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2 K. J. Falconer, M. J�arvenp�a�a, and P. Mattilaprovided that in (1.3) dimHE � n�m and 0 < HdimH E(E) <1.Note that for the Hausdor� and packing dimensions, dimp, (for the de�nitionsee [F2, Chapter 3] or [Mat3, Chapter 5]), of sections we have the following naturalupper bounds: if E � Rn and V 2 Gn;m, then(1:4) dimH(E \ Va) � maxf0; dimHE � (n�m)gand(1:5) dimp(E \ Va) � maxf0; dimpE � (n�m)gfor Hn�m-almost all a 2 V ? (see [F3, Lemma 5] and [Mat3, Chapter 10]). For thepacking dimension, the formulae (1.2) and (1.3) are false, but there are weaker re-sults for both sets and measures (see [FH1-2], [FJ], [FM], and [JM]). Although thereis no formula such as (1.2) for the packing dimensions of projections, Falconer andHowroyd showed in [FH2] that given an analytic set E � Rn , dimp projV (E) is al-most surely a constant, that is, there is a number dm(E) such that dimp projV (E) =dm(E) for n;m-almost all V 2 Gn;m. The purpose of this paper is to show thatthere is no such result for plane sections. We shall prove that there exists a com-pact set E � Rn and compact subsets A and B of Gn;m with n;m(A) > 0 andn;m(B) > 0 such that for all V 2 A we have Hm(projV ?(E)) = 0, that is, E\Va =; for Hn�m-almost all a 2 V ?, and for all V 2 B we have dimp(E \ Va) = m forpoints a in a non-empty open subset of V ?. Quite likely, but perhaps with con-siderable technical complications, it would be possible to show that given a Borelfunction f from the space of a�ne m-planes in Rn into the closed interval [0;m]there is a Borel set E � Rn such that dimp(E \ V ) = f(V ) for almost all a�nem-planes V . This would be analogous to the results of Davies [D] and Falconer [F1]where AV � V is given in an arbitrary but measurable way and then E is foundsuch that for n;m-almost all V 2 Gn;m projV (E) agrees with AV up to a set ofm-dimensional measure zero.In Section 5 we shall establish the instability of the packing dimensions of sec-tions under smooth \bending" di�eomorphisms. We shall show that given a C2-di�eomorphism f : A ! B between two plane domains A and B which does notmap every line segment onto a line segment there is a compact subset E of A suchthat H1(projL(E)) = 0 for 2;1-almost all L 2 G2;1, that is, almost all sectionsE \ La are empty, but for all L 2 G2;1 we have dimp(f(E)\ La) = 1 for all pointsa in some non-empty open subset of L?.2. The basic result for hyperplanes in RnIn this section we begin a two-stage induction process that proves the result onwhich our �rst construction is based. Here we consider hyperplanes in Rn and inthe next section we work with general m-planes in Rn .Let P � [0; 1]n be a non-degenerate closed parallelepiped. We name the edgesof P such that the shortest parallel edges are called 1-edges, the second shortestparallel edges are 2-edges and so on. This numbering distinguishes edges which arenot parallel, that is, if two edges have the same length but they are not parallel thenthey have di�erent numbers. For all i = 1; : : : ; n we call P 1i and P 2i the (n�1)-facesof P which are generated by the edges numbered by 1; : : : ; i� 1; i+ 1; : : : ; n.



The instability of packing dimensions of sections 3For our purposes it is enough to consider a speci�c class of subparallelepipeds of[0; 1]n. Let fx1; : : : ; xng be the standard basis of Rn . For all i = 1; : : : ; n we denoteby Wi the hyperplane spanned by fx1; : : : ; xi�1; xi+1; : : : ; xng. We call P � [0; 1]na hyperregular parallelepiped in Rn if P 1i and P 2i are parallel to Wi for all i 6= n�1;let P 1i be the one that is nearest to Wi. For a hyperregular parallelepiped P and� > 0 we de�neAn;n�1(P ) = fV : V is an a�ne (n� 1)-plane meeting both P 1i and P 2ifor all i 6= n but not P 1n and P 2ngand A�n;n�1(P ) = fV 2 An;n�1(P ) : dist(V \ P; P 2n) � �gwhere dist(V \ P; P 2n) = inffja � bj : a 2 V \ P; b 2 P 2ng is the distance betweenV \ P and P 2n .The following lemma from [Mat2] describes the plane case underlying the basicconstruction for hyperplanes in higher dimensions.Lemma 2.1. There are disjoint compact sets A, B � G2;1 with 2;1(A) > 0 and2;1(B) > 0 such that for all hyperregular parallelograms P � [0; 1]2 and for all" > 0 there exists a �nite family P" of hyperregular subparallelograms of P with thefollowing properties:(1) H1(projL?([P")) � " for all L 2 A.(2) There is � > 0 such that if L 2 A2;1(P ) \ A2;1([0; 1]2) is parallel to someline belonging to B, then there exists Q 2 P" such that L 2 A�2;1(Q).Proof. See [Mat2, Lemma 2]. Note that in the plane we can parametrize the linesthrough the origin by the angle they make with the positive x1-axis. Using thisparametrization [Mat2, Lemma 2] gives A = [a; a+ b] and B = [0; a� b][ [a+2b; �]where a and b are real numbers with 0 < b < a and a+ 2b < �. �Next we prove the higher-dimensional version of Lemma 2.1 for hyperplanes.Lemma 2.2. There are disjoint compact sets A, B � Gn;n�1 with n;n�1(A) > 0and n;n�1(B) > 0 such that for all hyperregular parallelepipeds P � [0; 1]n and forall " > 0 there exists a �nite family P" of hyperregular subparallelepipeds of P withthe following properties:(1) H1(projV ?([P")) � " for all V 2 A.(2) There is � > 0 such that if V 2 An;n�1(P ) \ An;n�1([0; 1]n) is parallelto some hyperplane belonging to B, then there exists Q 2 P" such thatV 2 A�n;n�1(Q).Proof. If n = 2, the result is a restatement of Lemma 2.1. We assume inductivelythat the claim holds in Rn�1 and deduce the result in Rn .We may restrict our consideration to hyperregular parallelepipeds P with P 11 �W1. We use the notation W1;n�2 for the invariant measure on the Grassmann man-ifold GW1;n�2 of all (n�2)-dimensional linear subspaces ofW1. Applying the induc-tion hypothesis to W1 which is identi�ed with Rn�1 and de�ning AW1;n�2( eP ) andA�W1;n�2( eP ) in the obvious way for hyperregular parallelepipeds eP � [0; 1]n�1 inW1and for � > 0, we �nd disjoint compact sets eA, eB � GW1;n�2 with W1;n�2( eA) > 0



4 K. J. Falconer, M. J�arvenp�a�a, and P. Mattilaand W1;n�2( eB) > 0 such that for all hyperregular parallelepipeds eP � [0; 1]n�1and for all " > 0 there exists a �nite family eP" of hyperregular subparallelepipedsof eP such that(2:3) H1(projV ?;W1 ([ eP")) � "for all V 2 eA. Here projV ?;W1 :W1 ! V ?;W1 is the orthogonal projection onto theorthogonal complement V ?;W1 2 GW1;1 of V . Further, there is � > 0 such that ifV 2 AW1;n�2( eP ) \ AW1;n�2([0; 1]n�1) is parallel to some (n � 2)-plane belongingto eB, then(2:4) V 2 A�W1;n�2( eQ)for some eQ 2 eP".De�ne A = fV 2 Gn;n�1 : V \W1 2 eAgand B = fV 2 Gn;n�1 : V \W1 2 eB; 0 � angle(x1; V \ (V \W1)?) � �=4g;where angle(x1; V \ (V \ W1)?) is the angle between the x1-axis and the lineV \ (V \W1)? measured on (V \W1)? 2 Gn;2. Here the positivity of the angleis determined by requiring that the half-line V \ (V \W1)? \ f(y1; : : : ; yn) 2 Rn :y1 � 0g intersects the (n� 1)-plane where xn = 1. In this way we �x the positivedirection of the angle for all (V \W1)? 2 Gn;2 which are not subsets of Wn. Forthe rest of the 2-planes (V \W1)? we do this in some �xed sense; it turns out thateither of the two possibilities will do.Clearly A and B are disjoint. Since W1;n�2( eA) > 0 and W1;n�2( eB) > 0, it iseasy to see from (1.1) that n;n�1(A) > 0 and n;n�1(B) > 0.Let P � [0; 1]n be a hyperregular parallelepiped with P 11 � W1 and let " > 0.Since eP = P \ W1 is a hyperregular parallelepiped in W1, there exists by theinduction hypothesis a �nite family eP" of hyperregular subparallelepipeds of ePsuch that (2.3) and (2.4) hold. Let V 2 A. SinceprojV ?([ eP") = projV ? proj(V \W1)?([ eP") = projV ? proj(V \W1)?;W1 ([ eP")we obtain from (2.3) that(2:5) H1(projV ?([ eP")) � ":Let P" be a �nite family of hyperregular subparallelepipeds of P obtained by ex-tending the parallelepipeds of eP" to very thin parallelepipeds to the direction ofthe positive x1-axis. Then (1) holds by (2.5).Let � > 0 be as in (2.4). If V 2 An;n�1(P ) \ An;n�1([0; 1]n) is parallel to somehyperplane belonging to B, then V \ W1 2 AW1;n�2( eP ) \ AW1;n�2([0; 1]n�1) isparallel to some (n � 2)-plane belonging to eB. Using (2.4), we �nd eQ 2 eP" suchthat V \W1 2 A�W1;n�2( eQ). Since 0 � angle(x1; V \ (V \W1)?) � �=4 and sincewe may choose the length of the 1-edges of the parallelepipeds of P" to be less than�=2, we have V 2 A�=2n;n�1(Q) where Q 2 P" is the enlargement of eQ. Note thatsince here V 2 An;n�1([0; 1]n) is parallel to some Vp 2 B, the xn-axis cannot bea subset of Vp \ W1. Thus (Vp \ W1)? is not a subset of Wn. In this case thepositiveness of angle(x1; Vp \ (Vp \W1)?) is explicitly de�ned. �



The instability of packing dimensions of sections 53. The extension of the basic result to m-planes in RnIn order to extend the result of Lemma 2.2 for general m-planes in Rn we doa two-stage induction process: �rst we use the results of the previous section forhyperplanes and then we prove the general case. As before we restrict our at-tention to a certain class of parallelepipeds. We say that a non-degenerate closedparallelepiped P � [0; 1]n is an m-regular parallelepiped in Rn if P is of the formS� [0; 1]n�(m+1) where S � [0; 1]m+1 is a hyperregular parallelepiped in Rm+1 . Wenumber the edges of P in the same way as before and de�ne for all i = 1; : : : ; n the(n � 1)-faces P 1i and P 2i as before. Note that for all i 6= m both P 1i and P 2i areparallel to Wi. For an m-regular parallelepiped P � [0; 1]n we setAn;m(P ) = fV : V is an a�ne m-plane meeting both P 1i and P 2i for alli = 1; : : : ;m but not P 1i and P 2i when i = m+ 1; : : : ; ng:Lemma 3.1. There are disjoint compact sets A, B � Gn;m with n;m(A) > 0and n;m(B) > 0 such that for all m-regular parallelepipeds P � [0; 1]n and for all" > 0 there exists a �nite family P" of m-regular subparallelepipeds of P with thefollowing properties:(1) Hn�m(projV ?([P")) � " for all V 2 A.(2) If V 2 An;m(P )\An;m([0; 1]n) is parallel to some m-plane belonging to B,then there exists Q 2 P" such that V 2 An;m(Q).Proof. If n = m + 1, the result is a consequence of Lemma 2.2. Keeping m �xed,we assume inductively that the result holds in Rn�1 and prove it in Rn .Identifying Wn with Rn�1 and using the induction hypothesis, we �nd disjointcompact sets eA, eB � GWn;m with Wn;m( eA) > 0 and Wn;m( eB) > 0 such that forall m-regular parallelepipeds eP � [0; 1]n�1 and for all " > 0 there exists a �nitefamily eP" of m-regular subparallelepipeds of eP such that for all V 2 eA(3:2) Hn�1�m(projV ?;Wn ([ eP")) � ":Further, if V 2 AWn;m( eP )\AWn;m([0; 1]n�1) is parallel to some m-plane belongingto eB, then(3:3) V 2 AWn;m( eQ)for some eQ 2 eP".De�ne A = fV 2 Gn;m : projWn(V ) 2 eAgand B = fV 2 Gn;m : projWn(V ) 2 eBg:Clearly A and B are disjoint compact sets with n;m(A) > 0 and n;m(B) > 0.Let P � [0; 1]n be an m-regular parallelepiped and let " > 0. Using the in-duction hypothesis for the m-regular parallelepiped eP = P \Wn in Wn we �nd a�nite family f eP 1" ; : : : ; eP k" g of m-regular subparallelepipeds of eP such that (3.2) and(3.3) hold. Now P" = f eP 1" � [0; 1]; : : : ; eP k" � [0; 1]g is a �nite family of m-regular



6 K. J. Falconer, M. J�arvenp�a�a, and P. Mattilasubparallelepipeds of P . Consider V 2 A. Note that for W = projWn(V ) 2 eA wehave W?;Wn � V ?. Since Hn�m(projV ?([P")) � 2nHn�1�m(projW?;Wn ([P"))and projW?;Wn ([P") = projW?;Wn ([ eP"), we obtain (1) from (3.2). Finally, ifV 2 An;m(P ) \ An;m([0; 1]n) is parallel to some m-plane belonging to B, then forall i = 1; : : : ; n� 1 we have projWn(V \ P ji ) = projWn(V ) \ eP ji for j = 1; 2. SinceprojWn(V ) 2 AWn;m( eP ) \ AWn;m([0; 1]n�1) is parallel to some m-plane belongingto eB, we obtain by (3.3) that projWn(V ) 2 AWn;m( eP l") for some 1 � l � k givingV 2 An;m( eP l" � [0; 1]). �4. The main constructionUsing Lemma 3.1 we prove our main result:Theorem 4.1. There exist compact sets E � Rn and A, B � Gn;m with n;m(A) >0 and n;m(B) > 0 such that(1) for all V 2 A we have Hn�m(projV ?(E)) = 0, and(2) for all V 2 B there exists a non-empty open subset UV of V ? such thatdimp(E \ Va) = m for all a 2 UV .Proof. Let A, B � Gn;m be as in Lemma 3.1. Setting P1;1 = [0; 1]n and usingLemma 3.1 we �nd m-regular parallelepipeds Q2;1; : : : ; Q2;l2 � P1;1 such that forall V 2 A Hn�m(projV ?( l2[q=1Q2;q)) � 12 :Further, if V 2 An;m(P1;1) is parallel to some m-plane belonging to B, then V 2An;m(Q2;q) for some 1 � q � l2. For all 1 � q � l2 and 1 � i � m let ei(Q2;q) bethe length of the i-edges of Q2;q. Let k2 be the smallest positive integer such thatfor all 1 � q � l2 k2 � e1(Q2;q)�2m+1:Dividing each Q2;q into (k2)m m-regular parallelepipeds with all the edges parallelto the corresponding edges of Q2;q and with the length of the i-edges equal to1k2 ei(Q2;q) for all 1 � i � m, we obtain m-regular parallelepipeds P2;1; : : : ; P2;N2where N2 = l2(k2)m. ClearlyHn�m(projV ?( N2[q=1P2;q)) � 12for all V 2 A. By Lemma 3.1 we �nd for all 1 � q � N2 m-regular parallelepipedsQq3;1; : : : ; Qq3;lq3 � P2;q such that for all V 2 A(4:2) Hn�m(projV ?( lq3[p=1Qq3;p)) � 13N2 :Further, whenever V 2 An;m(P2;q) \ An;m(P1;1) is an m-plane parallel to somem-plane belonging to B, then V 2 An;m(Qq3;p) for some 1 � p � lq3. As before,divide each Qq3;p into (k3)m m-regular parallelepipeds with all edges parallel to the



The instability of packing dimensions of sections 7corresponding edges of Qq3;p and with the length of the i-edges equal to 1k3 ei(Qq3;p)for all 1 � i � m. Here k3 is the smallest integer such that for all 1 � q � N2 and1 � p � lq3 k3 � e1(Qq3;p)�3m+1:This gives us m-regular parallelepipeds P3;1; : : : ; P3;N3 where N3 = PN2q=1 lq3(k3)m.Since N3[q=1P3;q � N2[q=1 lq3[p=1Qq3;p;we have by (4.2) Hn�m(projV ?(N3[q=1P3;q)) � 13 :Continue in this way and de�ne a compact setE = 1\p=1 Np[q=1Pp;q:If V 2 A, then for all positive integers pHn�m(projV ?(E)) � Hn�m(projV ?(Np[q=1Pp;q)) � 1pgiving the �rst claim.Finally, let V 2 An;m(P1;1) be parallel to some m-plane belonging to B. Bythe construction for all j we have V 2 An;m(Qqj;p) for some 1 � q � Nj�1 and1 � p � lqj and therefore V 2 An;m(Pj;i) for all Pj;i � Qqj;p. Since there are (kj)msuch parallelepipeds Pj;i and since E \V \Pj;i 6= ; for all of them, we need at least(kj3 )m m-cubes with side-lengthdj = 1kj min1�q�Nj�11�p�lqj e1(Qqj;p)to cover E \ V . Using the fact thatkj � � min1�q�Nj�11�p�lqj e1(Qqj;p)��jm+1we have (kj)jm � (dj)1�jm which gives dimB(E\V ) = m where dimB is the upperbox-counting dimension (for the de�nition see [F2, Chapter 3] or [Mat3, Chapter5]). Similarly we see that dimB(E \ V \ O) = m for all open sets O � Rn withE \ V \O 6= ;, and so [F2, Corollary 3.9] gives dimp(E \ V ) = m. This completesthe proof since in Lemma 3.1 the set B can be chosen in such a way that for allV 2 B the set fa 2 V ? : Va 2 An;m(P1;1)g is open. �



8 K. J. Falconer, M. J�arvenp�a�a, and P. Mattila5. Bending maps and packing dimensions of sectionsIn this section we shall indicate another di�erence between the behaviour ofHausdor� and packing dimensions of sections of sets. By (1.3), (1.4), and thepreservation of Hausdor� dimension under smooth mappings, the typical Hausdor�dimension of sections of a smooth image of a set is the same as the typical Hausdor�dimension of sections of the original set. We shall show that the packing dimensionsof sections can change very radically under smooth di�eomorphisms. For simplicity,we shall do this only in the plane, although the techniques of the previous sectionscould certainly be used to prove similar results in higher dimensions.Theorem 5.1. Let f : A ! B be a C2-di�eomorphism between open subsets Aand B of R2 . Suppose that f does not map every line segment of A onto a linesegment. Then there is a compact subset E of A such that(1) H1(projL?(E)) = 0 for 2;1-almost all L 2 G2;1, and(2) for all L 2 G2;1 we have dimp(f(E) \ La) = 1 for all a 2 IL, where IL issome non-empty open subinterval of L?.The proof is a slight modi�cation of the methods of Section 4 and [Mat2] andtherefore we shall only sketch it. We recall some terminology and notation from[Mat2]. From now on a parallelogram will always mean a non-degenerate closedparallelogram in R2 whose shorter sides are parallel to the x1-axis. Given a C1-curveC and a parallelogram P , we say that C 2 �(P ) if C \P has a connected componentmeeting both of the longer sides of P but neither of the shorter ones. We denoteby dir(C; x) the direction of the tangent of C at x 2 C. Finally, p� = projl?� wherel� = ft(cos �; sin �) : t 2 Rg for � 2 [0; �).Lemma 5.2. Let P be a parallelogram, " > 0, 0 < s < 1, 0 < � < �10 , and letk� � 1 be the largest integer with 5(k� + 1)� < �. Then there is a �nite family Pof subparallelograms of P with the following properties:(1) H1(p�([P)) � " for 5i� � � � (5i+ 1)�, i = 1; : : : ; k�.(2) If C 2 �(P ) with dir(C; x) =2 ((5i�1)�; (5i+2)�) for all i = 1; : : : ; k�, x 2 C,then there are parallelograms P1; : : : ; Pl 2 P having the same side-length dfor their shorter sides such that lds > 1 and C 2 �(Pi) for all i = 1; : : : ; l.Proof. [Mat2, Lemma 3] gives a �nite familyR of subparallelograms of P for which(1) is satis�ed and if C is as in (2), then C 2 �(Q) for some Q 2 R. Subdividing eachparallelogram of R into su�ciently many subparallelograms we get the requiredfamily P. �We can now use the argument in [Mat2, pp. 307{309]. First we choose a smallopen subset U of A such that f bends many line segments in U . We may not beable to get this for all line segments in U , but if we stay away from some exceptionaldirections as described in [Mat2, Lemma 1] we �nd a subinterval I of [0; �) of length12 such that for line segments J whose direction is in I, f(J) is not a line segment.Using Lemma 5.2 we construct a compact set F with the following properties:(5.3) F = T1m=1SPm where (Pm) is a nested sequence of subparallelograms ofU .(5.4) H1(p�(F )) = 0 for almost all � 2 [0; �).(5.5) For all � 2 I we have dimp(f(F )\ (l�+ a)) = 1 for all a 2 I�, where I� � Ris some non-empty open subinterval of l?� .
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