Is LES ready for complex flows?
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Abstract

Recent developments in LES modelling, combined with further ad-
vances in capabilities of computers and numerical methods, provide a
strong incentive to apply LES to complex flows. This brings to fo-
cus a number of issues in the development of LES that are not yet
fully resolved. These include modelling and numerical elements, their
respective errors, and the potential for interaction between these two
sources of error. We discuss the relative importance of some of the
errors that can arise in simple as well as complex flows and give global
criteria and guidelines that can be helpful in order to arrive at a form
of LES that is robust and accurate.

1 Introduction

The intricate nature of high Reynolds number turbulent flow has to date
proven to defy detailed rigorous or direct numerical analysis and, consequently,
has given rise to a number of modelling strategies. Such strategies are aimed
at reducing the complexity of the underlying system of equations while retain-
ing sufficient information to reliably predict the flow phenomena of interest
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in an application. These two conflicting requirements are prominent in large-
eddy simulation (LES).

In recent years there has been a significant interest and associated devel-
opment in large-eddy simulation (LES) which raises the question whether the
LES approach can already be applied to flows of engineering interest and
consequently move away from academic problems. To address this question
objectively in this generality is quite difficult. Instead, we will focus on some
outstanding open problems that need to be confronted in order to develop
LES, in particular for complex flows. While there has undeniably been con-
siderable progress in LES concerning modelling and numerical issues which
has resulted in a number of large-scale complex flow predictions by a large
number of different research groups using LES, the significance of some of the
not yet resolved problems suggests that both a ‘yes’ and a ‘no’ answer are
still possible for the question raised. In particular, as we discuss below, the
answer strongly depends on the type of information one wants to predict.

One can choose between the ‘implicit’ and the ‘explicit’ filtering approach
to LES [10]. We adopt here the explicit filtering approach because it is more
amenable to analysis and allows for a separation of issues related to modelling
and numerical treatment. In this approach a spatial filter is applied to the
Navier-Stokes equations. The reduction of the flow complexity and informa-
tion contents that is achieved in this way depends strongly on the type and
the width of the adopted filter. At one extreme, the width of the applied
filter may be so large that virtually all information contained in the solution
is removed while, at the other extreme, a very small filter-width may be ad-
opted which does not reduce the complexity at all. Subsequently, the filtered
equations need to be closed by the introduction of a model for the sub-grid
stresses and finally the resulting system of equations is treated numerically.
These elements of LES, i.e. the information retained in the filtered field, the
suitability of and the need for accurate subgrid modelling, and the role of and
contamination arising from the numerical treatment will be focused upon. In
view of the desired strong reduction in computational effort compared to dir-
ect numerical simulation (DNS), these various sources of error can be quite
significant [9, 8] and can lead to intricate interactions with some unexpected
consequences.

The large-eddy modelling of incompressible flow includes filtering of the
convective terms which leads to the turbulent stress tensor 7

Ty = With; — Uw; ;1,5 =1,2,3 (1)

as the major so-called subgrid term. This expression contains contributions
from the filtered (@;) and the unfiltered (u;) velocity fields and cannot, in
practice, be expressed in terms of the filtered solution alone. Various model-
ling strategies have been proposed, some of which find their origin in physical
arguments while others start from rigorous information about properties of



the stress tensor. We consider some recent modelling strategies which aim
at optimising the use of the scales that are available in an LES in order to
arrive at improvements in the subgrid model. This ‘inverse modelling’ [5] or
‘approximate deconvolution’ [2, 19] can give rise to models that combine high
correlation with suitable transfer of energy from the resolved to the unresolved
scales.

For geometrically complicated flows the use of a convolution filter, i.e. the
use of a constant filter-width, may not be desirable. In such flows one may
observe regions of high turbulence intensity with many small-scale contribu-
tions next to regions of weakly turbulent flow with predominantly large-scale
components in the solution or next to regions of little interest such as the far
wake of a bluff-body flow. An efficient LES of such situations calls for spatial
filters with nonuniform width. This, however, gives rise to additional terms
that contribute to inter-scale energy-transfer in a specific way depending dir-
ectly on the non-uniformity of the filter-width. This type of contribution has
largely been left unstudied in literature even though its order of magnitude
may be comparable to contributions from the turbulent stress tensor.

In order to arrive at a slightly more quantitative approach to the question
of adequacy of LES it is important to incorporate the type of information one
wants to extract from the simulation. Since this differs widely in the various
application areas the capabilities of present-day LES can already be of some
or even sufficient use in certain areas while the same LES capabilities provide
insufficient accuracy in other applications, e.g. due to restricted computa-
tional resources and numerical capabilities. To quantify this somewhat, we
consider the prediction of a quantity ¢, which has an exact value g,. If we
want to predict ¢ and allow an error € then accurate predictions of only a
certain range of scales in the flow are required. We denote g(n) the value
of g evaluated with the first n modes of the largest scales. The requirement
|q(n) — ge| < € specifies the necessary number of modes n,(¢) for the quantity
g. If in an LES one can provide n,(¢) modes with sufficient accuracy then
the quantity ¢ is adequately predicted. Clearly, a decrease in ¢ will lead to
a (strong) increase in n,(¢) and, moreover, different quantities ¢ will require
possibly very different values of n,(¢) in order to yield the desired accuracy.

However, the number of modes given by n,(¢) is ideal assuming modelling
errors and numerical errors are negligible. Thus a central question is how
LES should be designed to arrive at an accurate prediction of at least these
first n,(e) modes. Because of these two types of errors any LES aiming at an
adequate prediction of the quantity ¢ should involve Npgs > n,(e) modes.
The success of LES clearly depends on how much larger Nygps needs to be,
compared to the absolute minimum n,(¢). One might expect ‘good’ subgrid
models as well as ‘good’ numerics to lead to a (slight) decrease in Npgs. The
latter will be illustrated in this paper. Other factors may, however, lead to an
increase in the required Npgs. For example, a somewhat higher ‘numerical’
value for the minimal resolution may exist, e.g., in order to provide a stable



treatment of flow near walls or interfaces or to provide enough resolution to
generate a stable solution in case inflow and outflow boundaries are introduced
such as in spatially developing flows. It is clear that the lower limit n,(e) needs
to be respected in any LES and this may well explain some of the reported
failures of LES in predicting certain quantities in complex flows. A number of
test-cases have been studied with LES by a large number of groups in recent
years (see e.g. ref. [18] for a detailed account of one of these cases) and
several appear very illustrative in relation to the failure to reach the lower
value ny(e).

For a strict DNS the number of modes Npyg that needs to be incorporated
is related to the reciprocal Kolmogorov length. Of course the main virtue of
LES is that Npgg is related to the reciprocal filter-width, i.e. 1/A so that
Nrrs can be much lower than Npyg. At the same time the desire to predict
g with an accuracy ¢ implies that Npgs > n,(e) which therefore provides a
strict upper-bound for A. Stated differently, there is an obvious limit to the
amount of information that can be ‘filtered away’ if one insists in maintain-
ing a minimal accuracy for the prediction of some flow property. In order to
have some independent control over the interaction between numerical and
modelling errors in the subsequent LES the resolution should be fine enough.
In particular this implies that the mesh-size h has to be sufficiently smaller
than A. Appropriate values for the ratio A/h depend on the spatial dis-
cretization scheme that is used but should be at least larger than 2 or 4 for
fourth- or second-order methods, respectively. We will illustrate this below.
In total, the desired accuracy with which g needs to be predicted fully controls
an upper-bound for the mesh-size. Actual LES is flawed and constrained in
many ways compared to the ‘optimal efficiency LES’ which would need only
ng(e) modes. Thus the actual number of modes used, Njgg, must be larger
than n,(¢) and the corresponding filter-width and resolution, h, need to be
smaller. Better numerics and modelling can help to increase acceptable values
of A and h and vice versa, but never beyond bounds set by n,(¢).

The organisation of this paper is as follows. In section 2 we briefly formu-
late the filtering approach to LES and identify some basic properties of the
LES modelling problem that deserve to be incorporated into any modelling
attempt. Recent developments in subgrid modelling which aim at incorpor-
ating information from the scales that are directly available in an LES will
be considered. Section 3 describes additional complications to the LES equa-
tions that arise from extension to complex flows. This involves the use of
nonuniform filters and gives rise to additional terms in the filtered equations
which have a specific contribution to the inter-scale energy transfer that will
be interpreted and estimated. The numerical treatment of the LES equations
is another source of unavoidable and sometimes surprising errors. Section 4 is
devoted to some unexpected consequences and paradoxes associated with the
interaction of numerical and modelling errors. All sources of error in LES can
be controlled to some degree at the expense of adding to the computational



effort. Some guidelines for LES which aim at keeping the mixture of errors
within reasonable bounds will be suggested in section 5 where we also collect
some concluding remarks.

2 The filtering and inversion approach to LES

In this section we briefly introduce the filtering of the Navier-Stokes equations
to derive the governing equations for large-eddy simulation. Some properties
of the filtered equations will be mentioned which all have consequences for
the underlying modelling problem. As an illustration, algebraic properties of
the turbulent stress tensor will be considered in more detail as well as the use
of approximate inversion techniques and dynamic modelling.

The starting point in the filtering approach is the introduction of the filter
operator L which is used to filter the Navier-Stokes equations. The filter
considered in this section is a convolution filter and in 1d this is defined by

o0

ula, ) = L(w) = [ Glo —ul¢,t)dg 2)
where G denotes the normalised filter-kernel. In three spatial dimensions we
consider the application of ‘product filters’ which are defined by w(x,t) =
L(u) = L1(Ly(Ls(u))) where each of the one-dimensional filter-operations L,
corresponds to one of the Cartesian coordinates and can be written in a way
similar to eq. (2). The filter-kernel G used in LES typically has most of its
‘weight’ concentrated around the origin in a bounded domain of size A which
we refer to as the filter-width. It can be shown that the application of this
convolution filter commutes with partial derivatives that occur in the Navier-
Stokes equations, i.e. L(O;u) = 0;(L(u)) and similarly L(0;u) = 9;(L(u))
where 0; and 0; denote partial differentiation with respect to time ¢ and
spatial coordinate z; respectively. The filter operator does not commute with
the product operator S(u;, u;) = u;u; and as is well known the filtering of
the nonlinear terms in the convective flux gives rise to the turbulent stress
tensor Til]f where we explicitly use the label ‘L’ to emphasise the role of the
filter. In incompressible flows and in case convolution filters are used, this is
the only new term that arises in the filtered equations and can be expressed
in the following way:

L = wu; -

L(S(ui, uj)) — S(L(ui), L(u;))
= [L, S)(ui, uy) (3)

Here we introduced the commutator of the filter L with the product operator
S for later convenience. This relation shows that the basic modelling problem
in LES is completely identified with properties of the commutator [L, S]. The



filtered Navier-Stokes equations take on the same form as the unfiltered equa-
tions with the exception that the divergence of the turbulent stress tensor ap-
pears as an extra term in the filtered equations. With the unfiltered equations
written as NS(u) = 0 with NS a symbolic notation for the ‘Navier-Stokes’
operator, the filtered equations can be written as NS(u) = —;75. In this
way the divergence of the turbulent stress tensor appears as a ‘source-term’
for the evolution of the filtered solution. In practice it cannot be expressed in
terms of the filtered solution alone and ideally would require full knowledge
of the unfiltered solution. Thus the closure problem in LES is to find suitable
expressions for 77 in terms of @ alone. This modelling process is central in
LES and can be guided by incorporating any sound physical properties of
small-scale phenomena in turbulent flow or by taking into account the math-
ematical structure of the filtered equations. We illustrate some of the latter
possibilities next.

The filtered equations have a number of rigorous properties which can
be used to assist in the modelling process. There are several symmetries of
the filtered equations known, such as translational and rotational symmetry,
Gallilean invariance and scale invariance [10]. Similarly the realisability re-
quirements for the turbulent stress tensor [22] can be used to restrict the
multitude of possibilities for modelling 7%. We will not consider these prop-
erties here but instead turn to algebraic properties of 7% and their use in
subgrid modelling. The commutator defining the turbulent stress tensor 7~
shares a number of properties with the Poisson-bracket in classical mechanics.
An important property of Poisson-brackets is in the context of LES known
as Germano’s identity [3]

[£1£2, S] — [[,1, S]EQ + El[ﬁg, S] 1.€. 7'£1£2 = 7.£1£2 + [,1’7'[:2 (4)

where £; and £, denote any two filter operators and 7% = [K,S] is the
turbulent stress tensor associated with a filter K. Similarly Jacobi’s identity

holds for S, £; and Ls:

(L4, (L, S]] + [L2,[S, L1]] = =[S, [L1, L3]] ie. [Ly, 752 — [Lq, T51] = 7lEr:L2]

(5)
This formulation of the Jacobi identity holds for general filters. In case con-
volution filters are considered the right hand side in eq. (5) is zero. The
expressions in eq. (4) and eq. (5) provide relations between the turbulent
stress tensor corresponding to different filters and can be used to dynamic-
ally model 77. The success of models incorporating eq. (4) is by now well
established and applied in many different flows. In the traditional formula-
tion one selects £; = H and L, = L where H is the so called test-filter. In
this case one can specify Germano’s identity as

T () = 7 (L(w) + H (74(w)) (6)

The first term on the right hand side involves the operator 77 acting on the
resolved LES field L(u) and during an LES this is known explicitly. The



remaining terms need to be replaced by a model. In the dynamic modelling
approach the next step is to assume a base-model m¥ corresponding to the
filter-level K and optimise any coefficients in it in accordance with e.g. an
optimal compliance with the Germano identity in a least squares sense [14].
Several choices for the base model have been used varying from the Smagor-
insky eddy-viscosity model to mixed versions consisting of similarity models,
e.g. Bardina’s model or the tensor-diffusivity model, combined with an eddy-
viscosity term. The first base model gives rise to the dynamic model and
the second option to what is known as the dynamic mixed models. In actual
simulations this approach has proven to be very successful, mainly because
these models avoid excessive dissipation in relatively quiescent regions of the
flow whereas appropriately high values of eddy-viscosity arise in regions with
large turbulent intensity. In implementations of the dynamic procedure short-
comings of the assumed base model can require some technical adjustments.
As an example, the use of dynamic eddy viscosity is not guaranteed to yield
positive and relatively smoothly varying dynamic coefficients. This could lead
to numerical instabilities and for that reason ‘clippling’ and averaging over
suitable parts of the flow domain are introduced. The self-adjusting property
of the model-parameters proceeds dynamically in accordance with the local
instantaneous flow properties and does not require ad hoc parameters other
than in specifying the test-filter 4. In addition, the dynamic modelling is
appealing in many applications because it displays a self-restoring feedback
mechanism. In fact, an under-prediction of the dynamic eddy viscosity typ-
ically tends to lead to a slight increase of small scale components of sizes
comparable to the filter-width which in turn will increase the eddy viscos-
ity and thus remove some of the newly arisen small scale components. This
feedback has several appealing consequences for applications of LES. A quite
complete comparison of a large number of subgrid models, combining the
ideas of energy-dissipation, similarity and Germano’s identity for turbulent
flow in a temporal mixing layer can be found in ref. [27]. Recently, the use of
inverse modelling approaches has been developed which gives rise to a further
development of dynamic mixed subgrid models. We give a brief illustration
of this next.

The operator formulation allows to readily identify ‘generalised’ similarity
models which involve approximate inversion defined by £'(L(z*)) = z* for
0 < k < N [5]. With this operation it is possible to partially reconstruct the
unfiltered solution u from the filtered solution 7 and use this information in
the definition of a subgrid model. Without any inversion the original similar-
ity model by Bardina [1] can be written as mp = [L, S](L(u)), i.e. applying
the definition of the turbulent stress tensor directly to the available filtered
field. A direct generalisation of this arises from mgp = [L, S] (£~ (L(u))) us-
ing the approximate inversion. This model was analysed in a kinematic sim-
ulation as well as for single Fourier modes. Compared to the original Bardina
similarity model the generalised model showed to combine high correlation



with improvements in dissipative properties while retaining the possibility to
represent backscatter of energy. More recently the approximate inversion was
combined with dynamic modelling [11]. This was based on the choice £; = H
and £, = H 'L for which Germano’s identity can be specified to

h(u) = 7% (7 L(w)) + H (7 () (7)

Compared to the traditional formulation which involves the modelling of
terms which correspond to length scales Ay, and Ay, this extension which in-
corporates the (approximate) inverse of the test-filter ! requires modelling
of terms on the scale of Ay, as before and Ay-17. Since Ay-1; < Ap < Ayp
the terms that require modelling are smaller and at the same time it is easier
to maintain modelling assumptions, e.g. involving properties of an inertial
range. Dynamic models based on the above have been applied successfully.
A further extension involving repeated application of H ! is also possible
formally. However, since (approximate) inversion is not a very well behaved
operation for the smaller scales, in actual applications one faces the risk of
reconstructing small scale contributions which have been contaminated with
possible numerical artifacts. Therefore there is a clear practical upper-bound
to the number of times H ! can be used beneficially and from recent experi-
ence 3 or 4 appears a definite upper-bound.

Another way of optimising the use of the information contained in an LES
which is more implicit gives rise to the ‘tensor-diffusivity’ or ‘gradient’ model.
Again, the basis for this model is, essentially, approximate deconvolution.
Consider, for example, the Gaussian filter

G(z) = %ﬁ/”z) (8)

For such a filter we find that the commutator 77 is given by

= (2\* 1 9ku o
w-w=Y =] = a7 7 9
g(?) k! Oz* Oz* (9)
The full infinite series above is equivalent to deconvolving u and v (clearly a
singular operation) then forming the product uv and then applying the filter
operation. Taking only the first term in the series above as a subgrid model
we have in d dimensions
2 —
o® Ou 0v
U — VI~ — — —— 10
2 6:@ 6:17[ ( )
where repeated indicies are summed and £ = 1,2, ..,d. Use of this approxim-
ation on the filtered, constant density, incompressible momentum equation
for w; yields the following subgrid force on the RHS
—O'2 — 62ﬂi

g,
9 Ik Oz ;0xy,

(11)



where S, is the strain-rate tensor of the filtered velocity field. Hence the
term ‘tensor diffusivity’ model which dates back to [12]. Similarly one could
arrive at this model using a Taylor expansion on the Bardina model. A
direct application of this model in LES can lead to an ill-behaved system of
equations as was analysed in [26]. However, the appealing property of being
able to represent backscatter, without the need of an additional filtering, can
be retained if this base model is combined with a dynamic eddy-viscosity. In
that case a computationally efficient and competitive subgrid model is arrived
at [27, 13]

3 Non-uniform filters and LES of complex flows

The desire to extend LES to complex flows in an efficient way implies that
one typically encounters situations in which the turbulence intensities vary
considerably within the flow domain. In certain regions of the flow a nearly
laminar, smoothly evolving flow may arise while a lively, fine scale turbulent
flow can be present in another region. This calls for a filtering approach
involving a filter with a non-uniform filter-width. Here we will study some
consequences of applying such filters and in particular identify and estimate
the additional terms that arise from using a variable filter-width.

We consider the effect of applying a general, compact support filter which
is defined by u — u:

a(z,t) = L(u) = /:J;AEZ) HA(:Z;)Q

where A,, A > 0 denote the z-dependent upper - and lower ‘bounding
functions’ of the filter. The filter domain can also be represented by the
filter-width A = A, + A_ and the ‘skewness’ 0 = A, — A which together
with the ‘normalised kernel’ H specify the properties of the filter. We can
derive the LES equations for nonuniform filters and identify a ‘mean’ term
associated with the Navier-Stokes operator acting on the filtered solution
and several new terms which are related to commutators containing the filter
L as was sketched in the previous section. Incompressible flow is governed
by the Navier-Stokes equations subject to the constraint of divergence free
velocity fields. In dimensionless form this system of equations can be written
in conservation form as

u(¢, t)d¢ (12)

1
6ju]- =0 ) 8{&,‘ + (%(uﬂh) + 8,']) - R—aj]-u,- =0 ) 1= 1, 2, 3 (13)
e

where p denotes the ‘pressure’, Re the Reynolds number and the summation
convention is adopted. If we apply the filter to the system of equations in
(13) commutators of L with partial derivatives and multiplication arise. After
some manipulation we find:

05u; = —[L, 8;](u;) (14)
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This shows that application of a non-convolution filter to the continuity equa-
tion gives rise to terms which in general violate the local conservation form.
Filtering the Navier-Stokes equations yields

Oy i + 0;(uiti;) + 0;p — %@-jm =
- ([L, i)(p) — é[L, 0;;)(ui) + [L, 05](S (i, uz)) + 05([L, S](ui,uj))>(15)

in which the ‘Navier-Stokes’ operator applied to the filtered field is identified
on the left hand side. The first three terms on the right hand side are re-
lated to commutators of L and partial derivatives d; which as before implies
violation of the conservation property in general. The turbulent stress tensor
arises in the last term on the right hand side. It is the only filter-term in case
convolution filters are adopted while more general filters yield the full system
of equations (14) and (15). The central modelling problem for the continuous
formulation and general filters is now extended to approximations modelling
commutators like [L, 0], [L, 0;,] and [L,S] in terms of operations on u. A
mathematically consistent modelling can be arrived at using approximate in-
version [5] which can be extended to non-uniform filters in a consistent way
with the help of symbolic manipulation software such as maple. The new
terms that have arisen can be shown to obey the same algebraic identities
as put forward in relation to [L, S]. These identities can be used e.g. in a
dynamic modelling of the commutators of non-uniform filtering and partial
derivatives which need to be taken into account for complex flows.

In order to establish the importance of these new commutators in relation
to the regular filter terms [L,S] and to interpret in what way these terms
contribute to the inter-scale energy transfer we analyse the commutators for
general high order filters acting on sufficiently smooth signals [6]. Such N-th
order filters are defined by requiring the first N moments to be invariant, i.e.
L(z*) = 2% for k = 0,1,..., N — 1. In the following we will apply such filters
and retain only the leading order terms assuming sufficiently smooth signals
for the moment. In 1d one may readily show that

u(z) = u(z) + (AN (2) M () o™ (@) + - - (16)

for N-th order filters. Here My ~ L(z) is the N-th order moment. If we
turn to the decomposition of a typical term

0x(u?) = 0, (") + 0p([L, S](w)) + [L, 0:](S (u)) (17)

one observes the commutators [L,S] and [L, d,] to arise naturally. As de-
rived in detail e.g. in [6, 8] one finds corresponding expressions for these
commutators given by:

[L,0:](S(u)) = A(z) (AN "A'My) + B(z) (ANMY) +---
0.(IL, S|(u)) = a(z) (AN'A'My) + b(z) (AN My)
+ () (ANMN) + .-
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where A, B, a, b and ¢ are smooth functions containing combinations of
derivatives of the solution u. From this we infer that a constant filter-width
implies [L, 9] = 0 and the leading order term of the turbulent stress tensor
equals [L, S] ~ A¥ for N-th order filters. However, non-uniform filters clearly
give rise to contributions to the commutators which are a priori of equal order
of magnitude. From this we infer, unlike findings in [21, 20] that it is not
possible to remove the commutators [L, 9, by a careful selection of the filter.
In fact, all filters that would reduce this commutator are of higher order and
consequently will also reduce the usual term [L, S]. The only possibility to
control [L, 9, independently is by reducing non-uniformity of the filter-width,
e.g. by keeping grid-nonuniformity, which usually defines local filter-widths,
small. We will quantify this to some extent next and illustrate the dynamic
effect associated with the new commutators.

A detailed analysis of the new commutators can be obtained e.g. in a
single-wave analysis in which we assume a solution v = sin(kz). For illus-
tration purposes we consider a symmetric top-hat filter for which one has
L, ;] (sin(kz)) = —A'sin(kz). Since A = sin(kA(z)/2)/(kA(z)/2) depends
on z through A we observe the importance of maintaining smooth and com-
parably slow spatial variations in A. In particular

s cos(kA/Q()k;/Q;)in(kA/Z) %’ _ i((kA)Q)I + 191_20((kA)4)I + ...
(18)

In order to appreciate the magnitude of this commutator compared to [L, S|
in a dynamic context we recall that [L,d,](S(u)) needs to be compared to
0:([L, S](u)). After some manipulation we find

AI
(L, 0:)(S(u)) + 0x(|L, S](u)) = C(kA(x)){k sin(2kz) + A((a:)) (cos(2kz) — 1)}
T

(19)

where the characteristic flux function C for this filter is given by

zsin(z) — 2 + 2 cos(z) 1, 1, 6
— —_ - 2

C(z) = 37 +180z + 0(z°) (20)

The two contributions to the flux have a ‘weight’ & and (A’/A) respect-
ively from which we infer that if variations in A are sufficiently slow, i.e.
|A'| < |kA| then filter-width non-uniformity can be disregarded. We infer
that the dynamic effect of the new commutator is related to the sign of A’.
One may interpret this as follows. A decreasing filter-width contributes to
the backscatter of energy; in particular it appears that subgrid contributions
tend to become resolved and thus shift to the grid-scale modes. Conversely
an increase in filter-width is associated with extra dissipation since resolved
scales which are convected into such regions tend to become subgrid con-
tributions. In a priori estimates of these terms based on DNS of temporal
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boundary layer flow [7] it appeared that close to solid walls the flux contri-
bution from the commutators [L, 0;] is about half as large as that arising
from [L, S| and hence one cannot avoid modelling the new commutators near
walls since at high Reynolds numbers these are automatically associated with
strong grid clustering. Likewise, a high correlation of the new commutators
and (generalised) similarity models was observed which suggests efficient and
accurate ways to model these contributions.

4 Interaction between numerical and model-
ling errors

From the filtering of the equations in the previous sections it has become
clear that a large number of subgrid terms arise which need to be modelled
and subsequently treated numerically. If the ratio of the filter-width to the
grid-spacing of the LES-grid is too small then significant numerical errors
can occur and interact with the modelling errors discussed above. We will
illustrate some consequences of the implicit filtering approach in which the
filter-width A and grid-spacing h are identified and confront this with the
explicit filtering approach in which the ratio A/h is chosen larger than 1.
The implicit filtering approach has the benefit of computational efficiency
in relation to the amount of information contained in the solution but this
benefit can be obscured completely by an adverse interaction between the
different errors which can contaminate much larger scales. Such an interaction
between errors can be controlled in the explicit filtering approach but leads
to an increase in computational effort. In actual LES a suitable balance,
expressed partly by an appropriate ratio between A and h should therefore
be used.

We consider the numerical effects by tracing the operations on a represent-
ative contribution for a convolution filter. This allows the comparison of dif-
ferent spatial discretization methods, filter-widths and filter implementations
which are the main sources of local error. We focus on filtering 0;(u;u;) + 9ip
in the Navier-Stokes equations and find

0;(u;wj) + 0;p 0;(w;w;) + 6;p + D;] + 0;7;
i(Wit;) + 0ip + Di] + [0jmy; + Ri]

where D; denotes the discretization error arising from apg) ication of a spatial
discretization method J; to the convective terms, DZ(m is the error when
implementing the model m;;, e.g. filtering as well as discretization errors
and R; = 0j(m;; — my;) is the total ‘model-residue’ associated with m;;. This
term can only be determined in a priori evaluations and is of course unknown

during an actual LES. So, whereas formally 9;(w;w;)+ 0,p is needed in an LES
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strictly speaking only §;(@;@;) + d;p is directly available and two main sources
of discrepancy can be identified. Whereas the subgrid-term 0;7;; is usually
modelled with a subgrid-model, the discretization error D; is not taken into
account. The first question is whether this is justified and for this purpose
an a priori comparison of different spatial discretization methods and filter-
widths was made for turbulent flow in a mixing layer [24, 25]. The magnitude
and ratio of the discretization error D; and the flux due to the turbulent flux
0;7;; determines in large part the reliability of LES predictions. We evaluated
these terms for a well developed flow and evaluated the errors associated with
a second and a fourth order finite volume discretization operator d,. It was
shown that if A = h, the discretization error D; is larger than the subgrid
term for both methods and in this case LES predictions would not be reliable
even with a perfect subgrid-model for 7. If A is sufficiently larger than h,
i.e. smoother fields are represented on the same grid, the contribution of
0;7;; is considerably larger than D;. In this regime the second-order method
shows only a relatively small decrease of D; for increasing A, whereas the
fourth-order method shows a rapid decrease of D;. This was observed for
both fine and very coarse LES-grids and can serve as a guidance in selecting
A for a specific discretization method on a given grid. An interesting related
study can be found in [15] in which the Smagorinsky constant was varied at
fixed grid resolution. When A is large the filtered fields become smoother
which reduces the discretization error at the expense of containing only little
information about the smaller scales. A good compromise appears the choice
A = 2h for the fourth order method while a second order method requires
a higher value of A/h. In that case fourth order discretizations are more
efficient than second order ones.

The second question we address is how the different errors D;, ng) and
R; interact dynamically. We consider the dynamic mixed model in combina-
tion with the discretization schemes used above as well as a pseudo-spectral
method. Discrepancies between LES and filtered DNS results arise mainly
from shortcomings of the model and from numerical discretization on a rel-
atively coarse grid. In LES these sources of error interact which complicates
testing, since separation of subgrid-modelling and numerical effects is diffi-
cult [16]. We propose approximate separation of the effects of modelling and
discretization error by incorporating LES at higher resolution. We consider
the evolution of the total kinetic energy E:

1
Q2

where (2 is the flow domain. As a function of time E displays a gradual
decrease. Variations in spatial discretization method show variations in the
predictions for £ whose magnitude is of the same order as would arise when
changing from a dynamic subgrid model to e.g. the Bardina similarity model.
These effects of the errors increase considerably if we use A = h instead
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of A = 2h. We can approximately separate the modelling and discretiza-
tion effects and focus on their interaction by incorporating a fine-grid LES.
The discretization error in LES will become smaller if the resolution is in-
creased at constant A. The discretization error in such a ‘fine-grid LES’
will be considerably smaller and we can obtain LES predictions with negli-
gible discretization error effects. The difference between these two large-eddy
simulations can then give an indication of the effect of the discretization
error: €q9 = BT pg — Eﬁne—grid LLES Whereas the difference between the fine-

grid LES and the filtered DNS measures the effect of the modelling error:
em = Efine-grid LES ~ Lfiltered DNS-
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Figure 1: Error decomposition with modelling error (solid) and discretizations
error effect for the three discretization methods: dashed (second order), dash-
dotted (spectral) and dotted (fourth order). Left figure A = h and right figure
A = 2h.

We calculated these errors for the turbulent flow in a mixing layer on a
representative grid which is about six times coarser in each direction than
required for DNS. The corresponding fine-grid LES has been performed with
the ratio between A and h in the fine-grid LES sufficiently large, i.e. the fields
are quite smooth on grid-scale and discretization errors will be considerably
reduced. The quantities €4 and ¢, are shown in figure 1. The discretization
error effects are smaller than the modelling error only if A > 2h whereas
with implicit filtering 4 is even larger than &,,. The second-order scheme
is observed to give the smallest discretization error effect. This does not
imply that the discretization error itself is small, but only its effect on the
evolution of the total kinetic energy. For the fourth order and pseudo-spectral
methods the discretization error and modelling error effect have opposite sign,
which implies that the discretization error assists the subgrid-model in the
representation of this quantity: the total error is considerably smaller than
the modelling error. These observations suggest that e.g. for the spectral
scheme, improvement of the subgrid-model (decrease of the modelling error)



15

is expected to give worse results, since the total error will increase. Likewise
one can infer that an increase in the resolution may result in worse predictions.
All these errors and their interactions can be extremely disturbing for more
complex flows for which no proper separation is available and one has to
rely on intuition and previous experience in order to judge and justify the
outcome of a particular simulation. Since in the past this has proven to be
a very underdeveloped area, we list some (hopefully) useful guidelines in the
next section.

5 Some guidelines for predictable LES

In this section we will formulate some general guidelines which can enhance
the credibility of a flow simulation within the LES approach. Since there
has been a large development in the capabilities of computers and numerical
methods, it has become possible to use some of these capabilities to system-
atically vary certain numerical elements within a ‘reference’ LES and monitor
the sensitivity of the predictions. Since LES is in many respects close to a
direct numerical simulation, several of the guidelines are of relevance for nu-
merical reasons only whereas certain suggestions are more specific to the LES
context. The following list which compiles the guidelines is necessarily incom-
plete and somewhat biased given the fact that LES is still a lively and rapidly
developing field of research. Moreover, we have put forward some guidelines
which may add too much to the computational cost; however, we have taken
the liberty to formulate an LES approach focusing more on reliability than
on strict saving of computational effort. Eventually, LES can offer an ex-
pensive and reliable answer irrespective of the quality of the subgrid model
and in part also quite independent of the quality of the numerical methods
involved, provided the subgrid contributions are sufficiently reduced. This
‘escape-route’, however, would be virtually identical to a well resolved DNS
and be not very practical in most cases. However, the fact that LES has this

limit build into it can be used also to infer about the reliability of any given
‘reference’ LES.

The list of guidelines presented below has been split into mainly numerical,
mainly modelling and interaction issues. There can be a strong interaction
and interdependence between modelling and numerics and for that reason
some points are described under more than one topic. As a whole, an LES is
as strong as its weakest element (as are many other approaches).

e Numerical guidelines:

— Use smooth grids with low stretching and skewness and ‘equal’ resolu-
tion in each direction. This is of importance since the formal as well
as the attained accuracy of spatial discretization schemes can be con-
siderably affected by either shortcoming of the grid. Moreover, the
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resolution should be comparable in each of the coordinate directions in
order to avoid contamination of the solution in an under-resolved dir-
ection through ‘folding back’ of energy contained in modes which are
well resolved in another coordinate direction.

Avoid numerical dissipation. In particular for turbulent flow the pres-
ence of some numerical dissipation can cover shortcomings e.g. in resol-
ution, grid properties or modelling used in the approach. Although this
may appear helpful in cases in which the resolution is too low anyway,
it adds to the unreliability of LES and can seriously affect the predic-
tions, in particular if the same approach would be used for other flows,
at other resolutions or for other flow conditions.

Validate your code. In order to eliminate as much as possible numer-
ical artifacts and remaining uncertainties regarding resolution, inflow
and outflow conditions, geometrical description of the low domain etc.
validation is essential. This could incorporate comparison with sim-
pler theories, e.g. using linear stability theory, checking whether basic
symmetries of the equations are also contained in the numerical formula-
tion, using experimental data if available and comparison with available
filtered DNS data in case validation for simple flows is included. It is
sensible to have some discipline of version management of the software.

Vary numerical parameters. In any numerical study a certain number
of relevant numerical parameters appear and basically no physically rel-
evant prediction should depend on any of these parameters. Variations
in resolution, definition of geometry, inflow /outflow boundaries, numer-
ical method and method of evaluation of the simulation results should
be considered for LES as well as DNS.

Incorporate LES predictions at different filter-width to mesh-size ra-
tios into a flow analysis. As was illustrated in the previous section a
carefully selected set of LES predictions can be used to appreciate the
influence of some of the errors involved and to some extent one could
estimate these errors from the combined LES predictions. With present
day computers it is now feasible to conduct several LES investigations of
one flow and from it extract a quantitative appreciation of the reliability
of the predictions.

Modelling guidelines:

Use dynamic modelling. Dynamic modelling is appealing since it does
not add any ad hoc parameters to the modelling other than properties
of the test-filter. The approach has proven to be quite robust and
possesses a self-restoring property if the resolution is sufficiently high.
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Moreover, at suitable resolution it avoids the introduction of special
wall treatment. Both properties give rise to a prediction of the large-
scale flow which is quite robust, suitable for transitional and turbulent
flow and can be used in quite general inhomogeneous flows.

Use explicit filtering approach. In contrast to the implicit filtering set-
ting of LES the explicit filtering offers independent control and treat-
ment of the various steps relevant within LES. Using all available res-
olution aimed only at predicting small scale properties of the flow can
lead to considerable unreliability and contamination of much of the
predictions of all the other scales. In the explicit filtering some of the
resolution can be used to increase the reliability with which the smaller
scales are predicted.

Incorporate similarity and dissipation into modelling. Both these prop-
erties arise naturally from spectral considerations of LES; similarity is
an inertial range property of the turbulent stress tensor itself and the
required energy transfer to smaller scales is efficiently represented by
dissipation although more refined ways of energy transfer may be re-
quired if other elements in the LES approach become more refined.

Use smooth grids with low stretching and skewness and ‘equal’ resolu-
tion in each direction. For modelling this point is relevant since high
stretching and skewness give rise to significant additional terms in the
equations which require to be modelled. Similarly, unevenness in the
grid can lead to sizeable effects in the implementation and evaluation
of the actual model and obscure many of the model’s potential.

Incorporate LES predictions at different filter-width to mesh-size ratios
into a flow analysis. From a carefully designed set of LES predictions
one could infer errors arising from the subgrid modelling.

Vary numerical parameters. The influence of the subgrid model can
be controlled to some extent by a suitable change in the numerical
parameters. Moreover, several models require additional filtering and
differentiation and the number of points available to do this is usually
quite restricted and hence can make the implemented model appear to
have different properties compared to the continuum formulation.

Optimise use of scales available in LES. The options for LES modelling
offered by inverse modelling, approximate deconvolution and/or subgrid
estimation have not been fully exploited and can be beneficial to LES.

Restricted interaction guidelines:
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— Choose A/h appropriately. The ratio of the filter-width A to (local)
mesh-size h is an important parameter in LES. If it is large then the
LES prediction will appear smooth on grid-scale and the quality of
the prediction will be mainly restricted by the quality of the subgrid
model. Conversely, if this ratio is small then the effects of numerics will
be large. In practice a ratio A/h > 2 appears adequate when fourth
order methods are employed but this ratio should be increased to 4 if
second order methods are used.

— Incorporate LES predictions at different filter-width to mesh-size ratios
into a flow analysis. As before, this step involves performing a number
of large-eddy simulations for the same flow from which an approximate
error appreciation can be inferred.

In order to develop LES for general complex flows the treatment of the
near wall region is crucial and not yet well developed in LES. Similarly, if
shocks or detailed capturing of chemistry is required also including multi-
phase flows then a proper modelling of this ‘near interface’ region is vital.
Finally, an appreciation and possibly an estimate of the error in the LES
predictions should be aimed at. For this purpose the use of approximate
inversion of the filtering, the compliance with algebraic properties and other
rigorous characteristics of the subgrid terms and a systematic variation of
e.g. the resolution, independent of the filter width should be developed. The
filter-width A (with suitable h) and a certain subgrid model imply a certain
number of modes Ny ggs to be involved which should at any rate be sufficiently
larger than the number of modes n,(s) needed to predict a quantity ¢ with a
desired level of accuracy. It appears relevant to quantify suitable numbers n,
and corresponding Npgg for several geometrically simple flows which are well
documented and allow for a fully resolved DNS as well in order to provide
a well controlled point of reference. From an estimate of Nygg for these
flows and a number of subgrid models and numerical methods it would be
possible to formulate more general selection and design rules for reliable LES
in the future. For the modelling process it is advisable to respect rigorous
guidelines (e.g. symmetries, realisability, algebraic properties, inequalities)
and to formulate some error monitoring and control aiming at the prediction
of an ‘error-bar’ during a simulation.
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