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The main purpose of this note is to fill a gap in Kusuoka-Zhou’s construc-
tion of self-similar Dirichlet forms on self-similar sets. Unfortunately, it is
not quite clear whether or not the self-similar closed form £ obtained in the
proof of Theorem 6.9 of [KZ] satisfies the Markov property. We will use a
kind of fixed point theorem of order preserving additive maps on a cone to
prove existence of a self-similar closed form with the Markov property. The
fixed point theorem will be introduced in § 1. It is also applicable to other
problems, for example, the existence problem of a harmonic structure on a
p-c.f. self-similar set. In § 2, we will apply the fixed point theorem to show
existence of self-similar Dirichlet forms on self-similar sets.

1 A fixed point theorem

In this section, we will introduce a fixed point theorem on an ordered topo-
logical cone.

Definition 1.1 (Topological cone). A Hausdorff topological space U is
called a topological cone if it satisfies the following conditions.

(1) U is a commutative semigroup with a unity. We use u + v to denote the
semigroup sum of © and v in U. The unity is denoted by 0.

(2) There exists amap [0,00)xU — U, (s,u) — su, that satisfies the standard
properties of a scalar multiplication with respect to the semigroup structure:
(a) s1(s2u) = (s182)u and (s, +s2)u = su+8u for any 8, 52 € [0, 00)
and any u € U.
(b) s(u +v) = su + sv for any s € [0,00) and any u,v € U.
(c)0u=0and lu=uforanyu e U.

(3) The group sum and the scalar multiplication are continuous with respect
to the topology of U and {0, c0).
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Immediate examples of topological cones are positive valued functions
on a set and positive definite quadratic forms on a vector space. For those
examples, there are natural orders associated with cone structures.

Definition 1.2 (Order on a topological cone). A topological cone U is
said to be ordered if there is a partial order < on U that satisfies the following
conditions.

(1) For any u,v € U with u # 0, there exists s € (0, 00) such that sv < u.
(2) f u; <w; for i =1,2, then uy + ug < vy + vo.

(3) Ifu < v for u,v € U and s; < s, for 51, 55 € [0, 00), then s;u < spu.
(4) If limy, 00 Uy = u, limy, ,o0 v, = v and u, < v, for any n, then v < v.

(5) For any sequence {up}n>1 C U, if there exists v,w € U such that v <
u, < w for any n > 1, then we can choose a subsequence {uy, }i>1 and v € U
so that u,, — u as ¢ = oo.

The assumption (1) of the above definition is rather strong. For example,
it is not satisfied for the case of positive valued functions on R. This condition
may not be necessary later in the fixed point theorem if the mapping is
additive. See the remark after Theorem 1.5.

For an ordered topological cone, we can prove an analogy of a fundamental
fact in real analysis : ”a bounded monotonic sequence has a limit.”

Lemma 1.3. Let U be an ordered topological cone. If {up}n>1 C U is a
monotonically increasing (resp. decreasing) sequence with an upper (resp.
lower) bound, i.e. there exists u € U such that u, < upy1 < u (resp. u <
Unt1 < Up) for all n, then {u,}n>1 is convergent as n — oo.

Proof. Assume that u, < u,4 < u for all n. Then by (5) of Definition 1.2,
any subsequence {u,,}i>1 contains a convergent subsequence. Using (4) of
Definition 1.2, we see that the limits of such convergent sequences are all the
same. Now a standard argument of general topology implies that {u,}n>1 is
convergent as n — co. 0

Definition 1.4. Let U be an ordered topological cone. Let T : U — U.
(1) T is said to be order preserving if Tu < Tv whenever v < v.

(2) T is said to be super(resp. sub)-additive if T'(u + v) < Tu + Tv (resp.
Tu+Tv < T(u+v)) for any u,v € U.



(3) T is said to be homogeneous if T'(su) = sT'u for any (s, u) € [0,00) X U.
The following fixed point theorem is the main theorem of this section.

Theorem 1.5. Let U be an ordered topological cone. Assume that T : U —
U is continuous, order preserving, homogeneous and super(or sub)-additive.
If there exists u € U such that {T™u}.>o is bounded from both above and
below, i.e. there exists uy,us € U such that uy < T"u < us for any n, then
there exist a fized point u, € U of T that satisfies au; < u, < Pug for some
positive constants a and 3. Moreover if u € V for a closed sub-cone V of U
and T(V)CV, thenu, € V.

Proof. Assume that T is super-additive. Set vy = N7t ZnNz_Ol T"u. Then
w3 < vy < uy for any N. Hence by (5) of Definition 1.2, there exists a
subsequence {vy,}i>o and v € U such that vy, — v as i — co. Now note
that

1 1 & 1
— <_ (] —_— . N .
ZUN+NU_NHE:0TU_UN+NTU

So letting N = Nj, as lim;_yeo V; 'u = lim;_, oo N;7'TNiu = 0, we see that
Tv < v. As T is order preserving, {T"v}n>0 is monotonically decreasing.
By (1) of Definition 1.2, we can choose a > 0 so that au < v. Then ou; <
aT™u < aT™v. Hence by Lemma 1.3, {T™},>¢ is convergent as n — oco. Let
u, be the limit, then Tu, = u, and ou; < u, < v < us.

If u € V where V is a closed subcone of U, then obviously v and u, belong
to V.

If T is sub-additive, a similar argument implies that there exists v, € U
that satisfies Tu, = u, and u;, < u, < Buy for some g > 0. O

Remark. If T is additive, i.e. T(u + v) = Tu + Tv, in addition to the
conditions in Theorem 1.5, then the above proof implies that Tv = v and
u; < v =1u, < u. Also note that we don’t need (1) of Definition 1.2 in such
a case.

In many cases, to find v with {T"u},>o bounded from both above and
below is as difficult as to show existence of a fixed point. So, Theorem 1.5 is
not quite useful in such cases. It helps, however, to find another fixed point
from a known fixed point as follows.



Corollary 1.6. Let U be an ordered topological cone and let T : U — U be
continuous, order preserving, homogeneous and super(or sub)-additive. Also
let V be a closed subcone of U which is invariant under T, i.e. T(V) CV,
and V\{0} # 0. If there exists a non-trivial fized point u € U\{0} of T, then
there ezists a non-trivial fized point v € V\{0} of T.

In fact, we will use this corollary to show existence of a self-similar Di-
richlet form in the next section.

Proof. Choose w € V\{0}. Then there exist positive numbers a and 8 such
that ou < w < fu. As u is a fixed point of T, we see that au = aT™u <
T"w < BT™u = u. Hence Theorem 1.5 implies that there exists v € V such
that Tv = v and au < v < Bu. O

2 Existence of self-similar Dirichlet forms

In this section, we will apply Theorem 1.5 to fill a gap in the proof of Theorem
6.9 of Kusuoka-Zhou[KZ]. First we will briefly introduce the setting in [KZ].
We will use the notations and definitions in [KZ] in the following without
further notice. 1; are a-similitudes in RP for 1 € I, where I = {1,--- , N},
and F is the self-similar set with respect to {1;}ics : F is non-empty compact
set that satisfies £ = U;erti(E). Assume that (E, {1;}ics) satisfies (A.1),
(A.2), (A.3) and (A.4). v is the self-similar measure on E with v(¢;(E)) =
1/N for any i € 1.
Now by the results in Section 4 - 6 of [KZ], we see

Theorem 2.1. Assume (B.1), (B.2), (GB) and li_mn_,oolﬂgf% + log M; > 0.
Then

(1) There ezists a Dirichlet form & on L?(K,v). Let Dy be the domain of &.
Then fo; € Dy for any f € Dy and any i € I.

(2) Define a collection of closed forms CF by

{A: A is a closed quadratic form on L*(E,v), Dom(A) = Dy and there
ezists c1,ce > 0 such that c1&(f, ) < A(f, ) < e2€o(f, f) for any f € Dy}

Then, there exists € € CF such that

Ef ) =8 D EF 0w For)

iel
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for all f € Dy.

It seems rather difficult to see that the original £ constructed by Kusuoka-
Zhou has the Markov property. Set

DF = {A: A € CF, A has the Markov property}.

Now we recall the definition of the Markov property.

Definition 2.2. A € CF has the Markov property if and only if f € Dy and
A(f,f) < A(f, f) for any f € Dy, where f is defined by

1 if f(z) >1
flz)=<fm if0<f(z)<1,
0 if f(z) <O0..

There are several ways of describing the Markov property. The above
definition is one of the strongest versions. See [FOT] for details.
The following is the main theorem.

Theorem 2.3. Under the same assumptions in Theorem 2.1, there exists a
Dirichlet form &, € DF on L?(E,v) that satisfies

Ef, ) =2 Ef ot forh)

iel
for all f € Dy.

In the rest of this section, we will give a proof of Theorem 2.3. First we
will introduce a topology in CF.

Definition 2.4. For {A,},>1 C CF, we say that A, - A as n — oo for
A € CF if and only if A, (f, f) = A(f, f) as n — oo for any f € D,.

Remark. For any f € Dy, define a map Gy : CF = R by G¢(A) = A(f, f)
for any A € CF. Then the convergence in the above definition is induced by
the weakest topology where Gy is continuous for any f € Dy.

Now define a partial order < in CF by letting A < B if and only if
A(f7f) < B(f,f) for any .f € DO-



Lemma 2.5. Let {A,}n>1 be a sequence in CF. Assume that for some
E\,,E, e CF, E, < A, < E; for any n > 1. Then there exist a subsequence

{An; }i>1 which is convergent as i — oco.

Proof. As D is separable, we can choose a countable dense subset {f;};>1

of Dy, where the norm of Dy is defined by ||f|| = 1/ [z f2dv + v/&o(f, f).

By the diagonal argument, we can choose a subsequence {Apy, };>1 so that
{An,(f, fi)}i>1 is convergent as ¢ — oo for all j. Then it is routine to
see that {Ap,}i>1 is convergent as ¢ — oo for all f € Dy. Now define
A(f, f) = lim;,o0 Ay, (f, f). Then we see that A € CF. O

By the above lemma, it follows that CF becomes an ordered topological cone
and DF is a closed subcone of CF.

Lemma 2.6. For A € CF, define a symmetric form TA on Dy by

(TA),9) = > A(f o g0 %)

icl
for any f,g € Dy. Then TA € CF.

Proof. There exist ¢;,cy > 0 such that ;&€ < A < ;€. Since TA < TB if
A < Band T(cA) = cT'(A) for any ¢ > 0, it follows that c;TE < TA < ;TE.
Note that T€ = £ by Theorem 2.1. Hence TA € CF. a

Proof of Theorem 2.3. By the above theorem, we see that T : CF — CF and
T is order-preserving, homogeneous and additive. Also by Definition 2.2, it
follows that T(DF) C DF. Hence applying Corollary 1.6, we conclude that
there exits £, € DF such that TE, = €&,. 4
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