @ € Iy, where Iy CR
is some non-empty open subinterval of lé‘.
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The set F' can be taken to be one of the sets E,, in [Mat2, p. 307] (for example,
F = Eg if we take ¢ = } in the application of [Mat2, Lemma 1] when choosing the
set U above). Then (5.3) and (5.4) are satisfied. To get (3.5) we choose a sequence
sm € (0,1) with lim,, oo 8, = 1 and take s = s,, when applying Lemma 5.2 as
in [Mat2] to obtain the family Pp,+1. As in the last paragraph in [Mat2, p. 308]
we see that for all # € I we have f(F)N (lg + a) # 0 for a € I, (which is an open
subinterval of l3"). (There is a misprint in [Mat2, p. 308]: the first sentence of the
last paragraph should read (lg + a) N f(E,) # 0 instead of (Ig + a) N f(E,) = 0.)
Because of the stronger formulation of Lemma 5.2 we now know more: for any open
set U’ with f(F)NU’ # 0 and for sufficiently large m we need at the m-th stage at
least {,, intervals of length d,, with l,,(dp,)*™ > 1 to cover f(F)NU' N (lg + a) for
6 € I and a € Iy. Further, lim,, o, dp, = 0, and therefore dim,(f(F)N(lg+a)) =1
for 8 € I and a € Iy. Since I has length %, we can take as F the union of seven
suitably rotated copies of F'.
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