
Accepted by ApJPreprint typeset using LATEX style emulateapjCRITICAL PROTOPLANETARY CORE MASSES IN PROTOPLANETARY DISKS AND THE FORMATION OFSHORT{PERIOD GIANT PLANETSJohn C. B. Papaloizou1;2 and Caroline Terquem2;3;4Accepted by ApJABSTRACTWe study a solid protoplanetary core undergoing radial migration in a protoplanetary disk. Weconsider cores in the mass range � 1 � 10 M� embedded in a gaseous protoplanetary disk at di�erentradial locations.We suppose the core luminosity is generated as a result of planetesimal accretion and calculate thestructure of the gaseous envelope assuming hydrostatic and thermal equilibrium. This is a good approx-imation during the early growth of the core while its mass is less than the critical value, Mcrit, abovewhich such static solutions can no longer be obtained and rapid gas accretion begins. The critical valuecorresponds to the crossover mass above which rapid gas accretion begins in time dependent calculations.We model the structure and evolution of the protoplanetary nebula as an accretion disk with constant�. We present analytic �ts for the steady state relation between disk surface density and mass accretionrate as a function of radius.We calculateMcrit as a function of radial location, gas accretion rate through the disk, and planetesimalaccretion rate onto the core. For a �xed planetesimal accretion rate, Mcrit is found to increase inwards.On the other hand it decreases with the planetesimal accretion rate and hence the core luminosity.We consider the planetesimal accretion rate onto cores migrating inwards in a characteristic time� 103 � 105 yr at 1 AU as indicated by recent theoretical calculations. We �nd that the accretion rateis expected to be su�cient to prevent the attainment of Mcrit during the migration process if the corestarts o� signi�cantly below it. Only at those small radii where local conditions are such that dust, andaccordingly planetesimals, no longer exist can Mcrit be attained.At small radii, the runaway gas accretion phase may become longer than the disk lifetime if the massof the core is too small. However, within the context of our disk models, and if it is supposed that someprocess halts the migration, massive cores can be built{up through the merger of additional incomingcores on a timescale shorter than for in situ formation. A rapid gas accretion phase may thus beginwithout an earlier prolonged phase in which planetesimal accretion occurs at a reduced rate because offeeding zone depletion in the neighborhood of a �xed orbit.Accordingly, we suggest that giant planets may begin to form through the above processes early inthe life of the protostellar disk at small radii, on a timescale that may be signi�cantly shorter than thatderived for in situ formation.Subject headings: accretion, accretion disks | solar system: formation | planetary systems1. INTRODUCTIONThe hypothesis that the planets in the solar systemwere formed in a 
attened di�erentially rotating gaseousdisk was originally proposed by Kant (1755) and Laplace(1796). Since then, the presence of disks around low{massyoung stellar objects has been inferred from their infraredexcess (Adams, Lada & Shu 1987). Recently they havealso been imaged directly with the Hubble Space Telescope(McCaughrean & O'Dell 1996; Burrows et al. 1996; Mc-Caughrean et al. 1998; Krist et al. 1998; Stapelfeldt etal. 1998). Surveys in the Orion nebula (Stau�er et al.1994) and the Taurus{Auriga dark clouds (Beckwith et al.1990) indicate that these disks are common, apparentlysurrounding between 25 and 75% of the young stellar ob-jects. Their infrared emission may be produced by the

gravitational potential energy liberated by matter 
ow-ing inwards at a rate _M � 10�8�1 M� yr�1 (Hartmannet al. 1998). The nonobservation of disks around olderT Tauri stars together with these values of _M suggest adisk lifetime of between 106 and 107 yr (Strom, Edwards &Skrutskie 1993). Masses between 10�3 and 10�1 M� anddimensions in the range 10{100 AU have been estimated(Beckwith & Sargent 1996).Most theoretical protostellar disk models have relied onthe �{parametrization proposed by Shakura & Sunyaev(1973). In this context, the disk anomalous turbulentviscosity, which enables angular momentum to be trans-ported outwards and therefore matter to 
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2the gas pressure. So far, only MHD instabilities (Balbus &Hawley 1991) have been shown to be able to produce andsustain turbulence in accretion disks, and they do leadto an �{type disk (Balbus & Hawley 1998). However, be-cause these instabilities develop only in an adequately ion-ized 
uid, they may not operate everywhere in protostellardisks (Gammie 1996). Therefore it is likely that the pa-rameter �, to which the viscosity is simply related, is notconstant through these disks. It may even be that onlyparts of these disks can be described using this � prescrip-tion for the viscosity. However, we may still learn aboutdisks from these models in the same way as we learnedabout stars from simple polytropic models. Therefore, forthe purpose of considering planet formation, as we are in-terested in here, we will use such models.Planets are believed to form out of protostellar disksby either gravitational instability (Kuiper 1951; Cameron1978; Boss 1998) or by a process of growth through plan-etesimal accumulation followed, in the giant planet case,by gas accretion (Safronov 1969; Wetherill & Stewart 1989;Perri & Cameron 1974; Mizuno 1980; Bodenheimer & Pol-lack 1986). The �rst mechanism is expected to producepreferentially massive objects in the outer parts of thedisk, if anything. In this paper we will study planetaryformation within the context of the second mechanism,which is commonly accepted as the most likely process bywhich planets form in at least the inner ten astronomicalunits of protostellar disks. We note however that impor-tant issues related to this model still remain to be resolved(see Lissauer 1993 for a review).Up to now, planetary formation has been studied ata given location in a disk. Most work has concentratedon orbital distances corresponding to the neighborhoodof Jupiter. More recently, prompted by the detection ofplanets orbiting at short distances from their host star, insitu formation of giant planets at these locations has alsobeen considered (Ward 1997a; Bodenheimer 1998; Boden-heimer, Hubickyj & Lissauer 1998).However, the importance of orbital migration as recentlyindicated by both observations (see Marcy and Butler 1998and references therein) and theory (see Lin & Papaloizou1993 and references therein; Ward 1997b) suggests thatplanets may not form at a �xed location in the disk, butmore likely grow while migrating through the nebula. Itis the purpose of this paper to investigate the e�ect ofmigration on planetary formation.In x 2 we construct steady state �{disk models for� = 10�2 and � = 10�3. A range of gas accretion rates,_M , varying between 10�6 and 10�9 M� yr�1 are consid-ered. The steady state assumption is reasonable in theinner regions, below 5 AU from the central star, where thelocal viscous timescale is short, typically on the order of104 yr for _M = 10�7 M� yr�1. We present analytic �ts forthe steady state relation between disk surface density andmass accretion rate as a function of disk location. These�ts can be used to solve the di�usion equation which gov-erns the disk evolution.In x 3 we describe the construction of the protoplanetmodels based on a solid core with gaseous envelope. We re-view the theory of giant planet formation in x 3.1 and givethe equations governing a protoplanet atmosphere in x 3.2.In x 3.3 we give the results of numerical calculations for

the critical core mass above which the atmosphere cannotremain in hydrostatic and thermal equilibrium but mustevolve, with the protoplanet entering a rapid gas accretionphase. These calculations are done at di�erent locations inour disk models. For a given planetesimal accretion ratewhich supplies the core luminosity necessary to supportthe envelope, critical core masses are found to increase sig-ni�cantly by factors of 2{3 between 5 AU and 0.05 AU, atwhich point local conditions may not enable planetesimalsto exist.In x 4 we consider migration of the protoplanetary coreswhich, according to recent estimates of the e�ects of tidalinteractions with the disk by Ward (1997b), may occuron a timescale between 104 yr and 105 yr for a core massof several earth masses at 5 AU. This is also comparableto the proposed formation time. We perform simulationswhich indicate that such a migrating protoplanet is likelyto accrete 24% or more of the planetesimals initially in-terior to it. This accretion is likely to maintain the coreluminosity such that attainment of the critical mass doesnot occur until it reaches small radii � 0:1 AU where plan-etesimals no longer exist.In x 5.1 we discuss our results in the context of short{period giant planets. We point out that the processes in-vestigated in this paper are likely to result in a giant planetorbiting at small radii on a timescale signi�cantly shorterthan that derived for in situ formation. Finally in x 5.2we summarize our results.2. DISK MODELS2.1. Vertical Structure2.1.1. Basic EquationsHere we consider the equations governing the disk verti-cal structure in the thin{disk approximation. Using cylin-drical coordinates (r; '; z) based on the central star andsuch that the z = 0 plane corresponds to the disk mid-plane, we adopt the equation of vertical hydrostatic equi-librium in the form: 1� @P@z = �
2z; (1)together with the energy equation, which states that therate of energy removal by radiation is locally balanced bythe rate of energy production by viscous dissipation:@F@z = 94��
2; (2)where F is the radiative 
ux of energy through a surfaceof constant z which is given by:F = �16�T 33�� @T@z : (3)Here � is the mass density per unit volume, P is thepressure, T is the temperature, 
 is the angular veloc-ity, � is the kinematic viscosity, � is the opacity, which ingeneral depends on both � and T , and � is the Stefan{Boltzmann constant. We consider thin disks which arein Keplerian rotation around a star of mass M�, so that
2 = GM�=r3, G being the gravitational constant. Inwriting equation (3), we have assumed that the disk atthe radius considered is optically thick. However, when



3the disk is optically thin, i.e. when �� integrated over thedisk thickness is small compared to unity, the temperaturegradient given by equation (3) is small, so that the resultswe get are consistent in that case also.To close the system of equations, we relate P , � and Tthrough the equation of state of an ideal gas:P = �kT�mH ; (4)where k is the Boltzmann constant, � is the mean molec-ular weight and mH is the mass of the hydrogen atom.Here we shall limit our calculations to temperatures lowerthan 4,000 K, so that, at the densities of interest, hydro-gen is in molecular form. Since the main component ofprotostellar disks is hydrogen, it is a reasonable approxi-mation to take � = 2. Tests using a more sophisticatedequation of state such as that of Chabrier et. al. (1992)indicate only minor di�erences in the results for the rangeof temperatures and densities considered. Similarly trans-port of energy by convection can be neglected here (seealso Lin & Papaloizou 1985).We adopt the �{parametrization of Shakura & Sun-yaev (1973), so that the kinematic viscosity is written� = �c2s=
, where cs is the isothermal sound speed(c2s = P=�). Although in general � may be a functionof both r and z, we shall limit our calculations presentedbelow to cases with constant � (see discussion in x 1).With this formalism, equation (2) becomes:@F@z = 94�
P: (5)2.1.2. Boundary ConditionsWe have to solve three �rst order ordinary di�erentialequations for the three variables F , P (or equivalently �),and T as a function of z at a given radius r. Accordingly,we need three boundary conditions at each r. We denotewith a subscript s values at the disk surface.A boundary condition is obtained by integrating equa-tion (2) over z between �H and H which de�ne the lowerand upper boundary of the disk, respectively. Since bysymmetry F (z = 0) = 0, this gives:Fs = 38� _Mst
2; (6)where we have de�ned _Mst = 3�h�i� with � = RH�H �dzbeing the disk surface mass density and h�i = RH�H ��dz=�being the vertically averaged viscosity. If the disk were ina steady state, _Mst would not vary with r and would bethe constant accretion rate through the disk. In generalhowever, the disk is not in a steady state (but see x 2.2)such that this quantity does depend on r and the diskundergoes time dependent evolution.Another boundary condition is obtained by integratingequation (1) over z between H and in�nity. A detailedderivation of this condition is presented in Appendix A.Here we just give the result:Ps = 
2H�ab�s ; (7)where �ab is the optical depth above the disk. This con-dition is familiar in stellar structure, where 
2H would

be replaced by the acceleration of gravity at the stellarsurface (e.g. Schwarzschild 1958). Since we have de�nedthe disk surface such that the atmosphere above the diskis isothermal, we have to take �ab � 1. Providing this issatis�ed, the results do not depend on the value of �ab wechoose (see x 2.1.3).A third and �nal boundary condition is given by the ex-pression of the surface temperature (see Appendix A for adetailed derivation of this expression):2� �T 4s � T 4b �� 9�kTs
8�mH�s � 38� _Mst
2 = 0: (8)Here the disk is assumed immersed in a medium withbackground temperature Tb. The surface opacity �s ingeneral depends on both Ts and �s and we have usedc2s = kT=(�mH). The boundary condition (8) is the sameas that used by Levermore & Pomraning (1981) in the Ed-dington approximation (their eq. [56] with 
 = 1=2). Inthe simple case when Tb = 0 and the surface dissipationterm involving � is set to zero, with _Mst being retained, itsimply relates the disk surface temperature to the emer-gent radiation 
ux.2.1.3. Model CalculationsAt a given radius r and for a given value of the param-eters _Mst and �, we solve equations (1), (3) and (5) withthe boundary conditions (6), (7) and (8) to �nd the de-pendence of the state variables on z. The opacity is takenfrom Bell & Lin (1994). This has contributions from dustgrains, molecules, atoms and ions. It is written in the form� = �i�aT b where �i, a and b vary with temperature.The equations are integrated using a �fth{order Runge{Kutta method with adaptive step length (Press et al.1992). For a speci�ed _Mst and �, we �rst calculate thesurface 
ux Fs and temperature Ts from equations (6)and (8), respectively. If Ts is smaller than about 1,000 K,the opacity �s at the disk surface does not depend on �s.For larger values of Ts, it turns out that the second termin equation (8), which contains �s, is negligible comparedto the third term. Therefore Ts can always be calculatedindependently of �s (or equivalently Ps). We then deter-mine the value of H; the vertical height of the disk surface,iteratively. Starting from an estimated value of H; we cal-culate Ps and integrate the equations from H down to themidplane z = 0. The condition that F = 0 at z = 0 willnot in general be satis�ed. An iteration procedure is thenused to adjust the value of H until F = 0 at z = 0 to aspeci�ed accuracy.An important point to note is that as well as �nding thedisk structure, we also determine the surface density � fora given _Mst = 3�h�i�. In this way, a relation between h�iand � is derived.In the calculations presented here, we have taken M� =1 M�, the optical depth of the atmosphere above thedisk surface �ab = 10�2 and a background temperatureTb = 10 K. In the optically thick regions of the disk, thevalue of H is independent of the value of �ab we choose.However, this is not the case in optically thin regions wherewe �nd that, as expected, the smaller �ab; the larger H .However, this dependence of H on �ab has no physicalsigni�cance, since the surface mass density, the optical



4thickness through the disk and the midplane temperaturehardly vary with �ab. This is because the mass is concen-trated towards the disk midplane in a layer with thicknessindependent of �ab:2.2. Time Dependent Evolution and Quasi{Steady StatesIn general an accretion disk is not in a steady state butundergoes time dependent evolution. The global evolutionof the disk is governed by the well known di�usion equa-tion for the surface density which can be written in theform (see Lynden{Bell & Pringle 1974, Papaloizou & Lin1995 and references therein):@�@t = 3r @@r �r1=2 @@r ��h�ir1=2�� : (9)The characteristic di�usion time scale at radius r is then:t� = r23h�i � 13� � rH �2 
�1: (10)For disks with approximately constant aspect ratioH=r; asapplies to the models considered here, t� scales as the localorbital period. One thus expects that the inner regions re-lax relatively quickly to a quasi{steady state which adjustsits accretion rate according to the more slowly evolvingouter parts (see Lynden{Bell & Pringle 1974 and Lin &Papaloizou 1985). For estimated sizes of protostellar disksof about 50 AU (Beckwith & Sargent 1996), the evolution-ary timescale associated with the outer parts is about 30times longer than that associated with the inner parts withr < 5 AU, which we consider here in the context of plan-etary formation. Thus these inner regions are expected tobe in a quasi{steady state through most of the disk life-time. We have veri�ed that this is the case by consideringsolutions of equation (9).In order to investigate these solutions and for other pur-poses we found it convenient to utilize analytic piece{wisepower law �ts to the h�i{� relation derived above (seex 2.1.3). Details of these �ts are given in Appendix B.In Figures 1a{b we plot both the curves _Mst (�) obtainedfrom the vertical structure integrations and those obtainedfrom the piece{wise power law �ts. Figures 1a and 1b arefor � = 10�2 and � = 10�3, respectively. In each casethe radius varies between 0.01 and 100 AU, and the cal-culations are limited to temperatures lower than 4,000 K(see x 2.1.1). The average errors are 18% and 13% for� = 10�3 and 10�2, respectively. Thus the �ts give anadequate approximation.2.3. Steady State ModelsHere, we present solutions corresponding to steady stateaccretion disks. In Figures 2a{c and 3a{c, we plot H=r,� and the midplane temperature Tm versus r for _Mst be-tween 10�9 and 10�6 M� yr�1 (assuming this quantity isthe same at all radii, i.e. the disk is in a steady state) for� = 10�2 and � = 10�3, respectively.An inspection of Figures 2a and 3a indicates that theouter parts of the disk are shielded from the radiation ofthe central star by the inner parts, apart possibly fromthe very outer parts, which are optically thin anyway andtherefore do not reprocess any radiation. This is in agree-ment with the results of Lin & Papaloizou (1980) and

Bell et al. (1997). For � = 10�3, the radius beyondwhich the disk is not illuminated by the central star variesfrom 0.2 AU to about 3 AU when _Mst goes from 10�9to 10�6 M� yr�1. These values of the radius move to0.1 and 2 AU when � = 10�2. Since reprocessing of thestellar radiation by the disk is not an important heatingfactor below these radii, this process will in general not beimportant in these models of protostellar disks. We notethat this result is independent of the value of �ab we havetaken. Indeed, as we pointed out above, only the thicknessof the optically thin parts of the disk gets larger when �abis decreased.However, there are some indications that disks such asHH30 may be 
ared (Burrows et al. 1996). In this context,Chiang & Goldreich (1997) have considered a model basedon reprocessing in which the dust and gas are at di�erenttemperatures. However, as they pointed out, some issuesregarding this model remain to be resolved. In any case,it is possible that a multiplicity of solutions exists whenreprocessing is taken into account, with it being importantfor cases in which the disk is 
ared and unimportant whenit is not, such as maybe HK Tau (Stapelfeldt et al. 1998,Koresko 1998).The values of H=r, � and Tm we get are similar to thoseobtained by Lin & Papaloizou (1980), who adopted a pre-scription for viscosity based on convection, and Bell et al.(1997). Since H is measured from the disk midplane tothe surface such that �ab is small, it is larger than whatwould be obtained if a value of 2/3 were adopted for �ab,as is usually the case. However, this does not a�ect otherphysical quantities. We also recall that H; as de�ned here,is about 2{3 times larger than cs=
; with cs being the mid-plane sound speed, which is commonly used to de�ne thedisk semithickness.In this paper we shall consider the migration of proto-planetary cores from � 1{5 AU, where they are supposedto form under conditions where ice exists, down to thedisk inner radii (see x 4). It is therefore of interest to esti-mate the mass of planetesimals contained inside the orbitof a core when it forms, since this can potentially be ac-creted by the core during its migration. From Figures 2band 3b, we estimate the mass of planetesimals Mp(r) con-tained within a radius r using Mp(r) = 10�2 � �r2�(r)for r = 1 AU and r = 5 AU. Here we have assumeda gas to dust ratio of 100. The values of Mp corre-sponding to � = 10�2 and 10�3 and _M = 10�6 and10�7 M� yr�1 are listed in Table 1. We have checkedthat the disk with � = 10�3 and _M = 10�6 M� yr�1, al-though relatively massive, is gravitationally stable locally.Namely the Toomre parameter Q = (M�=M(r))(H=r);with M(r) = �r2�(r), is larger than unity.It is also of interest, in relation to the possibility of gi-ant planets being located at small radii, to estimate themass of gas contained within a radius of 0.1 AU. Figure 3bindicates that, when � = 10�3, this mass is about 0.3Jupiter mass for _M > 10�7 M� yr�1. For � = 10�2,there is a similar mass of gas for _M > 10�6 M� yr�1(see Figure 2b). For typical mass throughput of about10�2{10�1 M�; the lifetime of such a state can range be-tween 104 and 106 yr. Supposing the disk to be termi-nated at some small inner radius, this suggests that, if asuitable core can migrate there, it could accrete enough



5gas to become a giant planet within the disk lifetime. Wenote however that the conditions for that to happen aremarginal even in the early stages of the life of the diskwhen _M > 10�6 � 10�7 M� yr�1:At later stages, when _M � 10�8 M� yr�1; the mod-els resemble conditions expected to apply to the mini-mum mass solar nebula with � � 200 g cm�2 at 5 AUif � = 10�2. Under these conditions, the mass of gas atr < 0:1 AU is between 1 and 9 M� for � between 10�2and 10�3.Lin et al. (1996) suppose that the inner disk is termi-nated by a magnetospheric cavity. In this case migrationmight be supposed to cease if the core is su�ciently far in-side it. But gas accretion is likely to be very much reducedin this case.However, the protoplanet may be able to accrete moregas than the mass estimated above if circumstances weresuch that the core migration is halted at some small ra-dius before the disk is terminated. We note that Ward(1986) �nds the direction of type I migration is insensitiveto the disk surface density pro�le but that it could reversefrom inwards to outwards if the disk midplane tempera-ture decreased inwards faster than approximately linearly.Such a condition would not be expected in the disk modelsconsidered here.On the other hand, conditions may be very di�erentif interaction with a stellar magnetic �eld becomes im-portant. It is expected that this happens when magneticand viscous torques become comparable (e.g. Ghosh &Lamb 1979). In this region there may be open �eld linesconnected to the disk with an out
owing wind (Paatz &Camenzind 1996). Such a wind may provide an additionalangular momentum and energy loss mechanism for the diskmaterial (Papaloizou & Lin 1995). The inner regions couldthen be cooler than expected from the constant � modelsconsidered here leading to a reversal of type I migration. Afaster gas in
ow rate may also prevent the onset of type IImigration. Thus, although details are unclear, continuedaccretion of in
owing disk gas by a protoplanetary corethat has stopped migrating in the inner disk may be pos-sible. 3. PROTOPLANETARY CORE GROWTH ANDEQUILIBRIUM ENVELOPE3.1. Background: Formation of Giant PlanetsThe solid cores of giant planets are believed to be formedvia solid body accretion of km{sized planetesimals, whichthemselves are produced as a result of the sedimentationand collisional growth of dust grains in the protoplanetarydisk (see Lissauer 1993 and references therein). Once thesolid core becomes massive enough to gravitationally bindthe gas in which it is embedded (typically at a tenth of anearth mass), a gaseous envelope begins to form around thecore.The build{up of the atmosphere has �rst been consid-ered in the context of the so{called 'core instability' modelby Perri & Cameron (1974) and Mizuno (1980; see alsoStevenson 1982 and Wuchterl 1995). In this model, thesolid core grows in mass along with the atmosphere inquasi{static and thermal equilibrium until the core reachesthe so{called 'critical core mass' above which no equilib-rium solution can be found for the atmosphere. As long

as the core mass is smaller than the critical core mass,the energy radiated from the envelope into the surround-ing nebula is compensated for by the gravitational energywhich the planetesimals entering the atmosphere releasewhen they collide with the surface of the core. During thisphase of the evolution, both the core and the atmospheregrow in mass relatively slowly. By the time the core massreaches the critical core mass, the atmosphere has grownmassive enough so that its energy losses can no longer becompensated for by the accretion of planetesimals alone.At that point the envelope has to contract gravitationallyto supply more energy. This is a runaway process, leadingto the very rapid accretion of gas onto the protoplanet andto the formation of giant planets such as Jupiter. In ear-lier studies it was assumed that this rapid evolution was adynamical collapse, hence the designation 'core instability'for this model.Further time{dependent numerical calculations of pro-toplanetary evolution by Bodenheimer & Pollack (1986)support this model, although they show that the core massbeyond which runaway gas accretion occurs, which is re-ferred to as the 'crossover mass', is slightly larger than thecritical core mass, and that the very rapid gravitationalcontraction of the envelope is not a dynamical collapse.The designation 'crossover mass' comes from the fact thatrapid contraction of the atmosphere occurs when the massof the atmosphere is comparable to that of the core. Oncethe crossover mass is reached, the core no longer growssigni�cantly.More recent simulations by Pollack et al. (1996) showthat the evolution of a protoplanet is governed by threedistinct phases. During phase 1, runaway planetesimal ac-cretion occurs which leads to the depletion of the feedingzone of the protoplanet. At this point, when phase 2 be-gins, the atmosphere is massive enough that the locationof its outer boundary is determined by both the mass ofgas and planetesimals. As more gas is accreted, this outerradius moves out, so that the feeding zone is increased andmore planetesimals can be captured, which in turn enablesmore gas to enter the atmosphere. The protoplanet growsin this way until the core reaches the crossover mass, atwhich point runaway gas accretion occurs and phase 3 be-gins. The timescale for planet formation is determined al-most entirely by phase 2, and is found to be a few millionyears at 5 AU. For typical disk models, this is comparableto the disk lifetime. Note however that isolation of the pro-toplanetary core, as it occurs at the end of phase 1, may beprevented under some circumstances by tidal interactionwith the surrounding gaseous disk (Ward & Hahn 1995).Conditions appropriate to Jupiter's present orbital ra-dius are normally considered and then the critical orcrossover mass is found to be around 15 M�. This is con-sistent with models of Jupiter which indicate that it has asolid core of about 5{15 M� (Podolak et al. 1993).We note that although phase 3 is relatively rapid com-pared to phase 2 for conditions appropriate to Jupiter'spresent location, it may become longer when the luminos-ity provided by the accretion of planetesimals, and hencethe critical core mass, is reduced (see Pollack et al. 1996and x 5.1). The designation 'runaway' or 'rapid' gas ac-cretion may then become confusing.The similarity between the critical and crossover masses



6is due to the fact that, although there is some liberationof gravitational energy as the atmosphere grows in masstogether with the core, the e�ect is small as long as theatmospheric mass is small compared to that of the core.Consequently the hydrostatic and thermal equilibrium ap-proximation for the atmosphere is a good one for coremasses smaller than the critical value. Therefore we usethis approximation here and investigate how the criticalcore mass varies with location and physical conditions inthe protoplanetary disk.3.2. Basic Equations Governing a ProtoplanetaryEnvelopeLet R be the spherical polar radius in a frame with ori-gin at the center of the protoplanet's core. We assumethat we can model the protoplanet as a spherically sym-metric nonrotating object. We also assume that it is inhydrostatic and thermal equilibrium. The equation of hy-drostatic equilibrium is then:dPdR = �g�; (11)where g = GM=R2 is the acceleration due to gravity,M(R) being the mass contained in the sphere of radiusR (this includes the core mass if R is larger than the coreradius). We also have the de�nition of density:dMdR = 4�R2�: (12)At the high densities that occur at the base of a pro-toplanetary envelope, the gas cannot be considered to beideal. Thus we adopt the equation of state for a hydrogenand helium mixture given by Chabrier et al. (1992). Weadopt the mass fractions of hydrogen and helium to be 0.7and 0.28, respectively. We also use the standard equationof radiative transport in the form:dTdR = �3��16�T 3 L4�R2 : (13)Here L is the radiative luminosity. Denoting the radiativeand adiabatic temperature gradients by rrad and rad, re-spectively, we have:rrad = �@ lnT@ lnP �rad = 3�LcoreP64��GMT 4 ; (14)and rad = �@ lnT@ lnP �s ; (15)with the subscript s denoting evaluation at constant en-tropy.We assume that the only energy source comes from theaccretion of planetesimals onto the core which, as a result,outputs a total core luminosity Lcore, given by:Lcore = GMcore _Mcorercore : (16)Here Mcore and rcore are respectively the mass and theradius of the core, and _Mcore is the planetesimal accre-tion rate. The luminosity Lcore is supplied by the gravita-tional energy which the planetesimals entering the planet

atmosphere release near the surface of the core (see, e.g.,Mizuno 1980; Bodenheimer & Pollack 1986).If rrad < rad, there is stability to convection and thus allthe energy is transported by radiation, i.e. L = Lcore.When rrad > rad, there is instability to convection.Then, part of the energy is transported by convection, andLcore = L+Lconv, where Lconv is the luminosity associatedwith convection. We use mixing length theory to evaluateLconv (Cox & Giuli 1968). ThenLconv = �R2Cp�2ml ��@T@R�s ��@T@R��3=2� s12�g ����� @�@T �P ����; (17)where �ml = j�mlP=(dP=dR)j is the mixing length,�ml being a constant of order unity, (@T=@R)s =radT (d lnP=dR), and the subscript P means that thederivative has to be evaluated for a constant pressure.All the required thermodynamic parameters are given byChabrier et al. (1992). In the numerical calculations pre-sented below we �x �ml = 1.3.2.1. Inner BoundaryWe suppose that the planet core has a uniform massdensity �core. The composition of the planetesimals andthe high temperatures and pressures at the surface of thecore suggest �core = 3:2 g cm�3 (see Bodenheimer & Pol-lack 1986 and Pollack et al. 1996), which is the value wewill adopt throughout. The core radius, which is the innerboundary of the atmosphere, is then given by:rcore = � 3Mcore4��core�1=3 : (18)At R = rcore the total mass is equal to Mcore:3.2.2. Outer BoundaryWe take the outer boundary of the atmosphere to be atthe Roche lobe radius rL of the protoplanet. Thus:rL = 23 �Mpl3M��1=3 r; (19)where Mpl =Mcore +Matm is the planet mass, Matm be-ing the mass of the atmosphere, and r is the orbital radiusof the protoplanet in the disk.To avoid confusion, we will denote the disk midplanetemperature, pressure and mass density at the distance rfrom the central star by Tm; Pm and �m, respectively.At R = rL; the mass is equal to Mpl, the pressure is equalto Pm and the temperature is given byT = �T 4m + 3�LLcore16��r2L �1=4 ; (20)where we approximate the additional optical depth abovethe protoplanet atmosphere, through which radiationpasses, by: �L = � (�m; Tm) �mrL: (21)



73.3. CalculationsFor a particular disk model, at a chosen radius r; fora given core mass Mcore and planetesimal accretion rate_Mcore; we solve the equations (11), (12) and (13) with theboundary conditions described above to get the structureof the envelope. The opacity law adopted is the same asthat for the disk models. In general, the deep interiorof the envelope becomes convective with the consequencethat the value of the opacity does not matter there.For a �xed _Mcore at a given radius, there is a criticalcore mass Mcrit above which no solution can be found,i.e. there can be no atmosphere in hydrostatic and ther-mal equilibrium con�ned between the radii rcore and rLaround cores with mass larger than Mcrit, as explained inx 3.1. For masses below Mcrit, there are (at least) twosolutions, corresponding to a low{mass and a high{massenvelope, respectively.In Figure 4 we plot curves of total protoplanet massMplagainst core mass Mcore at di�erent radii in a disk with� = 10�2 and _M = 10�7 M� yr�1. In each frame, thedi�erent curves correspond to planetesimal accretion ratesin the range 10�11{10�6 M� yr�1. The critical core massis attained at the point where the curves start to loopbackwards.When the core �rst begins to gravitationally bind somegas, the protoplanet is on the left on the lower branchof these curves. Assuming _Mcore to be constant, as thecore and the atmosphere grow in mass, the protoplanetmoves along the lower branch up to the right, until thecore reaches Mcrit. At that point the hydrostatic andthermal equilibrium approximation can no longer be usedfor the atmosphere, which begins to undergo very rapidcontraction. Figure 4 indicates that when the core massreaches Mcrit, the mass of the atmosphere is comparableto that of the core, in agreement with Bodenheimer & Pol-lack (1986). Since the atmosphere in complete equilibriumis supported by the energy released by the planetesimalsaccreted onto the protoplanet, we expect the critical coremass to decrease as _Mcore is reduced. This is indeed whatwe observe in Figure 4.For � = 10�2 and _M = 10�7 M� yr�1, the criticalcore mass at 5 AU varies between 16.2 and 1 M� as theplanetesimal accretion rate varies between the largest andsmallest value. The former result is in good agreementwith that of Bodenheimer & Pollack (1986). Note thatthere is a tendency for the critical core masses to increaseas the radial location moves inwards, the e�ect being mostmarked at small radii. At 1 AU, the critical mass variesfrom 17.5 to 3 M� as the accretion rate varies between thelargest and smallest value, while at 0.05 AU these valuesincrease still further to 42 and 9 M�, respectively. We notethere has been some debate over the amount of grain opac-ity which should be used in these calculations. However,the results of Bodenheimer & Pollack (1986) indicate thatMcrit does not depend sensitively on the grain opacity inthe envelope.In Figure 5 we plot the critical core mass Mcrit ver-sus the location r for three di�erent steady disk models.These models have � = 10�2 and _M = 10�7 M� yr�1,� = 10�2 and _M = 10�8 M� yr�1, and � = 10�3 and_M = 10�8 M� yr�1, respectively. Here again, in each

frame, the di�erent curves correspond to planetesimal ac-cretion rates in the range 10�11{10�6 M� yr�1. Similarqualitative behavior is found for the three disk models, butthe critical core masses are smaller for the models with_M = 10�8 M� yr�1, being reduced to 27 and 6 M� at0.05 AU for the highest and lowest accretion rate, respec-tively.These results indicate a relatively weak dependence ondisk conditions except when rather high midplane tem-peratures Tm > 1; 000 K are attained, as in the inner re-gions. We indeed �nd similar values of Mcrit for the threedi�erent models at radii larger than about 0.15{0.5 AU,where Tm is lower than 1,000 K. Also, the fact that Mcritis similar for the two models with _M = 10�8 M� yr�1indicates that Mcrit is more sensitive to the midplanetemperature than to the midplane pressure. These twomodels have indeed similar Tm, whereas Pm varies signif-icantly from one model to the other. In the model with_M = 10�7 M� yr�1, Tm is signi�cantly larger, hence thelarger Mcrit at small radii in this case. These results areconsistent with the fact that Mcrit depends on the bound-ary conditions only when a signi�cant part of the envelopeis convective (Wuchterl 1993), being larger for larger con-vective envelopes (Perri & Cameron 1974). In the modelwith � = 10�2 and _M = 10�7 M� yr�1, we indeed �ndthat the inner 70% in radius of the envelope is convec-tive at 0.05 AU, this value being reduced to 10% at 5 AU.When the envelope is mainly radiative, it converges rapidlyto the radiative zero solution independently of its outerboundary conditions, so that Mcrit hardly depends on thebackground temperature and pressure (Mizuno 1980).We note that it is unlikely there are planetesimals at thesmallest radii considered here. Therefore, although criti-cal core masses for the same planetesimal accretion ratesmay be higher there, a lack of planetesimals may result ina fall in the core luminosity, making the critical core massrelatively small at these radii.4. PROTOPLANET MIGRATION AND PLANETESIMALACCRETIONAccording to current models of planet formation(Safronov 1969; Wetherill & Stewart 1989), planetesimalsform as the result of the coagulation of dust grains. Fur-ther accumulation through binary collisions then results inthe formation of a core of several earth masses. After thecritical mass is attained, runaway gas accretion may begin(see x 3.1). The core may form on a timescale of about105 yr at a distance of about 5 AU as a result of runawayplanetesimals accretion (Lissauer & Stewart 1993).In addition, dynamical tidal interaction of a core of sev-eral earth masses with the surrounding disk matter be-comes important, leading to phenomena such as inwardorbital migration and gap formation (Lin & Papaloizou1979a; Goldreich & Tremaine 1980; Lin & Papaloizou1993; Korycansky & Pollack 1993; Ward 1997b). For con-ditions under which the tidal interaction with the disk islinear, Ward (1986, 1997b) estimates inward migration (re-ferred to as type I) timescales tmig = �2r(dr=dt)�1 ofabout 2 � 105 (Mpl=M�)�1 yr at 5 AU in a protoplane-tary disk similar to the minimum mass solar nebula. Thetimescales at other radii are expected to roughly scale as
�1 for the model disks considered here. They are also



8somewhat shorter during the early phases of disk evolu-tion when the disk is more massive.However, for core masses of the magnitude we consider,the interaction may become nonlinear, leading to a reduc-tion in the inward migration (then referred to as type II)rate. To investigate the conditions for nonlinearity, Ko-rycansky & Papaloizou (1996) considered the perturbeddisk 
ow around an embedded protoplanet assuming thedisk viscosity to be negligible. They used a shearing{sheetapproximation in which a patch, centered on the planetand corotating with its orbit, is considered in a 2D approx-imation. They found that the condition for nonlinearityor the formation of signi�cant trailing shock waves in theresponse is that rt (
=cs) > 0:5; where rt = r (Mpl=M�)1=3is a multiple of the Roche lobe radius. This condition ef-fectively compares the strength of the protoplanet's grav-ity to local pressure forces. For the disk models consid-ered here, this condition is met for Mpl = 10 M� for alldisk mass accretion rates _M at the inner radii. Even forMpl = 1 M�, it is met at 0.1 AU for the higher accretionrates. Thus if we wish to consider core mass migration,nonlinear e�ects must be considered. These are expectedto lead to a feedback reaction from the disk which cou-ples the orbital migration to the viscous evolution of thedisk (Lin & Papaloizou 1986). However, this timescalecan also be quite short, particularly for the models withhigher accretion rates. For example, when � = 10�3 and_M = 10�7 M� yr�1; the viscous in
ow timescale is on theorder of 104 yr at 5 AU.The characteristic timescale of 104�105 yr obtained formigration and estimated for core formation suggests thatcores of several earth masses form at about 5 AU and mi-grate inwards to small radii. In doing so, they continue togrow. As long as signi�cant planetesimal accretion ontothe core is maintained during the migration, the criticalcore mass Mcrit remains signi�cant and may not be at-tained before the core reaches small radii. At small radii,typically smaller than 0.1 AU, the planetesimal accretionrate decreases because the high temperatures have pre-vented the formation of planetesimals there. The criticalcore mass is then also reduced below the actual core mass,so that runaway gas accretion can begin. Note thoughthat the gas accretion phase may become longer than thedisk lifetime if the mass of the core is too small (see x 5.1).However, the build{up of a core massive enough throughthe merger of additional incoming cores may enable giantplanets to form within the disk lifetime provided there isenough gas to supply the atmosphere.The accretion rate onto a protoplanet migrating inan approximately circular orbit through a planetesimalswarm with surface density �p can be estimated as:dMpldt = 2�pvRaf: (22)Here we use a simple two dimensional model appropriatefor a thin planetesimal disk from which accretion occursonto a large protoplanet. The impact target radius of theprotoplanet is a and vR is the relative velocity in colli-sions. We consider the case of near circular orbits. Thenthe relative velocity associated with a collision is expectedto be equivalent to the Keplerian shear across the Rochelobe radius. Thus we adopt vR = 2rL
 as characteristic

induced relative velocity. The factor f takes account ofother e�ects such as gravitational focusing, which tendsto increase the collision rate, and any local reduction in�p, which would be expected to occur if planetesimals aredepleted locally and a gap tends to form (Tanaka & Ida1997). This might be expected for very slow migrationrates but the total amount of accretion would be expectedto be large in that case.We take a = 0:01rL as characteristic e�ective size of theprotoplanet core, this representing the actual physical sizeof a core with density 3.2 g cm�3 at 0.75 AU. At smallerradii this is larger while at larger radii it is smaller.In this context we note that there is some uncertainty inthe size of the target radius to be used because there maybe a disk of bound planetesimals. Further, numerical testsindicate that the results we present below are not very sen-sitive to the magnitude of the target radius used because ofthe e�ects of gravitational focusing. This is also supportedby the results of Kary, Lissauer & Grenzweig (1993). Theyconsidered the accretion of small planetesimals migratinginwards under the in
uence of gas drag by a protoplanetin �xed circular orbit (see below). Their results indicatethat, for weak gas drag, which is appropriate for no reso-nant trapping, the impact probability typically di�ers fromthat assuming a target radius a = 0:01rL by no more thana factor of about three as a varies between 0:0001rL andrL: We comment that if the target radius was 6 times theactual core size, all accretion rates derived here would beunderestimates for migration occurring with r < 5 AU.Thus for a simple estimate we use:dMpldt = 0:04f�pr2L
: (23)We can estimate the total fraction of the total planetesimalmass accreted in a migration time tmig to be:tmig��pr2 dMpldt = 0:04f� �rLr �2
tmig� 0:01�MplM� �2=3 
ftmig : (24)Characteristically, we �nd this fraction to be about 0.1 forf = 1; Mpl � 10 M� and 
tmig = 104, which are theexpected characteristic values according to Ward (1997b).The expected fraction scales only weakly with protoplanetmass, being proportional to M�1=3pl . But note too thatthe above may underestimate the accretion rate becauselarger relative velocities may be induced if there are mul-tiple close scatterings.It is of interest to compare the accretion rate expectedfrom the above two dimensional model with predictionsbased on the standard accretion formula with gravitationalfocusing for three dimensions (Lissauer & Stewart 1993).This gives: dMpldt = �a2�pvR2hp �1 + 2GMplav2R � ; (25)where hp = vR=
 is the semithickness of the planetesimaldistribution. Using the same estimate for vR as above, thisgives (assuming the dominance of the second gravitationalfocusing term in the brackets):



9dMpldt = 81�arL�p
32 : (26)For the same parameters as used above this gives the sameprediction as equation (23) with f = 2: Both these expres-sions and our simulations give consistent results suggestingthat the migrating protoplanet accretes as if it were in ahomogeneous medium without a gap forming in the plan-etesimal distribution. Whether such a gap forms should bereliably determined by the two dimensional calculations.Given that the disk is expected to contain at least about8 M� within 5 AU in the early stages (see x 2.3 andTable 1), these estimates indicate that an accretion rate_Mcore of at least about 10�6 M� yr�1 is likely to be main-tained during orbital migration in the present disk models.E�cient gas accretion is then unlikely to start until smallradii are reached, at least in the early phases of the disklifetime. Note too that the fractional accretion rate givenby equation (24) is not expected to increase inde�nitelywith tmig because of the tendency to form a gap (Tanaka& Ida 1997) which would then be expected to cause a re-duction in f:In order to verify the above conclusions, we have per-formed simulations of migrating protoplanets with Mpl =10 M� and migration times, tmig ; measured at 1 AU, ofbetween 2�103 yr and 104 yr. We have also considered thecase Mpl = 1 M� and tmig between 2� 104 yr and 105 yr.The protoplanet was taken to be in a quasi{circular or-bit with ln(r) decreasing on the speci�ed timescale. Theprotoplanet was assumed to start at 1 AU but the resultscan be scaled to any other initial radius in the usual way.The 256 planetesimals were initially regularly spaced be-tween 0.6 AU and 0.8 AU, as indicated in Figure 6. Theprotoplanet was allowed to migrate through them. To esti-mate the fraction of planetesimals accreted, just as above,we assumed that any particle approaching the protoplanetwithin 0.01 rL was accreted.We remark that the migration was imposed here, be-ing possibly due to interactions with the disk. However,a migration mechanism based on the scattering of plan-etesimals alone has been noted by Murray et al. (1998).Their mechanism requires the protoplanet orbit to havea non zero eccentricity, but this could be damped by thedisk interaction (Artymowicz 1994).For the protoplanet masses and migration rates we con-sider, we found signi�cant accretion of planetesimals. Wehere present two examples. The �nal distribution of theplanetesimals after a protoplanet of 1 M� has migratedthrough them with tmig = 2 � 104 yr is indicated in Fig-ure 7. In this case, about 24% of the planetesimals initiallypresent were accreted. Even more planetesimals were ac-creted with slower migration rates.The �nal distribution of the planetesimals after a proto-planet of 10 M� has migrated through them with tmig =2 � 103 yr is given in Figure 8. In this case, about 23%of the planetesimals initially present were accreted. Giventhat the disk models typically contain at least about 8 M�interior to 5 AU, we conclude that enough accretion occursduring the migration to prevent gas accretion as long asplanetesimals are present.It is of interest to compare the results of our simulationswith those of Kary et al. (1993). These authors consid-

ered the accretion of small bodies migrating inwards underthe in
uence of gas drag onto a protoplanet in �xed cir-cular orbit. Although this is not an identical situation tothe one we consider here, it is similar enough to make acomparison interesting.An important aspect of these simulations is that gasdrag causes eccentricity damping as well as inward mi-gration. The eccentricity damping allows particles tobe trapped in resonances such that they stop migrating,maintaining near circular orbits, with the consequencethat close approaches to the protoplanet are avoided. Theresonant interaction causes eccentricity growth at a rategoverned by the migration rate. This is because energyand angular momentum transfer from the protoplanet isin the wrong ratio for keeping the other body in circularorbit. Without eccentricity damping, near circular orbitsfor the particles could not be maintained (see, for example,Lin & Papaloizou 1979b for a discussion).To relate the migration and damping rates, we considera particle with semi{major axis ap and eccentricity e un-dergoing resonant interaction with a protoplanet in a nearcircular orbit with semi{major axis apl: Under these con-ditions, the Jacobi integral:Jc = �GM�ap "12 +� apapl�3=2p1� e2# ; (27)is conserved for the particle. Thus, changes to ap and eare related by:de2dt = �"�aplap �3=2 �p1� e2#p1� e2 1ap dapdt : (28)When an inwardly migrating protoplanet pushes an inte-rior particle in front of it maintaining a �xed period ratio,just as for the protoplanet, �2ap(dap=dt)�1 = tmig : Thenequation (28) implies that the eccentricity increases. If theorbit is to maintain a �nite eccentricity, this rate of in-crease has to be balanced by the the eccentricity dampingor circularization rate due to dissipative processes such asgas drag. If the circularization time is tcirc = �e(de=dt)�1;an equilibrium eccentricity can be maintained, such thatfor small e: e2 = ������aplap �3=2 � 1����� tcirctmig : (29)Equation (29) also applies to the case of a �xed proto-planet orbit and particles migrating inwards due to gasdrag. In that case apl < ap; and the resonant interactiongives positive rates of increase for both ap and e: Theseare balanced by the inward migration rate due to gas dragand the orbital circularization rate respectively.The process of resonant trapping is accordingly expectedto be similar in the cases of a free particle with inwardmigrating protoplanet and particle migrating inwards to-wards a protoplanet on �xed circular orbit. But it is im-portant to note that the physical processes causing migra-tion and circularization may both be very di�erent.An interpolation of the results of Kary et al. (1993) in-dicates that resonant trapping is important for tmig > 6�104 yr for a 1 M� protoplanet at 1 AU, and tmig > 104 yr



10for a 10 M� protoplanet at 1 AU. These migration timesare longer than those proposed by Ward (1997b), or thedisk viscous timescale at 1{5 AU in the early stages of theprotoplanetary disk considered here. The expectation isthat resonant trapping will not be important then.When there is no resonant trapping, the fraction of bod-ies accreted is similar to that found here, ranging between10 and 40 percent. We comment that the high rate ofeccentricity damping required for e�ective resonant trap-ping is only likely to be obtained for small bodies. FromKary et al. (1993), when marginal trapping occurs fora 10 M� protoplanet approached by small bodies withtmig = 104 yr, tcirc � 30 yr at 1 AU. As tcirc is propor-tional to the radius of the body, values less than 30 yrrequire the radius of the body to be smaller than 20 m at1 AU. But note that the relative e�ectiveness of gas dragtends to increase at smaller radii. Thus resonant trapping,should it occur, is more likely in the inner regions of thedisk.Equation (29) suggests that tmig and tcirc should scaletogether for marginal resonant trapping occurring with thesame orbital con�guration. Thus a 10 M� protoplanet at1 AU migrating inwards with tmig = 2�105 yr should res-onantly trap bodies, causing them also to migrate inwardsmaintaining a �xed period ratio, if tcirc < 6� 102 yr. Wehave veri�ed that trapping occurs when tcirc = 102 yr.However, it appears that resonant trapping as a resultof gas drag is unlikely for planetesimals with radii largerthan about 10 km and the accretion rates should then besimilar to those found here. Departures are to be expectedonly for small bodies at the slowest migration rates.5. DISCUSSION AND SUMMARY5.1. Formation of Short{Period Giant PlanetsThe above suggests that a protoplanetary core formed atabout 5 AU which migrates inwards will not attain the crit-ical core mass, above which runaway gas accretion starts,before it reaches small radii � 0:05{0.1 AU where plan-etesimals no longer exist. Runaway gas accretion onto asmall core can then occur at these radii. However, if thecore is too small, the gas accretion phase may be longerthan the disk lifetime.Even for core masses in the range 15{20 M�, the build{upof a massive atmosphere may take a time � 106 yr (Boden-heimer et al. 1998). The reason for this is that once thecore starts to accrete a signi�cant atmosphere, energy pro-duction occurs through its gravitational contraction. Theluminosity produced then slows down the evolution. Anestimate of the evolutionary timescale at this stage can beobtained by noting that the luminosity should be equiva-lent to that required to make the core critical (and henceto enable runaway gas accretion to begin), assuming it tobe produced by planetesimal accretion. We may thus esti-mate the time scale as the Kelvin{Helmholtz time for ouralready calculated critical core mass models. This is givenby: tKH = jEj=Lcore; (30)where E is the total internal and gravitational energy ofthe gas.We have calculated tKH in this way for critical cores atdi�erent radial locations in a disk model with � = 10�2

and _M = 10�7 M� yr�1. The results are presented inTable 2. Typically, we �nd that tKH � 106 � 107 yr forcore masses in the range 10{20 M� for radii larger than0.075 AU. The core masses required to get such a char-acteristic timescale increase rapidly interior to 0.06 AU.However, we note that they decrease as the mass transferrate through the disk does. The fact that fairly large coremasses are required to give evolutionary timescales com-parable or less than the expected disk lifetime means thatmergers of additional incoming cores may be required inorder to produce a core of su�cient mass that real runawaygas accretion may begin.Table 1 indicates that, in a disk with � = 10�3 and_M = 10�6 or 10�7 M� yr�1, 40 M� of planetesimals arecontained within 1 or 5 AU. Therefore, the timescale forbuilding{up a core with a mass between 20 and 40 M�at small radii is typically the timescale it takes for plan-etesimals to migrate from 1 or 5 AU down to these smallradii. According to Ward (1997b), the migration timescaleof cores of a few tenths of an earth mass located at 1 or5 AU is at most 106 yr in such a disk, and it decreaseswith increasing core mass. Therefore, if planetesimals canbe assembled into cores of at least a few tenths of an earthmass at these radii on a reasonably short timescale, a mas-sive core could be obtained at small radii on a timescalemuch shorter than for in situ formation.If the disk has � = 10�2, 40 M� of planetesimals are con-tained within 5 or 11 AU. In this case again, the migrationtimescale of cores of a few tenths of an earth mass locatedat 5 or 11 AU is about 106 yr, so that the above discussionstill holds.A massive core can be built{up through the merger ofadditional incoming cores either after having stopped atsmall radii or on its way down to small radii (where itwould still be expected to be stopped). The former pro-cess resembles that discussed by Ward (1997a). The latterscenario would occur if more massive cores, which migratefaster, overtake less massive cores on their way down.Supposing that a protoplanetary core massive enoughcan be built{up on its way down to small radii and that itcontinues to rapidly move inward until it gets interior tothe disk inner boundary, it can only accrete the gas whichis in its vicinity, i.e. typically the amount of gas con-tained within � 0:05{0.1 AU. Since the core is expectedto reach these radii early in the life of the protoplanetarydisk, there may still be an adequate amount of gas there(see x 2.3) for it to build{up a large envelope and becomea giant planet. However the conditions for that to happenare rather marginal.If the protoplanetary core is stopped at some small ra-dius before the disk is terminated, it might be able to re-tain contact with disk gas. In that case it might be able toaccrete enough gas supplied from the outer disk by viscousevolution to build{up a massive atmosphere.The question arises as to the nature of any process thatcan halt the migration. One might suppose that becausethe viscous evolution timescale of the disk increases asthe disk gets older, protoplanet migration, if type II, getsslower and slower, and may halt altogether when the diskdissipates (e.g., Trilling et al. 1998). However, given thatthe migration timescale is shorter at smaller radii, if nomechanism halts it there, very �ne 'tuning' would be re-



11quired to produce the large fraction of extrasolar planetsfound on very close orbits in this way.The disk may be terminated by a magnetospheric cavity(Lin et. al 1996) such that tidal torques producing inwardmigration vanish once the protoplanet enters it. However,as a result of such an entry, contact with the disk is lostand further accretion of gas may be di�cult. Also magne-tospheric cavities may not extend up to a few tenths of anAU, where some of the extrasolar planets have been foundto orbit.The way in which the migration of a protoplanet wouldbe halted in the inner regions is not yet clear (e.g., Bo-denheimer et al. 1998). In this context, we remark thatmigration rates are usually considered in relation to a stan-dard � disk model in which the disk midplane tempera-ture increases inwards. In this situation inward migrationis expected in general (Ward 1986). However, if the in-ner disk is terminated through interaction with a stellarmagnetic �eld, physical conditions may start to di�er inthe interaction zone where magnetic �eld lines penetratethe disk. Additional energy and angular momentum trans-port mechanisms due to a wind for example may start tobecome important (see discussion in x 2.3). As a result,an inward midplane temperature decrease might be pro-duced. It may then be possible that migration could behalted such that the protoplanet retains contact with diskgas.In the context of several cores interacting together, wenote that stellar tides are unlikely to provide enough ec-centricity damping for resonant trapping to occur for themigration rates we consider. The circularization time re-sulting from stellar tides is given by (Goldreich and Soter1966): tcirc (yr) � 2:8� 10�5QMplM� Po1 day �aplRp�5 :Here Po denotes the orbital period, Rp the radius of theplanet and Q is the usual tidal Q{value. For a 10 earthmasses planet orbiting a solar mass at 0:05 AU, one typi-cally �nds tcirc � 3�104Q yr. As Q > 1; this must exceedthe migration times considered here, and so resonant trap-ping is unlikely. This is because normally tcirc � tmig isrequired (Kary et al. 1993, Lin & Papaloizou 1979b andsee eq. [29]). Similar conclusions can be obtained if stellartides acting on a Jovian planet are considered (Lin et al.1998).However, conditions may be di�erent later in the lifeof the disk when the viscous evolution time is longer andtype II migration rates are slower. A model of the proto-stellar disk in which giant planets form at about 5 AU at alater stage in the life of the disk after about 106 � 107 yr,when the viscous time is of comparable magnitude, hasbeen considered by Trilling et al. (1998). In this situa-tion the planet is able to open a gap and undergo inwardtype II migration on the viscous timescale. These authorsconsider outward torques due to tidal interaction with thecentral star and Roche lobe over
ow as well as torques dueto disk interaction. Assuming disk dispersal on a similartimescale they are able to produce giant planets at a rangeof orbital radii. These may then undergo orbital instabil-ity, leaving one inner planet and one or several partners atlarger radii (e.g., Weidenschilling & Marzari 1996; Rasio

& Ford 1996). In this regard, it is of interest to note thatthe only system detected so far which may be multiple,55 Cnc (Butler et al. 1997), has a planet at 0.11 AU andmaybe another planet beyond 4 AU.The above scenario thus might be able to produce shortperiod planets in the late stages of the life of the disk. Incontrast, the processes which are the focus of this paperresult in the short period planets originating early in thelife of the disk. They would more likely result in a singleplanet at � 0:05� 0:1 AU than at intermediate radii anddo not necessarily produce other giant planets at largerradii as a result of gravitational scattering processes. Inthis respect, the outcome would be in good agreement withthe observations to date.5.2. SummaryIn this paper we have investigated how the critical coremass associated with a solid protoplanet varies with loca-tion in a protoplanetary disk. In the past, work has con-centrated on in situ formation, mainly at orbital distancescorresponding to the neighborhood of Jupiter. However,the importance of orbital migration has recently been indi-cated by both observations (see Marcy & Butler 1998 andreferences therein) and theory (see Lin & Papaloizou 1993and references therein; Ward 1997b). This suggests thatthe behavior of the critical core mass as a function of loca-tion in and mass transfer rate through the protoplanetarydisk should be considered.We constructed steady state protostellar disk modelswith constant values of � = 10�2 and � = 10�3. Arange of accretion rates varying between _M = 10�6 and10�9 M� yr�1 were considered. We calculated analyticpiece{wise power law �ts to the curves h�i (�) obtainedfrom numerical calculations. These �ts can be used tosolve the di�usion equation governing the disk evolutionfor a wide range of disk parameters.We constructed protoplanet models with a solid coreand a gaseous envelope in hydrostatic and thermal equi-librium. We calculated the critical core mass,Mcrit, abovewhich the atmosphere cannot remain in complete equilib-rium but must begin to undergo a very rapid contraction.Where they can be compared, these critical core massesagree with the crossover masses obtained from more so-phisticated time dependent calculations (Bodenheimer &Pollack 1986, Pollack et al. 1996).We found that, for a �xed core accretion rate,Mcrit typ-ically increases by factors of 2{3 between 5 and 0.05 AU fordisk parameters believed to be typical of the early stagesof the disk evolution (i.e. � = 10�2 and a gas accretionrate _M = 10�7 M� yr�1). For a core accretion rate of_Mcore = 10�6 M� yr�1, the critical core mass is foundto be about 16 M� at 5 AU, in agreement with Boden-heimer & Pollack (1986), and it decreases with _Mcore. Atradii smaller than about 0.05-0.1 AU, local conditions maynot enable the planetesimals, required to produce the ac-cretion luminosity to support the atmosphere, to exist.Therefore the critical core mass is reduced at these radii.We considered these results in the context of the mi-gration of protoplanetary cores with mass in the range1{10 M�. According to recent estimates of the e�ectsof tidal interactions with the disk (Ward 1997b), the mi-gration timescale for such cores may be between 104 and



12105 yr at 5 AU, being comparable to their proposed forma-tion time. In order to investigate whether the planetesimalaccretion would continue under migration, we performedsimulations which indicate that a protoplanet migratingat the proposed rate is likely to accrete 24% or more ofthe planetesimals initially interior to its orbit. Thus ac-cretion is likely to maintain the core luminosity such thatattainment of the critical mass does not occur until smallradii � 0:1 AU are reached, where planetesimals no longerexist.Although runaway gas accretion can then begin ontosmall mass cores at these small radii, the timescale forbuilding{up a massive envelope becomes longer than thedisk lifetime if the core is too small. However, cores mas-sive enough can be built{up through mergers of additionalincoming cores on a timescale shorter than for in situ for-

mation.The above considerations can lead to the preferentialformation of short{period planets with semi{major axisless than about 0.1 AU, on a timescale shorter than thatderived for in situ planet formation.We acknowledge the Isaac Newton Institute for hospital-ity and support during its programme on the Dynamics ofAstrophysical Discs, when this work began. We thank D.Saumon for making his equation of state tables availableto us and P. Bodenheimer for useful discussions. We alsothank the referee, Jack Lissauer, whose comments helpedto improve the quality of this paper. CT is supported bythe Center for Star Formation Studies at NASA/Ames Re-search Center and the University of California at Berkeleyand Santa Cruz, and in part by NSF grant AST{9618548.APPENDIXA. BOUNDARY CONDITIONS FOR THE DISK VERTICAL STRUCTUREWe derive here the surface pressure Ps and temperature Ts used to compute the disk vertical structure (see x 2.1.2).To get Ps we rewrite equation (1) under the form: dPd� = �
2z� ; (A1)where �(z) = R z0 ��dz is the optical depth. We then integrate this equation over � between the surface of the disk andin�nity, where the pressure is zero. This leads to: Ps = Z �(1)�(H) 
2z� d�: (A2)We de�ne the disk surface such that the atmosphere above the disk is isothermal. The mass density above the disk thenvaries like exp��
2 �z2 �H2� = �2c2s��, where cs is the (constant) sound speed in the atmosphere. The main contributionto the integral in equation (A2) comes from values of z starting from H and extending over a range of a few cs=
 which issigni�cantly less than H: Thus the integral can be evaluated with su�cient accuracy by taking 
2z and � to be constantand equal to their values at the disk surface. This leads to:Ps = 
2H�ab�s ; (A3)where �ab = R1H d� is the optical depth above the disk.We now calculate the surface temperature Ts. The radiative 
ux at the disk surface can be written under the form:Fs = F+ � F�; (A4)where F+ and F� are the radiative vertical 
uxes at the surface of the disk directed respectively along the positive andnegative z. In other words, F+ and F� come respectively from inside and above the disk. The 
ux F� can be written interm of the background temperature Tb in which the disk is embedded as F� = �T 4b . Using equations (6) and (A4), wethen get: F+ = 38� _Mst
2 + �T 4b : (A5)An other expression of F+ can be obtained by using the fact that the energy density at the disk surface is given by:Es = 2c (F+ + F�) ; (A6)together with the energy equation: r � F = ��c �aT 4 �E� ; (A7)where F is the vector representing the 
ux of radiative energy, E is the energy density, c is the speed of light and a = 4�=cis the radiation constant. In the thin disk approximation, the temperature gradient in the vertical direction is much larger



13than that in the horizontal direction, so that r �F ' @F=@z. Using the expression (2) and the relation between F� andTb, we then get from equations (A6) and (A7) written at the disk surface:F+ = 2�T 4s � �T 4b � 9� �c2s�s
8�s ; (A8)where � has been expressed in term of �. By comparing equations (A5) and (A8) we obtain the following equation for Ts:2� �T 4s � T 4b �� 9� �c2s�s 
8�s � 38� _Mst
2 = 0: (A9)B. ANALYTICAL FITS OF THE VERTICAL STRUCTURE MODELSTo compute the evolution of a non{steady �{disk, it is necessary to solve the di�usion equation (9). To do this,_Mst = 3�h�i� has to be speci�ed as a function of � at each radius. We found it convenient to have an analytic �t to thecurves _Mst (�) :We utilize �ts in which these curves are approximated by three di�erent power laws corresponding respectively to theoptically thin, intermediate and optically thick regimes. The index of these power laws is independent of the radius r andthe parameter �. However, the multiplicative constant characterizing each of them does vary with both r and �. We givethis dependence below.Figure 9 shows a schematic plot of the �ts _Mst (�). We have represented log10 � _Mst� vs. log10 (�) with an arbitraryscale at two di�erent arbitrary radii r1 and r2 such that r2 > r1. When the radius is increased, the point at thetransition between the optically thin and intermediate regimes on this logarithmic representation moves up along thestraight line with equation is y = 3:1x + c0. We now give details of these power laws, which give a good �t (see below)for _Mst � 10�4 M�/year and 10�5 � � � 10�1. In the following expressions, _Mst, r and � are in cgs units and thelogarithms are to base 10:In the optically thin regime, as long as � � �1 with log (�1) = (c1 � c0) =2:1, or equivalently _Mst � _Mst;1 withlog� _Mst;1� = (3:1c1 � c0)=2:1, we have: log� _Mst� = c1 + log (�) : (B1)In the intermediate regime, for �1 � � � �2 with log (�2) = (c3 � c2) =0:9, or equivalently _Mst;1 � _Mst � _Mst;2 withlog� _Mst;2� = (2c3 � 1:1c2)=0:9, the �t is: log� _Mst� = c2 + 2 log (�) : (B2)Finally in the optically thick regime, for � � �2, or equivalently _Mst � _Mst;2, we use:log� _Mst� = c3 + 1:1 log (�) : (B3)The parameters c1and c3 are related to r and � in the following way:log(c1) = 0:9360636+ 0:1195816 log(�) + [0:0233002� 0:0061733 log(�)] log(r); (B4)log(c3) = 0:7782080+ 0:0545617 log(�) + [0:0366565� 0:0019087 log(�)] log(r); (B5)whereas c0 depends only on �: c0 = 16:0897161+ 2:0665 log(�); (B6)and c2 = 1:1c1 + c02:1 : (B7)We note that these �ts can be used either to compute � from _Mst or _Mst from �.We calculate the error corresponding to these �ts by solving the vertical structure (i.e. calculating �) at 50 di�erentradii from 0.01 to 100 AU and for 50 values of _Mst between 10�10 and 10�4 M� yr�1 (both the values of r and _Mst areequally logarithmically spaced). We then recalculate � using the �ts and _Mst as an input parameter. We �nd that theaverage error is 24, 17, 14, 10 and 10%, respectively, for � = 10�5, 10�4, 10�3, 10�2 and 10�1. The maximum error isbetween 43 and 50% for these values of �. If alternatively we recalculate _Mst using the �ts and � as an input parameter,the average error is 36, 22, 18, 13 and 16% whereas the maximum error is 107, 55, 48, 42 and 103% for the same valuesof � from 10�5 to 10�1. To solve the radial di�usion equation, we need to calculate _Mst from � (see x 2.2). We see that,
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Table 1: Mass of planetesimals contained within a radius r.Listed are the radius r of the disk location in AU, �, the gas accretion rate _M through the disk in M� yr�1 and theestimate for the mass of planetesimals contained within the radius r given by Mp(r) = 10�2 � �r2�(r) in M�.r � _M Mp(r) = 10�2 � �r2�(r)(AU) (M� yr�1) (M�)1 10�2 10�6 3.5... ... 10�7 0.65 ... 10�6 22.8... ... 10�7 7.61 10�3 10�6 30.1... ... 10�7 4.05 ... 10�6 138.5... ... 10�7 41.0

Table 2: Kelvin{Helmholtz timescale for di�erent critical core masses.The �rst column gives the radius r of the disk location in AU, the second column gives the internally generated protoplanetluminosity as what would be derived from a core accretion rate _Mcore in M� yr�1; and the third and fourth columns givethe core mass Mcore and total mass Mpl in M�, respectively. The �fth column gives the Kelvin{Helmholtz time tKH inyr. The calculations were performed for a disk model with � = 10�2 and _M = 10�7 M� yr�1:r _Mcore Mcore Mpl tKH(AU) (M� yr�1) (M�) (M�) (yr)0.05 10�6 42.0 56.9 4.7�106... 10�7 28.0 32.7 3.0�1070.075 10�6 21.5 28.2 1.9�106... 10�7 15.0 18.9 1.4�1070.10 10�6 19.5 24.8 1.4�106... 10�7 14.0 17.7 1.2�1070.15 10�6 18.5 23.9 1.4�106... 10�7 13.0 13.9 9.1�1061.0 10�6 17.0 20.9 9.0�105... 10�7 12.0 14.5 7.8�1065.0 10�6 16.0 17.3 7.5�105... 10�7 10.5 12.5 4.8�106
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Fig. 1.| _Mst in units M� yr�1 vs. � in units g cm�2 using a logarithmic scale for � = 10�2 (a) and 10�3 (b). Boththe curves corresponding to the numerical calculations (solid line) and the �ts (dashed line) are shown. The label on thecurves represents the radius, which varies between 0.01 and 100 AU.
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Fig. 2.| Shown is H=r (a), � in units g cm�2 (b) and Tm in K (c) vs. r in units AU using a logarithmic scale. In eachplot, the di�erent curves correspond to _Mst = 10�6 (solid line), 10�7 (dotted line), 10�8 (short{dashed line) and 10�9(long{dashed line) M� yr�1. Here � = 10�2.
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Fig. 3.| Same as Figure 2 but for � = 10�3
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Fig. 4.| Plots of total mass, Mpl in units M�, vs. core mass, Mcore in units M�, at di�erent locations r in a steadystate disk model with � = 10�2 and gas accretion rate _M = 10�7 M� yr�1. From left to right and top to bottom, theframes correspond to r = 0:05, 0.06, 0.15, 0.5, 1 and 5 AU, respectively. The midplane temperature and pressure at theselocations are indicated above each frame. Each frame contains six curves which, moving from left to right, correspond tocore luminosities derived from planetesimal accretion rates of _Mcore = 10�11, 10�10, 10�9, 10�8, 10�7 and 10�6 M� yr�1,respectively. The critical core mass is attained when the curves �rst begin to loop backwards when moving from left toright.
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Fig. 5.| Critical core mass Mcrit in units M� vs. location r in units AU in a steady state disk model with viscousparameter � and gas accretion rate _M . The di�erent plots correspond to � = 10�2 and _M = 10�7 M� yr�1 (a), � = 10�2and _M = 10�8 M� yr�1 (b), and � = 10�3 and _M = 10�8 M� yr�1 (c). Each plot contains six curves which, movingfrom bottom to top, correspond to core luminosities derived from planetesimal accretion rates of _Mcore = 10�11, 10�10,10�9, 10�8, 10�7 and 10�6 M� yr�1, respectively.
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Fig. 6.| This shows the initial distribution of planetesimals (represented by crosses) between 0.8 AU and 0.6 AU in thex{y plane in units AU. The initial circular orbit of the protoplanet at 1 AU is also indicated (solid line). The protoplanetis represented by the open square.
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Fig. 7.| The �nal distribution of planetesimals (represented by crosses), in the x{y plane in units AU, after a protoplanetof mass 1 M� has migrated inwards with tmig = 2� 104 yr. The initial protoplanet orbit is indicated by the outer circle(dashed line) and the �nal one by the inner circle (solid line). The protoplanet is represented by the open square. About24% of the planetesimals were accreted.
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Fig. 8.| The �nal distribution of planetesimals (represented by crosses), in the x{y plane in units AU, after a protoplanetof mass 10 M� has migrated inwards with tmig = 2� 103 yr. The initial protoplanet orbit is indicated by the outer circle(dashed line) and the �nal one by the very small inner circle (solid line). The protoplanet is represented by the opensquare. About 23% of the planetesimals were accreted.
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Fig. 9.| Schematic plot of the �ts _Mst (�). The solid lines represent a �t of the curves log10 � _Mst� vs. log10 (�) withan arbitrary scale at two di�erent arbitrary radii r1 and r2 such that r2 > r1. The dotted line indicates the separationbetween the optically thin and intermediate regimes.


