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Abstract

The Navier-Stokes equations are widely believed to faithfully model turbulent
fluid dynamics. Unresolved mathematical issues concerning the regularity of solu-
tions, in particular the open question of whether divergent singularities may spon-
taneously appear in the solutions, remain a problem for the foundations of the the-
ory. In this paper we suggest that anomalous scaling of small lengths in turbulent

flows may contain new information about the possibility of singularities.
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Intermittency in dynamical systems and turbulence is the name given to phenomena
which display localized fluctuations in time and/or space {1, 2, 3]. It is most easily charac-
terized by probability distributions in terms of the relative likelihood of large, rare events.
In turbulence the relevant events are usually identified as localized fluctuations in velocity
differences or energy dissipation [4], and the phenomena are identified quantitatively via
anomalous scaling of appropriate moments.

For example, moments of velocity differences Ju = #- (u(x + r) — u(x)) in high Reyn-
olds number, incompressible, homogeneous, isotropic turbulence are observed to behave

according to [5]
(5uP) ~ gP/3 [, (P/3—Cp) pép (1)

where r = |r| is in the inertial range, # = r/r, L is the integral scale in the flow, and ¢

is the energy dissipation rate per unit mass. The ndive scaling, where there is a single
velocity scale at length scale r, corresponds to {, = p/3 in which case

(6uP) ~ ePl3 rPl3, (2)

The average (-) is usually taken to mean an ensemble or time average. Hélder’s inequality
ensures (, is a concave function of p for even p [5]. Apart from the exact result that (; =1
[6], these scalings have never been deduced rigorously from the Navier-Stokes equations
although some rigorous relations between scaling exponents have been established [7].
Experimental evidence suggests that the {, all fall on a monotonically increasing concave
curve [5]. The deviation of ¢, from Z is referred to as anomalous scaling and is taken
as an indication of the relatively large fluctuations at small scales associated with the
phenomena of intermittency.

To elucidate the connection between anomalous scaling and intermittency, let us define
the “p-velocity” scale [8] at length scale r for p > 3 according to

The scaling in equation (1) then implies
-1

im0 (3) z

where U = (¢L)/% is a large scale velocity. Because (, is monotonically increasing from
(s =1 and yet bounded above by £, the exponent above satisfies 0 < 5}% < % Hence all
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the U, —+ 0 as r — 0. The essence of anomalous scaling and intermittency, however, is
that these p-velocity scales separate from each other in this limit. Higher p-velocity scales
will be dominated by rare but large fluctuations, i.e., by extreme values in the probability
distribution. So depending on how one chooses to measure the velocity, i.e., depending
on the choice of p, different scales emerge. This is most easily seen by looking at the

dimensionless ratio of sequential p-velocity scales:

Up+1 (é) T
Up r (5)
where . .
CP — CP+1 - (6)

"= P38 T 1) -3
For the classical scaling {, = £, each 7, = 0 and the scales are all the same. On the
other hand, anomalous scaling and the concavity of ¢, as a function of p for p > 3 means
precisely that 4, > 0 and that the ratio diverges as r descends to smaller and smaller
scales in the inertial range. Again we reiterate that these are purely phenomenological
observations to date; no rigorous predictions for such scaling exponents have ever been
derived from the Navier-Stokes equations.

In this paper we want to consider a different hierarchy of moments and investigate
the implications of anomalous scaling—should it occur—for questions of the regularity of
solutions to the Navier-Stokes equations. The moments we consider are not of velocity
differences, rather we focus on the 2n'* moments of the energy spectrum in wavenum-
ber space as defined by second moments of n** derivatives of the velocity field. These
wavenumber moments correspond to small length scales deep in the dissipation range.
We do not consider averages in a turbulent steady state, but rather the time evolution of
these length scales as constrained by the Navier-Stokes equations. The question addressed
here is not how these scales separate at high Reynolds number, but rather how these small
length scales behave when a singular event occurs in the Navier-Stokes equations—if in-
deed a singular event does occur.

We begin in the context of decaying turbulence, with the incompressible 3D Navier-

Stokes equations on a periodic domain = [0, L]3:
u;+u-Vu+ Vp=vAu, (7)

where V - u = 0, with the divergence-free initial condition u(x,0) = ug(x). Here are
some previously established facts [9, 10, 11]. For small enough values of the dimensionless
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quantity

I Vao|3L
Iy = 72—, (8)
where || - ||z denotes the L? norm on (2, we can be assured of the existence of a unique

smooth (C* in fact) solution for all for 0 < ¢ < oco. But for large values of I;, after
a finite time ¢, that depends on v, L and the magnitude of Iy, we may only assert the
existence of weak, not necessarily unique, solutions [12]. Weak solutions have finite kinetic
energy 3|[u(:,?)|| at all times, but may exhibit isolated integrable singularities in the
instantaneous energy dissipation rate v||Vu(-, )||3. Such singularities, if they occur (which
remains an open question [13]), are responsible for our inability to establish the uniqueness
of solutions. Moreover, singularities of this sort would violate the assumption of separation
of scales invoked in the derivation of the Navier-Stokes equations from the Boltzmann
equations, raising the question of the validity of these equations in the presence of such
violently turbulent dynamics.

Singular events are characterized by the vanishing of small length scales in the flow.
Indeed, a divergence in the instantaneous energy dissipation rate means that the Fourier
energy spectrum FE(k,t) = |d(k,t)|? for the solution has no effective high wavenumber
cutoff. In terms of moments, singular events correspond to the divergence of the second
and all higher even moments of E(k,t). During the initial period 0 < ¢ < ¢, when the
solution is smooth, it is very smooth, and all the moments of E(k,t) exist.

The moments of the energy spectrum are given by the square of the L?-norms of
derivatives of the velocity vector field, and they define small length scales. We denote

Ha(t) = /n |Vl dz (9)

where |V™u|? means |A%uf? for n even and |A™Vu|? for n = 2m +1 odd. For alln > 1
the ratio . .

i = (22 < (BEaY o

(®) H, T [0f? (10)

defines a high wavenumber corresponding to a small length scale. In particular k7! =
1

(%)_E is the familiar Taylor microscale.

Holder’s inequality implies the ordering x; < k3 < K3 ..., so the corresponding length
scales k7! > k5! > k3! ... are a decreasing sequence. This fact is not limited to solutions
of the Navier-Stokes equations but is true for any velocity vector field on this domain.

We do not expect this inequality to ever be saturated; the k, are all exactly equal only if



the energy is concentrated in a single mode. They can be asymptotically equal as n — oo
only if there is a single strict (although not absolutely sharp) high wavenumber cutoff in
the spectrum. Here are some previously established facts about the &,’s [11]:

1. Singularities in the flow occur when x; diverges, sending all the length scales (k1)

to zero.

2. No singularity can occur if any one of the x,, for n > 1, stays finite. Hence at any
instant of time ¢ > 0, either the &, are all finite or, if they diverge, they diverge

together.
3. If they do diverge then the divergence is integrable in time [14].

If there is a single vanishing cutoff length scale associated with a singularity then all the
wavenumbers diverge together, in which case the ratios “—:ifi = 0(1) as k, — oo. We
know that singularities must be localized in space because ||lu(-,t)||2 remains finite, so
they must have a broadband spectrum in wavenumber space [13].

The central result of this paper is contained in the following hierarchy of coupled
differential inequalities for the evolution of the x,(t) for n > 3:

e < | (22) ™ 1] o G, )l (1)
dt Kn

where the ¢, are absolute constants. These differential inequalities are derived directly
from the Navier-Stokes equations (see appendix) and are valid for weak as well as strong
solutions. For any initial condition with finite I, all the k, are finite for ¢ > 0 up
until at least t,. The restriction to n > 3 is a technical necessity in the derivation to
allow us to “close” the heirarchy as we have, involving only ||lu(-,t)||2 which we know is a
monotonically decreasing (and hence a priori bounded) function of time.

The ordering of the wavenumbers due to Holder’s inequality ensures that the first term
on the right hand side of (11) from the viscous term in the Navier-Stokes equation is not
positive. The superlinear growth of the second term ~ 5,7,/ 2 however, allows the possibility
of a finite time divergence of k,(t). But the broadband nature of any singularity implies
that we can confidently assert that 22 > 1 (strictly) as k, > co. Hence the first term
from the viscosity is likely to have more damping power than is rigorously justified by the
Holder limit. However, the fact that % > 3 means that it needs to be very much more
effective if a large fluctuation is to be arrested before it leads to a divergence.



Sufficient anomalous scaling (in a sense to be described precisely below) associated
with potential singular events could elevate the viscous damping term in (11) to a more
prominant, or even dominant, role in the process. By anomalous scaling we mean the
emergence of a spectrum of small length scales in the vicinity of a violent fluctuation.
That is, we consider the possibility that there is not just one scale but rather a spectrum
of distinct scales associated with each of the ,,.

In analogy with the observed phenomena of intermittency and anomalous scaling for
moments of velocity differences, let us suppose that in a singular event each &, (t) diverges
with its own exponent 8, with respect to x3(t), the lowest one valid in (11); that is,

Ko ~ L7140 icfn (12)

as k3 — oo where L is an outer scale (the domain length scale or an appropriate scale in
the initial data). The §, > 1 must then be an increasing sequence of numbers starting

from B3 = 1 and the ratio of sequential wavenumbers would scale as

Kn+1 . Br+1—Pn n
Il o [Prti=Bn + ~ LY 1
P K3 (knL) (13)
with exponents
p,,:é"—*l—1>0. (14)
P

Under these circumstances the viscous term in (11) has more power; now the nonlinear
growth ~ x7/2 has to compete with dissipation ~ g3t2r+1sn

The hierarchy of differential inequalities in (11) implies that if such anomalous scaling
occurs, then there is an upper bound on all the p,, exponents if a true singularity actually

occurs. For if 1

> —_—
"7 4(n+1)
for any n > 3, then in the course of a large fluctuation of x,, the magnitude of the
damping term will eventually exceed the nonlinear growth so dk,/dt reverses sign and no

’ (15)

singularity is possible. The perhaps somewhat surprising conclusion is that a sufficiently
divergent spectrum of small scales will regularize Navier-Stokes dynamics.

Anomalous scaling of this sort for the x,, in potentially singular or truly singular events
is quite similar in spirit to intermittency for moments of velocity differences. In the inertial
range scaling of velocity differences it is the presence of ever larger velocity amplitude
fluctuations at ever smaller scales that is reflected in the anomalous scaling exponents.



In the hypothesized anomalous scaling for the «, it is again the presence of relatively
velocity larger fluctuations af ever smaller scales—now deep in the dissipation range in
the vicinity of (near) singular events—that would result in positive p,. It is interesting
that the Navier-Stokes equations place a limit on the magnitude of such fluctuations if
solutions ever exhibit true singularities.

These observations lead naturally to suggestions for theoretical, computational and
experimental investigations. It would be interesting to evaluate the &, for exact solutions,
such as Lundgren’s spiral solution [15], to see how spectrum behaves. The , are in
principle accessible from direct numerical simulations of turbulent flows. This would
provide the most direct investigation of the question of scaling and anomalous scaling for
the x,, but it is not clear how important the practical limitations on the Reynolds number
will be. Most intruigingly, velocity derivatives in a turbulent flow can be measured.
Although in practice it may be difficult to separate spatial from temporal averaging, some
related moments of the derivatives may be extracted to probe the spectrum of small scales
in the turbulence corresponding to the k,’s. The open question of regularity of solutions
of the Navier-Stokes equations remains an outstanding mathematical challenge. It is an
exciting prospect that experimental observations may shed new light on this problem.
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A Appendix

The differential inequality for x,, displayed in (11) can easily be found using two ladder
inequalities for H,, [11]

1.
EHn < —vHpi + CS,I}IIVUIIooHn (16)
1.
§Hn 2> —vHpy — c$l1}||Vu||°°H,. (17)

where the c{) is an absolute constant depending only on 7 and r. ||Vulle means the
supremum over space of all derivatives of all components of the velocity field. Firstly we

extend our definition of the &, to

oy = (&)“"- (18)



and then use the inequalities in (16) and (17) on the H, and H, to obtain

2(n—r)+2
. K
(n - T)nn,r S 4 [(Ll’") K’i,r - nn,rﬁf+1,r + c1(12,2' ”vullooﬁﬂﬂ" (19)

Knyr

where c{) is another absolute constant. To estimate ||Vul|e in terms of kn, we use a

Gagliardo-Nirenberg inequality [11], valid for n > 3
IVulleo < €8 1775 [ull2 (20)

Then we note two facts; firstly Kpt+1, < Kn, and £, 9 < Kp, for r < n. Hence (19) becomes

2(n—r)+2
(0= 1)fony < —v [(K'Ll) _1} -+ e ety Il (21)

Knr

Finally we set 7 = 0 and drop the second label and write Kno = kn and the cf) = ¢, to
obtain (11).

To discuss the Navier-Stokes equations with an additive forcing function f(x) to extend
our result to a potentially turbulent statistical steady state we replace our H, with

Fo(t) = /ﬂ (IV"uf + |V u,?) av (22)

where u; = L?v~! f(x). Then the F,, obey the same equations as the H, in (16) and (17)
with the respective addition and subtraction of an extra term vA;2F,. The length ) is
defined by A\g%? = L2 + A;? 7~ where Ay < L is the smallest scale cut-off in f(x) where L is
the domain length. The H, in the %, become F, and the only change to equation (11)
is the addition of a term v\;%k,, which does not change the argument or the observation

concerning anomalous scaling and regularity.
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