An ad hoc operational method to compensate for absent turbulence modes in an
insufficiently resolved numerical simulation.

A.J. Young and W.D. McComb
Department of Physics, University of Edinburgh, Mayfield Road, Edinburgh, Scotland, EH9 3JZ
(June 22, 1999)

If the largest resolved wavenumber in a numerical simulation of isotropic turbulence is too small,
then it is well known that the energy spectrum will depart from its expected monotonic decrease
with increasing wavenumber and will instead begin to increase. By detecting this increase, and
making it the basis of a feedback loop, we show that an operational method is capable of modifying
the instantaneous velocity field such that the unphysical features of the spectrum are suppressed.
When this procedure is interpreted in terms of an effective viscosity, it agrees well with the usual
result obtained by comparison with a fully resolved direct numerical simulation.

The numerical simulation of systems with many de-
grees of freedom has been of great interest in physics for
some time and in practice there is often a requirement
to reduce the number of degrees of freedom which have
to be explicitly simulated. In fluid dynamics, the recog-
nition that numerical simulation could be employed if
one reduced the number of degrees of freedom goes back
to meteorological work in the 1960s, when the idea of a
large-eddy simulation (LES) was first put forward: for a
recent review, see [?].

In applying the concept of LES to spectral simulations,
the conventional approach is to resolve Fourier modes
with wavenumbers up to some k = K¢, and to model the
nonlinear transfer to the (now nonexistent) modes with
k > K¢ by means of some additional viscosity acting on
the resolved modes. In general one may expect such a
subgrid viscosity to depend on both the local wavenum-
ber k and on the cutoff wavenumber K. (Also one may
expect some other nonlinear effects to be present, in ad-
dition to the Newtonian-type effective viscosity.) In this
paper we introduce a novel method of compensating for
the absence of nonlinear transfers.

‘We begin by restricting our attention to the numerical
simulation of stationary, homogeneous, isotropic turbu-
lence of an incompressible fluid [?,?,?,7,7,7,2,2,7]. We
work in Fourier wavenumber space where the degrees of
freedom are the Fourier modes u(k, t) of the velocity field
as defined in terms of the velocity field u(z,t) by

u(z,t) =Y u(k,t)e™. (1)
k

In this situation, the main quantity of interest is the en-
ergy spectrum, as given by

E(k,t) = 27k? (u(k,t) - u(-k, 1)), (2)

where (---) denotes an ensemble average.

We have carried out a numerical simulation with a
resolution of N = 256 and at a Taylor-Reynolds num-
ber of By =~ 190. For this simulation we chose the

fluid kinematic viscosity to be ¥ = 10~3 with dissipation
rate € = 0.149 (in arbitrary units), giving Lg/L(t) = 5
where the computational box side is Lz and the integral
length scale is L; and Kpax/ka = 1.2, where k4 is the
Kolmogorov dissipation wavenumber. These values are
reasonably well in line with current practice [?]. The for-
cing, which is necessary to maintain a steady state, takes
the following form:

_ [ eu(k,t)/(2E¢(t)) if 0 < k < ky
F(k,t) = { 0 otherwise, (3)
where E¢(t) is the energy contained within the forced
modes and ky = 1.5. This forcing scheme is the same as
that used by Machiels [?].

The idea underlying the proposed operational proced-
ure may be explained by first considering what happens
in a truncated simulation where the maximum wavenum-
ber is significantly less than the dissipation wavenum-
ber. As is well known, one of the most obvious effects
of such a truncation is an upturn at the high wavenum-
ber end of the energy spectrum, corresponding to a local
build up of energy. This is illustrated in Fig. ?7 where
we have plotted an energy spectrum taken from a trun-
cated (i.e. unresolved) simulation after several integra-
tion steps. Our aim is to locate this upturn and to correct
it in some way. In general terms, the proposed algorithm
may be described as follows. First, we identify the on-
set of the upturn with the minimum of the derivative,
d(In E)/d(In &), and denote the corresponding wavenum-
ber by k£ = Kupturn- Second, we use the value of this
derivative at kypiurn to generate a corrected energy spec-
trum by extrapolating forward from this point. The in-
tended result of this operation is shown in Fig. 77 as a
dashed line. We note that, although our present method
is believed to be new, the idea of conducting such direct
experiments on a numerical simulation is now of growing
interest [?,?,2,7].

The following algorithm is carried out after each time-
integration step:
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FIG. 1. An energy spectrum with an upturn (crosses), its
derivative, d(In E)/d(In k) (triangles) and a schematic indication of
what the corrected energy spectrum should look like after application
of the operational feedback procedure (dashed line). The vertical
solid and dot-dashed lines indicate the positions of kupturn and K¢
respectively.

1. A smoothed spectrum Eg is obtained by fitting a
polynomial in Ink to In E, where E(k) is the usual
energy spectrum obtained from the velocity field
by shell-averaging. A fourth-order polynomial was
used for this, as it was found that lower-orders
do not reproduce the upturn, while significantly
higher-orders follow the spectrum too closely to
give adequate smoothing.

2. The minimum of the derivative, d(In Eg)/d(ln k),
is obtained analytically.

3. The gradient, d(In Eg)/d(Ink) =T, at k¥ = kypturn
is used to extrapolate the original shell-averaged
spectrum, F, forward in wavenumber from kypturn
in order to give the corrected spectrum:

E(k) if k¥ < kupturn;
Ec(k) = N P ’
C( ) { E(kupturn)(k/kupturn)r if k 2 kupturn-

(4)

4. The ratio of the corrected spectrum to the shell-
averaged spectrum then provides the basis for a
correction of the velocity field, thus:

uc(k) = u(k)v Ec(k)/E(k)- (5)

As a first test for this procedure, we compared three
cases: a resolved simulation with N = 256, an unresolved
simulation with N = 64 (i.e. without compensation for
the missing modes) and a compensated simulation with
N = 64 (following the procedure outlined above). All
simulations were allowed to run for approximately 24
evolved eddy turnover times.
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FIG. 2. kupturn/K plotted as a function of time. A value of
kupturn = K¢ indicates that the operational method has not amended
the velocity field in any way. The time axis has been scaled on 7z,
the eddy turnover time.

1.2 T T T

1.0

0.8

E(t)

0.6

0.4

02} :

0.0 : .
0 8 16 24

tt
FIG. 3. Evolution of total energy showing the results from the

resolved 2562 simulation (circles), the unresolved 643 simulation
(crosses) and the compensated 643 simulation (diamonds).

E

In Fig. 7?7 we have plotted kupturn/Kc against time.
We see that it appears to fluctuate around a value of
kupturn/Kc = 0.5, and we note a period of rapid fluctu-
ations between 12 and 18 eddy turnover times.

Figure 7?7 shows the evolution with time of the total
energy for each of the three simulations. The mean values
found by averaging over time, with error estimates given
by twice the standard deviation, were: resolved simula-
tion with N = 256, £ = 0.90 £ 0.04; unresolved simu-
lation with N = 64, F = 0.96 & 0.12; and compensated
simulation with N = 64, E = 0.89 + 0.03. Evidently,
despite the large number of eddy turnover times, there
is no significant difference between the mean levels (the
fluctuations are a different matter).
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FIG. 4. Average evolved energy spectra, showing the results
from the resolved 256° simulation (circles), the unresolved 643

simulation (crosses) and the compensated 643 simulation (diamonds).

However, when we turn to ‘microscopic’ effects, the
picture is quite different. Energy spectra, time-averaged
over the final 15 eddy turnover times of the simulations,
are given in Fig. ??7. Here, the problems in the unre-
solved simulation are clearly seen, with the upturn dom-
inating the energy spectrum. In contrast, the spectrum
obtained from the compensated simulation, shows a good
match with that obtained from the resolved simulation.

We have also investigated the effect of this feedback
procedure on the velocity derivative skewness S(t). The
time-averaged value obtained from the resolved simu-
lation, with an estimate of the error (given by twice
the standard deviation) is § = —0.50 + 0.07 in agree-
ment with experiment [?]. However, as noted by Dubois,
Jauberteau and Zhou [?], the simple act of truncating
a velocity field in Fourier space — and hence removing
the small scales — will cause a reduction in the skew-
ness. Therefore, in order to make a fair comparison with
the results of our two 64° simulations, we have also com-
puted the skewness based on a number of truncated 2563
velocity fields. This gave a value of S = —0.33 & 0.04.
The unresolved simulation with N = 64 gave a value of
S = —0.12 £+ 0.04, indicating a distribution closer to the
Gaussian case than for the resolved 2562 result, while the
compensated simulation gave a value of § = —0.30+0.05
in agreement with the result obtained from the truncated
2563 fields.

Furthermore, it is interesting to relate our operational
approach to the more conventional use of an effective vis-
cosity to represent the effect of high-%# modes, which has
its origins in the work of Heisenberg [?]. It was Kraichnan
[?] who first expressed the eddy viscosity as,

_ TSG(k) (6)
2k2E(k)’

where Tsi (k) represents energy transfers due to interac-

tions with subgrid modes. Kraichnan used an analytical
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FIG. 5. Average equivalent eddy viscosity computed from the
compensated 643 simulation (line) compared with the ‘empirical’
eddy viscosity computed from the resolved 2563 simulation (circles).

turbulence theory — the test-field model — to obtain
an eddy viscosity which exhibited the now familiar char-
acteristics of a constant asymptotic value for k € K¢
and a cusp at k = K, and this approach inspired much
other work of this type.

It is possible to interpret the compensated simula-
tion presented here in terms of the usual spectral large-
eddy simulation by generating an effective eddy viscos-
ity, dv(k,t,), at each time step, which would give an en-
hanced dissipation rate equivalent to the rate of energy
removal due to the operational procedure. It is readily
shown that in going from £, to ¢,,1 this takes the form:

E(ka tﬂ+1) — EC(k, tﬂ+1)
2SLE (K, 1)

Su(k,t,) = (7)

The time-averaged result is plotted in Fig. ??7 alongside
an empirical eddy viscosity, computed from a resolved ve-
locity field (see [?] for details of this type of calculation).
There is good agreement between the two.

The operational procedure outlined here appears to
give promising results at the relatively low Reynolds
number we have explored. But, it must be borne in mind
that it depends on an assumption about the form of the
spectrum, if we truncate the high-wavenumber modes.
Under the present restricted circumstances, there is only
one possible outcome. In the absence of nonlinear trans-
fer to higher-k modes, the energy must increase at the
cutoff wavenumber. This guarantees the stability of the
feedback process. However, we should remind ourselves
that although this is true for the simple spectral method
used here, and for isotropic turbulence, it is not necessar-
ily true for more realistic flows. This is a matter which
would require further investigation.

Moreover, even with the present idealized turbulence,
at higher Reynolds numbers we might expect the eddy



viscosity to have a significant non-zero asymptote as
k — 0 which this operational procedure, by its very
nature, will be unable to reproduce. It may be possible
to overcome this limitation by combining the operational
procedure with an enhanced viscosity, thus generating a
hybrid approach. One possible candidate for this would
be a renormalization group (RG) calculation recently re-
ported [?].

Of course RG methods have had great success in com-
parable problems involving many length scales in micro-
scopic physics [?], but there is now considerable pessim-
ism about their use in turbulence [?]. To the present
writers, such pessimism seems entirely justified if one
seeks (as is usually the case) to apply field-theoretic
methods to a macroscopic deterministic system such as
fluid turbulence. However, we have previously argued
elsewhere [?] that the basic RG algorithm may be ap-
plied to turbulence as an example of deterministic chaos
exhibiting scaling behaviour. More recently we have con-
cluded that such an application has heuristic validity, in
that it seems to represent the turbulent energy trans-
fers quite accurately; but, like all eddy-viscosity models,
is incapable of adequately representing the phase effects
which dominate interscale momentum transfers [?]. Nev-
ertheless, this implies that the RG viscosity can represent
the dissipation rate correctly, a result which is in line with
current thinking on subgrid modelling from other points
of view [?,?,?]. As the two methods have complementary
ranges of validity in wavenumber space, there is a case
for investigating their joint use, and again this kind of
approach is in tune with other investigations of subgrid
modelling. This is the subject of current work.
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