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Abstract

A comparison between vortex stretching (VS) and production of
strain/dissipation (PD) is made with the emphaiss on the latter. These
two processes are nonlocally intreconnected, but weakly correlated.
The energy cascade and its final result - dissipation are associated
with the latter, i.e. with the quantity —s;;5;58; rather than with the
enstrophy production wiw;sij. Moreover, vortex stretching suppresses
the cascade and does not aid it, at least in a direct manner. On the
contrary, it is the vortex compression, i.e ww;s;; < 0, that aids the
production of strain/disspation and in this sense the ‘cascade’.

Relation of VS and PD as well as of various alignments to the flow
map of invariants of velocity derivatives tensor is given in qualitative
terms.

1 Introductory notes, motivation

Velocity derivatives play an outstanding role in the dynamics of turbulence
for a number of reasons. Their importance became especially clear since the
papers by Taylor (1937, 1938)! and Kolmogorov (1941ab). Taylor empha-
sized the role of vorticity, whereas Kolmogorov stressed the importance of
dissipation (strain).

Apart of vorticity and dissipation looking at velocity derivatives is useful
in a number of aspects as follows.

e The field of velocity derivatives is much more sensitive to the non-
Gaussian nature of turbulence or more generally to its structure, and
hence reflects more of its physics (Tsinober 1998c).

1Taylor (1937, 1938) was motivated by the assumption of von Karman (1937) that the
expression ) ;) w,wkmi (i.e. enstrophy production) is zero in the mean and that he
cannot see any physical reason for such a corre]atton Taylor (1937) has conjectured that
there is a strong correlation between wj and 5;“ so that (the mean of) wj 2%2 is not equal
to zero (z3 is directed along w). He has shown that this is really the case (oTa lor (1938)),
and also expressed the view that stretching of vortex filaments must be regarded as the
principal mechanical cause of the the higher rate of disspation which is associated with
turbulent motion.
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¢ In Lagrangian description in a frame following a fluid particle, each
point is a critical one, i.e. the direction of velocity is not determined.
So everything happening in its proximity is characterized by the velocity
gradient tensor A;; = Ou;/dx;. For instance, local geometry /topology
is naturally described in terms of critical points terminology (see Chertkov
et al (1999), Ooi et al (1999) and references therein).

® There is a generic ambiguity in defining the meaning of the term small
scales (or more generally scales) and consequently the meaning of the
term cascade in turbulence research. The specific meaning of this term
and associated interscale energy exchange/‘cascade’ (e.g. spectral en-
ergy transfer) is essentially decompostion /reperesentation dependent
(for more details/discussion of this issue see Apendix I). Perhaps, the
only common in all decompostions/representations (D/R) is that the
small scales are associated with the field of velocity derivatives. There-
fore, it is naturally to look at this field as the one objectively (i.e. D/R
independent) representing the small scales. Indeed, the dissipation is
agsociated precisely with the strain field 8i; both in Newtonian and
non-Newtonian fluids.

The above mentioned reasons prompted us to study in some detail the
processes associated with the field of velocity derivatives. In particular, along
with vortex stretching and enstrophy production of special interest is the pro-
duction of strain. There are several reasons for this. First, though formally
all the flow field is determined entirely by the field of vorticity the relation
between the strain and vorticity is strongly nonlocal (e.g. Constantin (1994),
Novikov (1968), Ohkitani (1994)): in many cases they are only weakly cor-
related. Second, energy dissipation is directly associated with strain and not
with vorticity. Third, vortex stretching is essentially a proccess of interaction
of vorticity and strain. Four, strain dominated regions appear to be the most
active/nonlinear in a number of aspects (Tsinober (1998ab), Tsinober et al
(1999)). Finally, the energy cascade (whatever this means) and its final result
- dissipation are associated with predominant self-amplification of the rate of
strain/production of dissipation and vortex compression rather than with
vortex stretching. This last aspect is the main theme of this presentation.

2 Equations, notations, and some previous re-
sults

2.1 Equations and related

In the sequel we will need the equations for vorticity, w;, and enstrophy, w?,
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and the rate of strain tensor, s;;, (Yanitsky (1982)) and the total strain,
8% = 8;;8;; (Brasseur and Lin (1995), Tsinober (1995))

Ds.: il i

Dt = gl ) g p vV @
1 D2s” 1 o’p
s = -2 {Sikskjsji + Zw.ilL)jSij =2 Sijm + 2US¢J'V23¢J'. (4)

These equations clearly indicate that along with enstrophy, w2, and strain,
g = 8;58;5, the third moments wjw;s;;, 8:78;18ki, are the key quantities of
turbulence dynamics. It is noteworthy that many aspects of the dynamics of
velocity gradient tensor du;/0z; can be addressed via looking at its invari-
ants: the second — Q = 1/4((.02—28,;_7'8,;_1‘), and the third— R = —1/3(8,;]'8jk8k,;+
3/4wiw;s;;), the first one — P = Huy, /Oy, is vanishing due to incompressibility
(see Chertkov et al (1999), Ooi et al (1999) and references therein). How-
ever, it is not sufficient and along with using the ), R invariants it is more
transparent and physically meaningful in several respects to look directly at
w?, 8%, wiw;s;;, and 8;;8;;5;. This is seen from the equations (3), (4), which
also show that the quantity s.ijam—‘zza%j, i.e. interaction of strain with pressure

hessian is of importance (there are two more — w,,w,a—aa%— and s,ksk,am—aé% -
in the equations (5), (6) below). Of course, formally the flow is determined
entirely by the field of vorticity. However, due to the nonlocal relation be-
tween the rate of strain tensor and vorticity (e.g. Constantin (1994), Novikov
(1968), Ohkitani (1994)) it is useful to look at the above mentioned quantities
in parallel. Moreover, it appears that the dynamical equations for w;w;s;; and
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are also instructive in several respects.
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i = 3 (w5, 0Py
Since for homogeneous flows (sy;siSk;) = —§(wiw;si;) and (sij5. ) =

0 due to incompressibility it follows that the mean rate of production of
strain/dissipation — (2(s;;8ix8x; + Fwiw;8s; + sija—i%j)) = (wiw;8;;) 1s equal to
that of enstrophy. Hence (and also due to {(w?) = 2(s;;s;;)) the choice of the
coeflicient 2 in (4), etc.

2.2 Vortex stretching and enstrophy production

We touch this aspect briefly. More details and references are given in Tsinober
(1998ab) and Tsinober et al (1999).

Since Taylor (1938) it is known that (wiw;s;;) > 0, i.e. vortex stretching
prevails on vortex compressing (see also Betchov (1976), Tsinober (1998a)
and references therein, and Appendix I). This basic phenomenon is closely
associated with subtle geometrical relations such as strict alignment between
vorticity w; and vortex streching vector W; = w;s;;, alignment between vortic-
ity w; and the eigenvector, A, of the rate of strain tensor, s;;, corresponding
to its intermediate eigenvalue A, (briefly intermediate eigenvector) and some
others. However, enstrophy production is associated with two regions, char-
acterised by alignment between between vorticity, w;, and the intermediate
eigenvector, Ag , and between vorticity, w;, and the largest eigenvector, A;.
Moreover, the largest contribution to the enstrophy production comes from
the regions with strong alignment between vorticity, w;, and the largest eigen-
vector, A1, and is associated with large cuvature of vorticity lines and vorticity
tilting, and large strain rather than with large enstrophy. The latter is true
of all nonlinearities. It is noteworthy that the (approximate) balance between
the mean enstrophy generation and its mean destruction via viscosity holds
also in the enstrophy dominated regions. However, in the regions dominated
by strain the enstrophy generation is an order of magintute larger than both
its destruction via viscosity and the enstrophy generation in the enstrophy
dominated regions. Therefore most of enstrophy generation occurs in the
regions dominated by strain.

3 Generation of strain/dissipation

The appropriate level of disispation moderating the growth of energy is achieved
by the build up of strain of sufficient magnitude which is described by the
equation (4). It is seen from this equation that in the mean the only term
contributing postively to the production of strain/dissipation, s?, is the term
—8ij8ikSki = — (A";"'Ag‘l'Ag) = —3A1A2A3, since (s.;,-sjksm-) = —3/4(&)in8.;_7->,
and (s;; E{%—j) = 0 due to homogeneity and incompressibilty. Moreoever,
since, A; > 0 and A, is positively skewed, i. e. (A3) > 0 the postivenes of
— (8i;8jk3ki) comes from the term — (A3). In other words, A3 is doing most of
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the ‘cascade’, at least, one of the final results of the ”cascade” - disspation of
energy, which is directly associated with s;; and not with w;. Hence, the cas-
cade is directly associated with compressing/squeezing of fluid elements and
not with (vortex) stretching. It is noteworthy that this idea is not entirely
new: It is clear, therefore, that production of vorticity is associated essen-
tially with A3 and production of w, and w,. This suggests that the most of
important processes associated with production of vorticity and energy trans-
fer resemble a jet collision and not the swirling of a contracting jet (Betchov
(1956)). Betchov arrived to this conclusion analysing the means (8;;8;x8k:)
and (wiw;8;;). Looking at the equation (4) it is seen that the above conclusion
is true of production of strain, which is associated with A3, and with the ‘jet
collision’ regions such as sheetlike structures as obseved in laboratory (Fred-
eriksen et al(1996), Schwarz (1990)), and numerical experiments (Brachet et
al (1992), Boratav and Pelz (1997), Chen (1997)). As for enstrophy produc-
tion it is true in part: roughly two thirds of its positive contribution occur
in the ‘jet collision’ regions, the remaining third happens in the ‘swirling of
a contraction jet’ regions . Also production of w? requires s;; and interaction
between the two, but production of s;; is in some sense less dependent on w,

though without vorticity it is impossible.
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Figure 1. PDF's of cubed eigenvalues, A? of the rate of the strain
tensor s;;, normalized on (s2)*/2,
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All the results shown in the sequel refer to a DNS simulation of NSE
decaying turbulence in a peridic box for the time moment(s) at which the
total enstrophy is (close to) maximal and Re, = 80. They are very similar to
those for a grid turbulent flow in which the Taylor hypothesis was used for
computation of derivatives in the streamwise direction(Tsinober et al(1997)).
This similarity indicates that the results below are not entitely local in time.
Likewise, they reflect some aspects of nonlocality in space as well mostly
due to use of conditional statistics and, of course, due to nonlocal relations
between vorticity and strain and between pressure hessian %9% and velocity
derivatives.

The ratios between the (A?) are as follows: (A3): (A3): (A3) =1.2:0.05:
—2.25. Their PDF's are shown in figure 1 and their conditional averages in
slots of w and s = (s;7s;;)'/2 are shown in figure 2. One can see from the latter
that A} are an order of magnitude larger in the strain dominated regions than
in regions of strong vorticity.

A related phenomenon is shown in figure 3. Namely, it is clearly seen that
8i;8;% 8 is strongly correlated with the total strain s;;s;;, and is only weakly
correlated with the enstrophy w?.

Similarly the production of strain —2(s;;8:;8k; + 3 TWiw;8i; + 8y 6:: oy =P jg
correlated with the total strain s;;s;;, and is almost not correlated with the
enstrophy w? (figure 4). It is noteworhty that the the production of strain
~2(8:8 8k + %w‘-sz,;j + Sija%-ma%) assumes its largest values in the regions
with largest A3 (see section 4, figure 9). On the other hand the enstrophy
production is correlated with both the total strain s;;s;; and with the enstro-
phy w2, but much more with the former (not shown - they are similar to those
obtained by Jimenez et al (1993)).

The behavior of conditional averages of the total production of strain
—8¢;8k sk,—iw,wJ 8ij— s,,ax—a;% and separate its terms is shown in figure 5. The
main feature is that the total 1nwsc1d rate of generation of strain/dissipation,

—2(848ix 85 + 1w‘w, Sij+ 85 w 2 J) is more than an order of magnitude larger
in the regions dominated by strain than in the enstrophy dominated regions.
As seen from the figure 6 the PDFs of —2(s;;8:x8%; + w,w, 8ij + 845 afz be; ) are
fully consistent with the behaviour of their conditional averages in slots of
w and s. Again the main feature is the strong positive shift of the PDF
of —2(si;8i8k; + Jwiw;si; + s,,%a%-) in the regions dominated by strain
(s® > 2.5(s%)).

It is noteworthy that though the mean (sU Bt -) = 0 the PDF of s,,m%
is positively skewed at large strain (figures 7 a.nd 8), i.e. the interaction of
strain and the pressure hessian is such that it is opposing the production of
strain when it becomes large. This is also seen from figures 5 and 6 and from
conditional averages of s,,b-g%;— in slots of w and strain s (Tsinober et al

(1999).
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The next important point is that the enstrophy production w;w;s;; appears
in the equation (4) with the negative sign, so that the vortex stretching is
opposing the production of dissipation/strain. Indeed, since wiw;s;; is essen-
tially a positively skewed quantity all instantaneous positive values of w;w;8;;
make a negative contribution to the right hand side of (4). In other words
the energy cascade (whatever this means) is associated primarily with the
quantity —s3;;8;xSk: rather than with the enstrophy production wjw;s;; and
that vortex stretching suppresses the cascade and does not aid it, at least in
a direct manner w;w;s;; (Tsinober, Ortenberg and Shtilman (1999)). On the
contrary it is the vortex compression, i.e ww;s; < 0, that aids the produc-
tion of strain/disspation and in this sense the ‘cascade’. Negative enstrophy
production is associated with strong tilting of th vorticity vector and large
curvatute of vortex lines, which in turn are associated with large magnitudes
of the negative eigenvalue, A of the rate of strain tensor (Tisnober 1998ab,
Tsinober et al 1998). This is in full conformity with the baove mentioned fact
that Aj is doing most of the ‘cascade’.
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One does not have to be confused by the equality (—s;;8x8k:) = 3/4{wiw;s;;)
: though in the mean they are equal, their pointwise relation is strongly non-
local due to the nonlocal relation between vorticity and strain via a singular
integral transform (see, e.g. Ohkitani (1994)). Consequently, locally they
are very different as can be seen from their JPDF and scatter plots (fig-
ure 9): they are only weakly correlated and there are great many points
with small wyw;s;; and large —s;;s;xsk; and vice versa. The same is true of
—8;58kSki — %w;sz,-,- — Sijgajb% and W;iW; 8,5 (ﬁg‘ure 10)

4 Local flow properties in the R — Q plane

It is convenient to summarize the local flow propreties in the R — Q plane of
the invariants of the velocity derivatives tensor 8u;/0z;. In particular, this
allows to see the results given above in a diffrent perspective. The results are
given in three separate figures in order to avoid overloading of a single figure
with too much of information. The main points are as follows.

Most of the (positive) enstrophy production occurs in the region D >
0, R < 0, whereas most of (positive) strain production occurs in the region
D > 0,R > 0 (see figure 11, where some more details are given). Here
D = @+ (27/4) R? — is the discriminant of the (cubic) equation defining the
eigen values of Ju;/0z;.
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Figure 11. A qualitative summary of local flow properties in the
R — @ plane together with the joint PDF of R versus ), corre-
sponding to averaged quantitities over the four regions D > 0, R >
0 D>0,R<0; D<0,R>0and D<0,R<0.

I - Alignments, enstrophy production and total strain production.
Some additional features: i — the largrest rate of enstrophy pro-
duction, w;w;s;;/w? occurrs in the region D > 0,R < 0 and
Q < 0; ii — the largrest production of strain occurrs in the prox-
imity of the curve D = 0 (from both sides); and R > 0 and
with the largest magnitude of the negative eigenvalue, A3, of
the rate of strain; iii — the largrest rate of production of strain,
(—8ij8k8ki — Swiw;8s; — s,,m o =22} /% occurrs in the region D >
O,R > 0 and Q < 0; iv — the PDF of cos(w, A,) is flat in the
region D > 0,R <0 and Q) < 0.
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The region D > 0,R > 0 is characterized by large negative enstrophy
production. Note that strong alignment between vorticity w; and the vor-
tex stretcing vector W; = w;s;; occurrs not only in the region with most of
the (positive) enstrophy production (D > 0, R < 0), but also in the region
D <0,R > 0, where the (positive) enstrophy production is relatively small.
Naturally, vorticity, w;, and the vortex stretcing vector, W; = w;s;5, antialign
in the region region D > 0, R > 0 with large negative enstrophy production.
Also is noteworthy that there is strong alignment between vorticity, w;, and

- both the largest, Ay, and the inermediate, Ay, eigenvectors of the rate of strain
tensor 8;; in the region D > 0, R < 0. This is possible, since these alignments
happen on different sets of points. Likewise strong alignment between vortic-
ity w; and and the inermediate eigenvector, Ay, occurrs in three qualitatively
different regions: D >0,R < 0; D> 0,R > 0 and D < 0, R > 0. This shows
that this most popular alignment is caused by different physical reasons in
diffrent flow regions (see also figure 12). The above results are in conformity
with those regarding curvature of vorticity lines and tilting of w-vector as
shown in figure 13. An additional aspect shown in this figure concerns the
interaction of strain an pressure hessian: it is large and positive in the region
D <0,R >0, and it is large and negative in the region D > 0, R < 0.

Q

> 0 LARGE > 0 MODERATE
UF/C

D>0

D>0- R

> 0 SMALL

> 0 LARGE

_/ SN/S% @ USN/s/s

Figure 12. A qualitative summary of the behaviour of the second
eigenvalue, Ay, of the rate of strain tensor in the R—( plane corre-
sponding to averages quantitities over the six regions Q@ > 0, R >
0;@>0,R<0; D<0,R<0; D<0,R>0; <0, R>0
and D > 0;, Q <0, R < 0 and D > 0. Also shown the
schematic local flow fields (e.g. Ooi et al (1999)): SF/s — stable
focus /stretching, UF/c - stable focus/compressing, SN/s/s — sta-
ble node/saddle/saddle, USN/S/s — unstable node/saddle/saddle.
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Figure 13. A qualitative summary of local flow properties in the
R — Q plane together with the joint PDF of R versus Q, corre-
sponding to averaged quantitities over the four regions D > 0, R >
0; D>0,R<0; D<0,R>0 and D<0,R<0.

II. Curvature of w - lines, tilting of w - vector and interaction of
strain and pressure hessian s;; a_f,-%x;,-'

Some additional features: i — in the region @ < 0, R < 0 and
D > 0 the curvature of w - lines and the tilting of w - vector are
both large, they are both moderate in the region Q<0 R>
0 and D > 0; ii — the interaction of strain and pressure hessian
s,;ja—:;é% assumes largest positive values in the proximity of the
curve D = 0 (from both sides) and R > 0.
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It is noteworthy that some similar results in terms of energy flux using
conditional averages in the plane of invariants of velocity derivatives , Q — R,
were reported by Chertkov, Pumir and Shraiman (1999); see also Borue and
Orszag (1998)2.

5 Concluding remarks

o— There exist two nonlocally intreconnected weakly correlated processes: i
— predominant vortex stretching/ enstrophy production and ii — predominant
self-amplification of the rate of strain/production of total strain. The energy
cascade (whatever this means) and its final result - dissipation are associated
with the latter, i.e. with the quantity —s;;s;ss; rather than with the enstro-
phy production w;w;s;;. Moreover, vortex stretching suppresses the cascade
and does not aid it, at least in a direct manner 3. On the contrary it is the vor-
tex compression, i.e wyw;s;; < 0, that aids the production of strain/disspation
and in this sense the ‘cascade’. The predominant vortex stretching/ enstro-
phy production is associated mostly with the largest positive eignevalue, A,
of the rate of stain tensor and also with its intermediate eigenvector, A5. The
predominant self-amplification of the rate of strain/production of total strain
is associated totally with the largest in magnitude negative eignevalue, As.

e—The nonlinearities such as enstrophy production, production of strain
and many others (Tsinober (1998), Tsinober et al (1999)) are an order of
magnitude larger in the regions dominated by strain than in the enstrophy
dominated regions. In this sense the enstrophy dominated regions are char-
acterized by reduced nonlinearities including the energy cascade whatever
this means. In other words the most intense nonlinear processes occur in
the strain dominated regions.* This supports the view that regions of con-

2These authors used a parameterization of the SGS energy flux/dissipation in the form

—(8i3)17ij = IB{— (84 )1(85k )1 (8ri}t + 1/ &{wi)i{wi)i(si;)} (M

They arrived to the conclusion that sugrid energy transfer over the scales (SGS-
dissipation) takes place in regions with negstive skewness of the filtered strain tensor,
ie. (8i)1(8jx)1{8ki)1) or where the vorticity stretching term is positive. The latter is due
to the positive sign in front of 1/4(w;)i(w;)i1{8i;) in the equation (7), contrary to the nega-
tive sign in the equation (4). This shows how dangerous is drawing conclusions regarding
the physics of turbulence from models. Also, though (s,—_,-%g’;—j } = 0 due to homogeneity
and incompressibility it is unlikely that either (sij 524~ )i or (si5)i(52- )1 or both will
vanish.

3Contrary to the common belief: ’It seems that the stretching of vortex filaments must
be regarded as the principal mechanical cause of the high rate of dissipation which is
associated with turbulent motion’ (Taylor (1938)).

4This reduction of nonlinearities is in some respect analogous to the processes occurring
in the so called elliptical regions (corresponding to the enstrophy dominated regions) in
two-dimensional turbulent flows (Weiss (1991)), and in a turbulent flow in the proximity
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centrated vorticity in turbulent flows are not that important as previously
thought (Jimenez et al (1993), Dernoucourt et al (1998), Roux et al (1998),
Tsinober (1998a)).

6 Appendix I. Why mean enstrophy and strain
production are positive?

So far there have been given no theoretical arguments in favor of positiveness
of (w,-w,-s,-j) (and also <_3ij3jk3ki))- s

The argument that the reason is the (approximate) balance between the
enstrophy generation and its destruction via viscosity is misleading and puts
the consequences before the reasons, since it is known that for Euler equa-
tions the enstrophy generation increases with time very fast — apparently
without limit (Yudovich (1974), Betchov (1976), Chorin (1982), Bell and
Marcus (1992), Brachet et al. (1992), Fernandez et al. (1995), Grauer and
Sideris (1995), Green and Boratav (1997), Kerr (1993),). It is noteworthy
that there is another aspect in which the (approximate) balance between the
mean enstrophy generation and its mean destruction via viscosity can be mis-
leading as well. Namely, this balance holds also in the enstrophy dominated
regions, but fails in the regions dominated by strain. The important point is
that most of enstrophy generation occurs in the regions dominated by strain
(see section 2 and Tsinober (1998), Tsinober et al (1999)).

Another rather common view that the prevalence of vortex stretching is
due to the predominance of stretching of material lines is - at best - true in
part only, since, there exist several qualitative differences between the two
processes. For example, for a Gaussian isotropic velocity field (w;w;s;;) =0,
whereas the mean rate of stretching of material lines is essentially positive,
i.e. the nature of vortex stretching process is to a large extent dynamical and
not just a kinematic one (for more details on the differences between the two,
see Tsinober (1998)).

A following simple theoretical argument can be given for the case with a
Gaussian velocity field ¢ at the initial moment, ¢ = 0. Let us look at the
equation for the mean enstrophy production (w;w;s;;) (dropping the viscous
terms)

D &p
D (wiwisis) = (Wisiwrsak) — <Wiwjm> ; (8)

of a large strained vortex (Andreotti et al (1998)).

SRigorous results on this issue would comprise a major contribution to the understand-
ing of physics of turbulence.

8Tt is sufficient that the velocity field satisfies the zero-fourth-cumulant relation, i.e. is
quasi-normal.
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For a Gaussian velocity field (wyw;si;)e = 0, <w,;wj%¢.%>(; = 0 and
(Wisijwrsi)e = {w?)? > 0 (the quantity w;s;jwrs = W2, W; = wjsy;, so
it is positive pointwise for any vector field). Hence at t =0

{% (w,-ij-aj)}t=o = {(w;8iwrsix) },_g > 0, )

It follows from the equation (9) that at least for a short time interval ¢
the mean enstrophy production will become positive. For later moments the
vorticity—pressure hessian correlation <w,:wj6%2%;> becomes finite, an noth-
ing is known ri orouslzr. As folows from DNS of NSE in a periodic box
the corelation é’iwj%‘za%> is positive, but is smaller than (w;s;wrsy) =

(W?) . Namely, <win‘ %26%) ~ 1 (W?), so that the RHS of (8) remains pos-
itive (Tsinober et al (1995)). It is noteworthy that the equation (8) with

<w,-wja—zza-%> = () is precisely the one arising using the quasinormal approx-
imation %: Ww? = %(w2)2 (Proudman and Reid (1954), see also Kaneda
(1993)), since £ (wiw;si;) = %%2 {(w?) and under quasi-normal approxima-
tion (w;sijwksi) = % (w2)2 and <w1:w]'%5%j> = 0. The essential point is that
at t = 0 the relation (9) is precise due to the freedom of the choice of the
intitial condition.

In a similar way one can see from the equation (6) that the mean rate
of production of strain —2 {(SiijkSki) -2 (WinSij)} (<31‘,j%> = 0 due to
incompressibility) becomes positive at small times (at ¢ = 0 it is vanishing)
for an initially Gaussian velocity field. It is seen also from the equation for
{(wiw;s;;) that an initially Gaussian and nearly potential velocity field with
small seeding of vorticity will produce - at least for a short time - an essentially
positive enstrophy generation as well. This process seems to be of importance
in the phenomenon of entrainment of nonturbulent fluid into the turbulent
region in the proximity of the region separating turbulent and nonturbulent
fluid.

It is noteworthy that the equations (8,9) and similar ones for (s;;8;x5k:)
is one of the manifestations of the statistical irreversibililty’ of turbulent
flows (Betchov (1974), Novikov (1974)). There exist, at least, two different
aspects of this problem. The first one is related to purely inertial behaviour
governed by the Euler equations as mentioned above. It is closely related to
the (possible) formation of singularities in 3D Euler flows in finite or infinite
time. The above example (equations (8-9) and similar ones for (s;;8;x5%:))
is closely related to this aspect. The second aspect is associated with the
dissipative nature of turbulent flows. Viscosity provides a sink of energy,
enstrophy, etc. moderating their unbounded growth in the inviscid case.

"The corresponding dynamical instantaneous (inviscid) equations are reversible. Hence,
the term statisiical.
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7 Appendix II. On the difficulties in defining
scales, cascades and related matters.

As mentioned above there is a generic ambiguity in defining the meaning of
the term small scales (or more generally scales) and consequently the mean-
ing of the term cascade in turbulence research. The specific meaning of this
term and associated interscale energy exchange/‘cascade’ (e. g. spectral
energy transfer) is essentially decompostion/reperesentation dependent (see,
for example, Borue & Orszag (1998), Frick and Zimin (1993), Fuehrer and
Friehe (1999), Germano(1999), Holmes et al (1996), Mahrt & Howell (1994),
Meneveau (1991), Pullin and Saffman (1997), Sirovich (1997), Tsuge (1984),
Waleffe (1993) and references therein) 8. Perhaps, the only common in all
decompostions/representations is that the small scales are always associated
with the field of velocity derivatives. Therefore, it is naturally to look at this
field as the one objectively (i.e. decompostion/reperesenation independent)
representing the small scales. Indeed, the dissipation is associated precisely
with the strain field s;;. The advantage of this ‘definition’ of small scales can
be seen from the following example. It is well known that there is no con-
tribution from the nonlinear term in the total energy balance equation (in a
homogeneous/periodic flows it’s contribution is null as well in the mean) since
the nonlinear terms has the form of a spatial flux, 8{...}/8z; . In other words
the nonlinear term redistributes the energy in physical space, but does it do
more than that? ® The usual claim is that the nonlinear term redistributes
the energy among the scales of motion (Frisch (1995), p.22), whereas in reality
the nonlinear term redistributes the energy, e.g. in the Fourier space between
the Fourier components of the turbulent field. However, the nonlinear term
does it in a different way between the components of different decomposi-
tions, such as the Fourier — or wavelet representations, the POD, and so on
(Frick and Zimin (1993), Holmes et al (1996), Mahrt & Howell (1994), Mene-
veau (1991), Sirovich (1997), Waleffe (1993) and references therein). In other
words the term ‘cascade’ corresponds to a process of interaction/exchange of
(not necessarily only) energy between components of some particular decom-
position /representation of a turbulent field associated with the nonlinearity
and the nonlocality of the turbulence phenomenon (the two n’s out of three:
nonlinearity, nonlocality and nonintegrability, which make the problem so

8Indeed, the meaning of scales is different for different reperesentations: it is not the
same for Fourier (‘regular’ and helical) and similar (Fourier Weierstrass, Gabor, Littlewood-
Paley) decompositions; Wavelets (wavepackets, solitons); POD; LES. It is also different
in various heuristic representations, e.g. ‘two-fluid’ (Organized/Incoherent, Determinis-
tic/Random and some other two-fluid models); intermittency-prompted (breakdown coef-
ficients/multipliers, (multi)fractals); Moffat’s ‘smart decomposition’ and the *punctuated’
conservative dynamics.

91t is straightforward to see that in a homogeneous turbulent flow the mean energy of
volume of any scale (Lagrangian and/or Eulerian) is changing due to viscous dissipation
and external forcing only.
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impossibly difficult). On the other hand, the energy transfer as any physical
process should be invariant of particular decompositions/representations of a
turbulent field.!® Taking the velocity derivatives as a basic notion allows one
to resolve/clarify (to some extent) the ambiguities associated with the terms
‘energy transfer’, ‘scale’, and so on in the following way. While the mean con-
tribution of the nonlinearity in the energy balance is vanishing, the nonlinear
term definitely creates vorticity (and strain, see sections 2 and 3) in physical
space, since the enstrophy production (w;w;s;;) > 0 is strictly positive as well
the corresponding term for the production of strain. As mentioned above it is
naturally and justified from the physical point of view to associate the field of
velocity derivatives with small scales. It is immediately seen that 3-D turbu-
lent flows have a natural tendency to create small scales. Namely, the velocity
field (and its energy) arising in the process of (self) production of the field of
velocity derivatives is the one which is associated with the small scales. This
process is what can be called as energy transfer from large to small scales
in physical space. The latter are not necessarily created via a stepwise tur-
bulent ”cascade”: it can be bypassed (and most probably this is the case in
turbulent flows), e.g. via broad-band instabilities with highest growth rate at
short wavelengths (e. g. Pierrehumbert & Widnall 1982, Smith & Wei 1994)
or some other approximately single step process (Betchov (1976), Douady,
Couder & Brachet (1991), Vincent & Meneguzzi (1994), Garg & Warhaft
(1998); the problem goes back to Townsend (1951): ...the postulated process
differs from the ordinary type of turbulent energy transfer being fundamen-
tally a single process.; see also Corrsin (1962), Tennekes (1968)). Indeed two
large neighbouring eddies can dissipate energy directly by rubbing each other
on a very small scale. Note that the process of vorticity production is not
just creation of the field of velocity derivatives. It involves literally creation

10The difficulty is not a trivial one and seems to be ‘generic’. Under turbulent mo-
tion/dynamics the interaction of ‘modes’ (whatever they are) is strong. The resulting struc-
ture(s) is( are) not represented by the modes (of whatever decomposition), e.g. Fourier-
decomposition of a flow in a periodic box. Hence the it’s ambiguity (for another aspect
of Fourier-Transform ambiguity see Tennekes (1976)). Recall the suggestion by Dryden
(1948): ‘It is necessary to separate the random processes from the nonrandom processes’.
The implication is that such a separation is possible. But this is not obvious at all, as it is
seen from the futility of the enourmous efforts to do so. For example, it is even not known
how to separate random gravity-wave motion (which does not produce vertical transport)
and genuine turbulence (which does) in a stably stratified fluid (Stewart (1959)). All the
attempts to find a ‘good’ decomposition are related to what R. Betchov (1993) called the
‘dream of linearized physicists’, i.e. a superposition of some (desirably simple) elements).
The dream is, of course, to find sets (consisting of small number) of simple weakly inter-
acting elements/objects adequately representing the turbulent field. Those are known so
far are strongly interacting (most of them nonlocally) - a fact reflecting one of the cen-
tral difficulties in 'solving the turbulence problem’ as a whole, in general, and the ’closure
problem’ (such as LES and other reduced descriptions of turbulence (Kraichnan (1988))
, in particular, as well as in construction of a kind of statistical mechanics of turbulence
(Kraichnan and Chen (1989)).
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of small scale structure in the following sense. Namely, an inevitable con-
comittant process to vortex stretching is tilting and folding of vorticity due
to the energy constraint (Chorin (1982), Tsinober (1998)). Simultaneosly, the
strain field is built up at the same rate too (see section 3 and Tsinober et al
(1999)). This together with limitations on the volume scale leads to formation
of fine small scale structure. Since the flow field (including velocity, which
is mostly a large scale object) is determined entirely by the field of vorticity,
i.e. the velocity field is a functional of vorticity v = F{w(x,t)}), the pro-
duction of vorticity ‘reacts back’ in creating the corresponding velocity field.,
the prodction of vorticity ‘reacts back’ in creating the corresponding velocity
field.! It is noteworthy that due to nonlocality of the relation v = F{w(x,t)}
mostly small scale vorticity is, generally, creating also some large scale veloc-
ity. Therefore from the physical point it seems incorrect to treate small scales
as a kind of ”passive” objects as well as it seems impossible to ”eliminate”
them (as is done in many theories) reducing their reacton back to some eddy
viscosity or similar things only. In view of the above arguments it seems
that in physical space the energy is dissipated not necessarily via a multistep
cascade-like process. Instead, there is an exchange of energy (and everything
else) in both directions, whereas the dissipation occurs in ”small scales”. So
it is quite possible that in the physical space the famous verse by Richardson
(1922, p.66)

Big whirls have little whorls,

Which feed on their velocity.

And little whorls have lesser whorls
And so on to viscosity

(In the molecular sense)

should be replaced by the one by Betchov (1976, p. 845)

Big whirls lack smaller whirls,

To feed on their velocity.

They crash and form the finest curls
Permitted by viscosity.
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