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Abstract

The part of the nonlinear term in the Navier-Stokes equation which repre-
sents coupling to the small scale modes may be averaged out by introducing a
weak conditional average with asymptotic freedom in wavenumber. A resid-
ual deterministic part, while important for individual realizations, makes a
negligible contribution to the renormalization of the dissipation rate. This
is because the full ensemble average, needed to establish the energy balance,

relaxes the constraint on the conditional average.
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The application of renormalization group to dynamical problems in microscopic physics
requires an average over small scales in which large scales are held fixed [1]. Unfortunately,
the corresponding procedure for classical nonlinear systems, such as Navier-Stokes turbu-
lence, is impossible in principle because of the deterministic nature of such systems. Recently
it has been proposed that the chaotic nature of turbulence may justify the use of an approxi-
mate conditional average [2]. In the present paper we argue that the conditional elimination
of a band of high wavenumber modes may be accomplished in terms of a deterministic part,
which has a coherent phase relation with the retained modes, and a random part, which is
asymptotically free and may be averaged out with the introduction of an effective viscosity.
The reduction of the number of modes takes place at a constant rate of energy dissipation,
and it is further argued that the renormalization of this quantity can be adequately repre-
sented by the incoherent part only. This is because the full ensemble average, needed for
the spectral energy balance, tends to ‘lift’ the constraint on the conditional average.

We consider incompressible fluid turbulence, as governed by the solenoidal Navier-Stokes

equation (NSE)
(B: + vok?) tta(k, t) = Mgy (k) [ jug(d, tyuq(k = 3,2), (1)
where vy is the kinematic viscosity of the fluid,
Mapy(k) = (2i) 7' [kgDary (k) + kyDap(K)], (2)
and the projector D,s(k) is expressed in terms of the Kronecker delta 4,4 as
Dap(k) = Sap — kakplk|~. (3)

In order to pose a specific problem, we restrict our attention to stationary, isotropic, homo-
geneous turbulence, with dissipation rate ¢ and zero mean velocity. We also introduce an

upper cutoff wavenumber K.y, which is defined through the dissipation integral

" ok BV ~ [ 2ok E(k)dk
e=/0 2wok? E(k) 2/0 2ok E(K)dk, (4)



where E(k) is the energy spectrum, so ensuring that K.y is of the same order of magnitude
as the Kolmogorov dissipation wavenumber.

We then filter the velocity field at |k| =k = K., where 0 < K; < Kpax, according to

'Ll,o,I (k,t) for K. <k < Kpax.

The NSE may be decomposed using (5), to give

(0 + vok®)uy = My (wjup_; + 2uj wi_; +ului_j), (6)

(0 + vok)ut = M,;"(u;u,:_j + 2uj'u}c"_]- + u}'uz_]-), (7)

where, for simplicity, all vector indices and independent variables are contracted into a single
subscript.

In order to obtain an expression for the average effect of the high wavenumber modes
upon a particular low wavenumber mode, we need to average out the ut whilst holding the

u~ constant. This requires a conditional average (-), such that
(ug(k,t))e = ug (K, B). (8)

This is the only rigorous property we can attribute to the conditional average, and it should
also be noted that it is vital to distinguish between this operation and that of a filtered
ensemble average.

To establish the statistical properties of u(k,t) we consider an ensemble W consisting
of the set of M time-independent realizations {W{?)(k)}, each realization [3] being labelled

by an integer i. Subject to certain weak conditions, the ensemble average is

M
(el ) = Jim 32 S WIOK) = Tah), )

where U, (k) is the time average of u,(k,t). This procedure can then be extended to any

well behaved functional, F'[u,(k, )], thus:
L S~ i
(Fluo(l ) = Jim 373 FOVO (b (10)
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Now we consider how to perform a conditional average. To do this, we first select a
subensemble, Y = {Yofi)(k)} C W, and choose the members of this biased subensemble to
be those N (N < M) members of W satisfying the criterion

lim (max|~(R)WS (k) - uz (k,t1)| < 6), (11)

where t; is some fixed time and 67(k) = 1 for 0 < k < K., and zero otherwise. The

conditional average is then obtained by generalizing (9) and (10) to the biased subensemble,

(alk, ) = Jim 13- YOR), (12)
and
1 X :
(Pluatl, ). = Jim 53> FIYO () (13)

It follows by construction that (8) holds, since from (11) and (12)
- T - -
(u (k,1))e = ]\}1_1)20 —N[Nua(k,t)] = u_(k,1). (14)

The difficulty now facing us lies in the nature of the subensemble, which is an example of
deterministic chaos. This can be seen if we consider two extreme scenarios for the behavior
of ut under the conditional average. Firstly, if we assume that the subensemble is strictly
deterministic, then in this instance uj is fully determined by prescribing u; . Accordingly,
Eq. (8) implies that (ujuj_;)e = wjur_j, (ujui_;)e = wjui_; and (ufui_;)c = ufuf_;.
Thus, the low-pass filtered NSE, Eq. (6), reduces back to itself under the conditional average.
Secondly, if we assume that the subensemble is purely random, it follows that in this case,

uf is independent of u;. Hence, applying the conditional average to the low-pass filtered

NSE, we find

(8¢ + vok®yuy = M ujuy

_j7
the uj_u,'l'_j term being zero since the ensemble average of u™ is zero, whilst the u}uf_;
term is zero due to homogeneity. Thus in this scenario it appears that there is no effect of

nonlinear coupling.



In reality we are faced with a situation somewhere between these two extremes, and so
we replace our criterion for members of the biased subensemble, Eq. (11), which is equivalent

to the first of these situations if § = 0, by the less precise criterion
max |0~ (k)W) (k) — ug (k, t1)| < €, (15)

where, in general, £ is of the order of the turbulent velocities involved.
To obtain a non-trivial conditional average we must now identify those circumstances in
which £ may be neglected as being, in some sense, small. A measure of the ‘smallness of £’

can be identified by constructing the subensemble as
WO(k) = u(k,t) + ¢ (k, 1), (16)

where i is any label satisfying (15). If we then further restrict the subensemble to be such

that the set {#()(k,t,)} satisfies (8), we find that
(Ui up_j)e = w5 ui_; + (Bifh—j)e- (17)

Thus in order to maintain form invariance of the NSE under conditional averaging, we

require

(Pidr—j)e — 0 (18)

in some limit. This is our criterion for the smallness of £.

If we further suppose that chaos and unpredictability are local characteristics of turbu-
lence, and there is support for such a view [4,5], then if K. and Kyax are sufficiently far
apart we might expect, due to the development of unpredictability as & is increased above

K., that the effect of the constraint given in Eq. (15) would die away, such that

lim (uf(k,t))e = (uf (Kmax, t))- (19)

k—Kmax

We refer to this property as asymptotic freedom. In order to extend this concept to higher-

order moments, we introduce the following Hypothesis of Local Chaos:

)



“For sufficiently large Reynolds’ number and corresponding Kmax, there exists a cut-off
wavenumber K, < K.y such that a mixed conditional moment involving p low wavenumber

and r high wavenumber modes takes the limiting form

%I_I)Ié (u;(kla t)uE(kZa t) v u;(km t)u;(kp+11t)u:-(kp+25 t) cee u:(kp+ﬁ t))c -

ug(or,tup(ka,t) . uy(kp, ) lim (U (Rpt, 0l (Rpiay 0) g (Rpr, 1)), (20)

P
where lim(.}_,k,,,, means take the limit for all wavevector arguments of the u* modes, with
the condition of Eq. (18) satisfied as a corollary.”

This provides our definition of an-asymptotic conditional average and may be used to

evaluate all terms involving mixed products of u~ with u*. For example,

- —_— + _ — .
%l_l;%('uj UF_)e = U; .}hrnm

(1K, x(”:—j) = 07 (21)

a.

since (u} (k,t)) = 0. Note also that the hypothesis as stated is more general than is necessary,
since we shall only need to consider products containing at most two 4~ modes.

If we then take the conditional average of the low-pass filtered NSE, Eq. (6), we obtain
(0 + vok®Juy = My {{uj uic_j)e + 2(wj ui_y)e + (uui_s)e}, (22)

where the conditional average of u; on the left hand side has been evaluated using (8). This

equation may be further re-written as
(8¢ + vok®)uy = My ujup_; + S (k|K.) + My, %i_r)ré(u;-"u}i'_ e (23)
where
S™(kIKC) = My {(¢5 bi_gde + 2wy wi_y)e + (wwi_y)e — lim{ufuil_j)c}- (24)

It should also be noted that the hypothesis must hold for K, — 0, as in this instance Eq.
(22) reduces to the Reynolds equation, with uq(k,t) — U.(k) as given by (9).
Our hypothesis does not explicitly tell us how evaluate the conditional average in (23),

which involves a non-trivial projection of a product of u* modes in the Hilbert space of
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the v~ modes, but we may use the high-pass filtered NSE, Eq. (7), to obtain a governing

equation for this quantity. To do this, we use (7) to write equations for u} and uf_;, multiply
these equations by uz_j and u;" respectively, add the resulting equations together, and then

take the conditional average. After some rearrangement of dummy variables, this gives

llm(at-{-lloj + volk — F1)(ufuf_;)e —lim2M]T"

x{(up U;_pu ) + 2(up uJ_p ) + (up J_puk_j)c}. (25)

Applying the hypothesis as give by Eq. (20), it is easily seen that the first term on the right
hand side of (25) is zero, since in the limit it involves the ensemble average of u}, while the
second term gives rise to a term linear in u; . The third term may be evaluated by iterating

the above procedure to form a dynamical equation for (u;f'u;’_p

uf_i)e, which in turn gives
rise to higher-order moments.

In general, we can show that a similar pattern occurs for all higher order moments
involving only products of u*. That is, each such moment gives rise to a moment involving
two u~ modes, which in general has to be zero for consistency in its wavevector arguments,

a term linear in u;, and a moment involving only u* modes of next higher order. Hence we

may write the general result

M) [ &5 Tt G, 0 (b =3, 00 = [ dsAh,t = o)z (k) (26)

where A(k,t — s) has the form

Alk,t —s) = /d3j exp[—(vo3® + wolk — 3I°)(t — )]

><{4M,:MJ-+ {_}EII? (uf u}'c'_j)

1=p
+24 M M Lo M {_}grélm(u;_qu;r_pui;_,-) +...} (27)

Loz = 0; + vop? + wo|g — p|?> + wo|k — 7|?, and where higher order terms are easily found by

induction. Thus, in all, Eq. (23) for the low wavenumber modes may be written as

¢
(8; + vok®)uy — / dsA(k,t — s)u; (k,s) = Mg ujup_; + S(k|K.). (28)
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In order to test the hypothesis, we make two approximations. First, we truncate the
expansion of A(k,t) at lowest non-trivial order. This can be justified via the introduction
of a local Reynolds number based on a length scale K1, the moment expansion being re-
expressed as a power series in this parameter. Making the truncation in (26) and (27) leaves

us with the expression

lm M;ﬁ,y(k)(ug(j,t)uj‘(k —4,t))e= /_too ds exp[—(v0j? + wolk — 71?)(t — )]

£—0
X4Ma_ﬁ'y(k)M3:§e(J) / dgp{.}li)r}?ma (uj(J - p,s)‘u;l,-(k - ja s))u;(ka 3)' (29)

X

For stationary, homogeneous, and isotropic turbulence we may write

(uf (G —p,s)uy(k —3,s)) = Q(lk — 51) Dey (k — 3)6(k — p), (30)

where ()(k) is the spectral density and § is the Dirac delta function. This leaves the question

of how to perform the time integral
i
[ dsexpl~(uos® + wolk = GI2)(t — )z k, 5). (31)

To do this we change the variable of integration from s to T' =t — s, expand the resultant
us (k,t — T) as a Taylor series about T' = 0, and then truncate the expansion at zero order,
this approach being based upon the physical idea that the v~ modes are slowly evolving on
time scales defined by the inverse of 1952 + volk — 712

We have investigated the validity of these approximations using results from direct nu-
merical simulations performed on a 256° grid, with Taylor-Reynolds number Ry = 190. Al-
though these results are not conclusive, since at this resolution the simulations have a very
limited inertial range (see [6,7]), they indicate that there is a range of K. (K. 2 0.5Kmax)
where both approximations give rise to error terms of less than unity, and that the mag-
nitude of these errors will decrease as we increase Ry to the large values where we may
reasonably expect our hypothesis to hold.

With these approximations, the right hand side of (26) is simple to evaluate, and we are

left with the final expression for the conditional average on the right hand side of (23)
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My (R) lim (uf (4, t)u (k — 4,1))e

Q(lk .7|)DE'Y(k .7) _(k t), (32)

=4 aﬁ'Y() ﬁ'sf(]) I—)I\max vo)? + volk — 312

which is linear in u;, meaning that it may be interpreted in terms of an increment to the
viscosity.

In order to evaluate the limit, we make a first-order truncation of a Taylor series expansion
in wavenumber of @ about K,,... In this way, we re-obtain the results previously obtained
using the two-field theory of McComb and Watt [8]. As they showed, a Renormalization
Group calculation based upon these equations gives a prediction for the Kolmogorov constant
of 1.60 £ 0.01, in good agreement with experiment, for 0.55Knax < K, < 0.75Kpax. This
calculation obtained the Kolmogorov exponent and pre-factor by assuming that the effective
viscosity and its increment scale in the same way (which is true at the fixed point) and that
the rate of energy transfer is renormalized. This latter assumption amounted, in our present
terminology, to the neglect of S(k|K.) in Eq. (23).

A new justification of this step can now be offered as follows. The equation for the energy
spectrum is obtained by multiplying the dynamical equation for u;(k,t) by u,(—k,t) and

then performing an average over the full ensemble. Thus the effect of S(k|K.) is just
(S(k|Ko)ug (—k,1)).

If we consider the form of S(k|K.) we see that each of the terms in the above expression
involves a conditional average. In evaluating such terms we perform a double summation,
firstly summing over all members with low wavenumber modes close to a particular member
of the ensemble, and then repeating this summation for every member of the ensemble. Now,
the initial ensemble was constructed according to the principle of equal a priori probabilities
but this is no longer necessarily true of the composite ensemble which we are now considering.
If it were true, then the terms making up S(k|K.) would vanish identically for all K..
However, in view of the results of the Renormalization Group calculations [8], it seems likely

that the contribution from S(k|K.) is small for K, in the range 0.55Kmnax < K: < 0.75Kmax.



Thus, for this range of cut-off wavenumbers, it would appear that the RG calculation of the
effective viscosity [8] is valid in a heuristic sense.

Finally, it should be noted that this work does not suggest that S(k|K.) can be neglected
in Eq. (23), which is the governing equation for a single realization. However it does suggest
that, having averaged out the chaotic part to yield an effective viscosity, one should consider
modeling the relationship of S(k|K.) to the u; modes as predominantly deterministic. Work
along these lines will be the subject of a separate communication.
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