
Optimal Tree Approximation with WaveletsRichard BaraniukDepartment of Electrical and Computer EngineeringRice UniversityHouston, Texas 77005, USAABSTRACTThe more a priori knowledge we encode into a signal processing algorithm, the better performance we can expect.In this paper, we overview several approaches to capturing the structure of singularities (edges, ridges, etc.) inwavelet-based signal processing schemes. Leveraging results from approximation theory, we discuss nonlinear ap-proximations on trees and point out that an optimal tree approximant exists and is easily computed. The optimaltree approximation inspires a new hierarchical interpretation of the wavelet decomposition and a tree-based waveletdenoising algorithm that suppresses spurious noise bumps.Keywords: Wavelets, trees, nonlinear approximation, Besov space,optimization1. INTRODUCTIONThe wavelet transform provides a natural setting for developing new signal and image processing algorithms, especiallyfor signals and images rich in singularities (edges, ridges, and other transients). Since wavelets form a basis,1,2 theycan reproduce arbitrary functions, from highly structured real-world signals and images to completely unstructurednoise. In linguistic terms, the wavelet vocabulary can be too expressive.3 � To better process real-world signals andimages, we must narrow this vocabulary's scope by imposing a set of constraints | a grammar | that captures thesalient structures of singularities. While much research has concentrated on developing new wavelet vocabularies,until recently relatively little e�ort has gone into grammatical modeling.Clearly, the more knowledge we have about the structure of a signal class, the more accurate the model we canconstruct and the better the performance of any signal processing algorithm derived from it. But what structure toexploit in wavelet transforms?The wavelet transform of a 1-d signal consists of the wavelet coe�cients fwj;kg, indexed by a scale parameter jand a space parameter k (higher dimensions are handled similarly).1,2 The wavelet coe�cients form a pyramid ortree that represents signal structure from coarse to �ne scales. Singularities are particularly simply represented: theenergy from a singularity localizes along one branch of the tree (see Figure 1).1 To best process singularity-rich data,it is key that we match this persistence of singularity energy in the wavelet tree. Very roughly, we can delineatebetween statistical and deterministic tree-based modeling approaches.1,7{15In this paper, we will focus on an optimization-based approach to tree modeling in the wavelet domain thatextends the concept of nonlinear approximation16,17 to a kind of optimal tree approximation. Our results extendthose of Cohen et al18,19 somewhat but are closely related to those of Donoho et al20,21 and Engel.22 In a sense,this paper is about di�erent orderings of the terms in the wavelet series.After quickly reviewing wavelets in Section 2 and linear and nonlinear approximation in Section 3, we turn totree approximation in Section 4. In Section 5 we demonstrate how our ideas (and those of Donoho et al20,21 andEngel22) can improve upon wavelet denoising by taking into account the persistency properties of singularities. Weclose in Section 6 with a discussion and conclusions.This work was commenced at the Isaac Newton Institute of Cambridge University and was supported by the Rosenbaum Fellowshipand by NSF grant MIP{9457438, DARPA/AFOSR grant F49620{97{1{0513, ONR grant N00014{99{1{0813, and the Texas InstrumentsLeadership University Program.Email: richb@rice.edu; Internet: www.dsp.rice.edu�While we will use these linguistic terms loosely, the analogy with signal modeling can be made formal; see refs4{6 for examples.
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(d) (e)Figure 1. (a) The coe�cients of the wavelet transform naturally form a binary tree structure 
owing from thecoarsest scale (root) to the �nest scale (leaves). Each black node represents a wavelet coe�cient. Image plots ofthe wavelet coe�cients fwj;kg for Donoho's four test signals (b) Blocks, (c) Bumps, (d) HeaviSine, and (e) Dopplerdemonstrate the strong persistence across scale property of large and small wavelet coe�cient values. Eachrectangular tile corresponds to one coe�cient; its darkness corresponds to the size of jwj;kj, with white meaningjwj;kj = 0. 2. WAVELET TRANSFORMGiven a lowpass scaling function � and bandpass wavelet function  , de�ne the multiscale atoms�j;k(t) := 2j=2 �(2jt� k);  j;k(t) := 2j=2  (2jt� k); (1)with j and k indexing their scale and position, respectively. For special choices of � and  , these atoms form anorthonormal basis for L2,1,2 and we have the following multiscale representation of a signal ff = Xk uj0�j0;k + Xj�j0Xk wj;k j;k; (2)with uj0;k := hf; �j0;ki and wj;k := hf;  j;ki. We will emphasize signals in L2([0; 1]) but will not delve into the detailsof the required boundary adapted wavelets.1,2 In this case, j0 � 0, and there are 2j wavelet atoms per scale j.When convenient, we will use the short-hand notation I := (j; k) as a multi-index for the atoms; I corresponds tothe interval 2�j [k; k + 1), the support interval of the Haar wavelet  I . Images and higher-dimensional data can behandled similarly using tensor products of � and  .The multiscale nesting structure of the wavelet atoms | the support of each  j;k contains the supports of  j+1;2kand  j+1;2k+1 | induces a binary tree structure on the wavelet coe�cients (see Figure 1(a)). We say that wj;k isthe parent of its two children wj+1;2k and wj+1;2k+1. For simplicity (but without loss of generality, see Section 4.4),we will assume in most of the sequel that j0 = 0, which leads to a single wavelet tree with root at the coarsest-scalewavelet coe�cient w0;0 (as in Figure 1(a)). The single scaling coe�cient u0;0 crowns the tree. De�ne a subtree asany connected set of nodes in the tree; de�ne a rooted subtree as a subtree that includes the main tree root.Wavelets act as multiscale edge detectors: Large/small wavelet coe�cients indicate the presence of an edge/smoothregion in the support of the wavelet. Due to the nesting property of child wavelets inside their parents, edges andother singularities manifest themselves in the wavelet domain as chains of large wavelet coe�cients along the branchesof the tree (recall Figure 1).Many of the remarkable properties of wavelets stem from the fact that they form unconditional bases for a plethoraof function spaces, including the Lp, 1 < p < 1, Sobolev, Besov, and Triebel spaces.16,17,19,23 Unconditionality



gives wavelet bases optimal energy compaction properties: For signals in these spaces, the wavelet representationpacks more energy into a �xed number of coe�cients than any other basis.Roughly speaking, the Besov space Bsq (Lp) contains functions with s > 0 derivatives as measured in Lp, p > 0(the q parameter makes �ner distinctions in smoothness). For wavelets with r > s vanishing moments, the Besovnorm is equivalent to a simple sequence norm on the wavelet coe�cients16,17,19,23:kfkBsq(Lp) � kuj0;kkp +0@ Xj�j00@2js0 Xk jwj;kjp!1=p1Aq1A1=q ; (3)with s0 = s � 1=p + 1=2 and the obvious modi�cations if p or q = 1. This norm comprises an lp norm withineach scale j and then a weighted lq norm across scale. Clearly a signal lies in a given Besov space if and onlyif its wavelet coe�cients decay su�ciently rapidly (with the decay constraints becoming more stringent as s andp increase). Special cases of Besov spaces include the homogeneous Besov spaces Bsp(Lp) and the Sobolev spacesW s(L2) := Bs2(L2). When s = 1=p� 1=2, the Bsp(Lp) norm has a particularly simple form:kfkB1=p�1=2p (Lp) � kuj0;kkp + kwj;kkp: (4)3. LINEAR VS. NONLINEAR APPROXIMATIONWavelet approximation deals with the following problem: approximate a function f using n terms of its waveletseries representation (2). (We will employ all of the scaling coe�cient terms Pk uj0;k�j0 ;k in our approximationswithout including them in the total n.)3.1. Linear approximationIn linear approximation, we construct the approximant bfnL by projecting f onto a �xed n-dimensional subspace ofL2 de�ned by n �xed wavelets. Typically, we employ the �rst n terms in the double sum of (2):bfnL :=Xk uj0�j0;k + Xj0�j�JXk wj;k j;k:| {z }n terms (5)That is, we use wavelets up to some �xed scale J < 1. Each signal is approximated by the same n wavelet terms,which makes the process linear: ( df1 + f2)nL = ( bf1)nL + ( bf2)nL . Linear approximation is hierarchical in the sense thatas n!1, we add resolution to the approximation one scale band at a time.For any function f 2 W s(L2), the L2 error of approximation can be bounded as16,17,19ykf � bfnL k2 � CLn�s: (6)3.2. Nonlinear approximationIn nonlinear approximation| also known as n-term or greedy approximation| we order the terms in the approximantnot according to wavelet scale j but according to wavelet coe�cient size jwI j2. That is, for j � j0 we order thewavelet coe�cients such that jwI1 j2 � jwI2 j2 � : : : ; jwIi j2 � jwIi+1 j2 � : : : (7)and form the approximant using the �rst n (largest) elements in this list:bfnN :=Xk uj0�j0;k + nXi=1 wIi Ii : (8)In general, di�erent signals will be represented using di�erent wavelet terms, which makes the process nonlinear:( df1 + f2)nN 6= ( bf1)nN + ( bf2)nN. Nonlinear approximation is hierarchical in the sense that wavelet terms are included inorder of size, with large coe�cients �rst and small coe�cients later.ySimilar results hold when we measure the error in other Lp norms.16



Since we use the largest n terms in the representation (2), kf � bfnNk2 � kf � bfnL k2. Furthermore, for any functionf 2 Bsp(Lp), s � 1=p� 1=2, the nonlinear approximation error can be bounded as16,17,19kf � bfnNk2 � CNn�s; (9)with CN � CL. This might not seem much of an improvement over linear approximation (see (6)); however this is notthe case, for two reasons. First, for a given s, the space Bsp(Lp) is considerably larger than W s(L2), meaning thatthe nonlinear scheme can approximate more functions at rate n�s. Second, if f 2 W s(L2) then also f 2 Bab (Lb),a = 1=b � 1=2, with a � s, meaning that f has greater smoothness in Bab (Lb) (and hence faster error decay withnonlinear approximation) than in W s(L2) (with linear approximation).17Relation to thresholding: Given N total wavelet terms in (2) (as we would have in the representation of adiscrete-time signal), assembling the n-term approximation requires that we sort the wavelet coe�cients. The costof sorting | O(N logN) in general | exceeds the O(N) cost of the forward and inverse wavelet transforms.Applying a (hard) threshold � to the wavelet coe�cientszbwI = ( wI ; jwI j2 > � (keep)0; jwI j2 � � (kill) (10)also generates the coe�cients a nonlinear approximation. And, in contrast to sorting, thresholding is an O(N)operation.Note, however, that the exact relationship between the threshold � and the number of terms n in the approxi-mation is signal dependent, and hitting a prespeci�ed n terms using thresholding will require multiple thresholdingpasses in general. If more than logN thresholdings are required, then sorting is a more e�cient option. Nevertheless,for signal estimation (denoising)23 and certain compression applications,18,19,24,25 it is more natural to use � as acontrol parameter than n. 4. TREE APPROXIMATIONNonlinear approximation, while optimal in a squared error sense, does not explicitly exploit the structure of the nlargest wavelet terms it employs. There are several justi�cations for taking this structure into account. In codingapplications, for example, we must encode not only the n coe�cients we wish to transmit, but also their locationsin the wavelet tree. Clearly if the n coe�cients lie on an unstructured set in the wavelet domain, then the cost ofposition encoding could exceed value encoding.18,19 We will see another example involving wavelet denoising belowin Section 5.20{22In tree approximation, we seek a nonlinear approximation possessing both a small error and substantial struc-ture.18,19 But what structure to exploit? Large signal classes are known to exhibit considerable structure in thewavelet domain. Wavelet coe�cients of smooth signals (those in Besov spaces, for example) must decay as scalej ! 1. Wavelet coe�cients of singularities have large wavelet coe�cients that persist along the branches of thewavelet tree.1,11,24 Both of these types of signal behaviors (smooth regions and singularities) lead to wavelet coe�-cients that are large on rooted subtrees of the main wavelet tree. The con�guration of such a tree is easily encoded(most simply by the locations of its leaves, for example).18,19,24,25A tree approximation represents a function by the largest wavelet coe�cients in a connected, rooted subtree ofthe main wavelet tree. That is, a wavelet coe�cient is not included in the approximant before any of its ancestors.Depending on how we de�ne \largest" we obtain di�erent approximations. Surprisingly, the performance of treeapproximation comes very close to that of n-term nonlinear approximation for a large class of signals.4.1. Greedy tree approximationTo be clear in the sequel, we will add the quali�er \scalar" when referring to n-term nonlinear approximation �a laSection 3.2. De�ne T as a connected rooted subtree of wavelet coe�cients containing jT j wavelet coe�cients.In n-term greedy tree approximationx we simply perform the usual scalar nonlinear approximation of Section 3.2and then form a rooted tree from the selected (largest) coe�cients. More speci�cally, we (1) �nd the m, m � n,zSoft thresholding (where we shrink all wI > � by � after thresholding) is advantageous in certain problems.23xCalled simply \tree approximation" by Cohen et al.18



largest wavelet coe�cient terms; (2) form the smallest connected, rooted subtree T that contains all of these mcoe�cients; and then (3) increase m until jT j = n.{ See Figure 2(a){(c) for a simple example.Only when the wavelet coe�cients decay monotonically along the tree branches toward the leaves will the greedytree and the scalar nonlinear approximants coincide. In general, the error of the tree approximant will exceed thatof the scalar approximant, since the tree approximant can include isolated large coe�cients far from the tree rootonly by including all ancestor coe�cients, which may be small (see Figure 2(c)).Amazingly, for signals in Besov space, tree approximation has essentially the same power as scalar nonlinearapproximation. That is, for any function f 2 Bsp(Lp), s > 1=p � 1=2 (note the only slightly weakened, strictinequality), the error of greedy tree approximation can be bounded as18kf � bfnG k2 � CGn�s; (11)with CG � CN. Tree approximation works well for signals in Besov spaces, because the wavelet coe�cients of suchsignals must decay rapidly with scale, making the likelihood of an isolated large coe�cient tree less and less likelyas n!1.18,194.2. Optimal tree approximationWhile greedy tree approximation provides asymptotically near optimal approximation for signals in Besov spaces,it o�ers no performance guarantees at �nite tree sizes n � 1. We now discuss an approximation algorithm thatprovides optimal performance at all tree sizes.De�ne the optimal tree (in the L2 error sense) TO as the connected rooted tree T of size n that maximizes thesum of squares of the wavelet coe�cients:k TO = arg maxjT j=n XI2T jwI j2: (12)De�ne the optimal tree approximant bfnO as the sum of the wavelet terms with wI 2 TO. This optimization reducesto a linear programming problem; it can be easily solved in one of two ways.Solution 1: The direct constrained optimization (12) can be solved for a tree of exactly n terms using the\condensing sort and select algorithm" (CSSA).26,27 Recall that tree approximation coincides with greedy n-termapproximation (and hence can be solved by simply sorting the wavelet coe�cients) when the wavelet data is mono-tonically nonincreasing along the tree branches out from the root. The CSSA solves (12) in the case of general databy condensing the nonmonotonic segments of the tree branches using an iterative sort-and-average routine. In26,27the condensed nodes are called \supernodes" (see Figure 2(e)). Condensing a large coe�cient far down the treeaccounts for the (potentially large) cost of growing the tree to that point.Since the �rst step of the CSSA involves sorting all coe�cients, overall it requires O(N logN) computations.However, once the CSSA grows the optimal tree of size n, it is extremely cost-e�ective to grow the optimal trees ofsizes > n.While greedy tree approximation provides a tree that is admissible under the constraint jT j = n, it only approx-imately maximizes the performance measure (12), as Figure 2 shows. It is not enough to choose the largest waveletcoe�cient values, because a large value far out in the tree could waste precious tree mass over small coe�cients thatcontribute little to the performance measure.Solution 2: The constrained optimization (12) can be rewritten as an unconstrained problem by introducingthe Lagrange multiplier �21 maxT XI2T jwI j2 � �(jT j � n): (13)Here, T can be any size. Except for the inconsequential �n term, this optimization coincides with Donoho's \com-plexity penalized sum of squares",20,21 which can be solved in only O(N) computations using coarse-to-�ne dynamicprogramming on the tree.{Note that as we increase m by one, the tree size n will in general grow by some number � 1.kThis problem was originally posed in the context of designing optimal kernels for time-frequency analysis, but it applies here mutatismutandis. Donoho et al20,21 have posed this problem directly as a statistical estimation problem.
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(e) Formation of a supernodeFigure 2. Nonlinear approximation illustrated for n = 4 (SE denotes squared error). (a) Wavelet coe�cient valuesjwI j2 of the signal f placed on the binary wavelet tree. Nodes not labeled carry value zero. (b) The n-term nonlinearapproximant bf4N (Section 3.2) employs the largest n = 4 wavelet terms, regardless of their position in the tree. (c) Thegreedy tree approximant bf4G (Section 3.2) forms the connected, rooted subtree with 4 nodes containing bfmN , for thelargest possible m � 4. In this case, m = 2. (d) The optimal tree approximant bf4O (Section 4.2) forms the connected,rooted subtree with 4 nodes that maximizes the sum of the jwI j2 in the subtree. (e) It is not optimal to include thejwI j2 = 8 term in the approximation, because this would waste valuable tree area (two nodes) over zero coe�cients.For the purpose of selecting terms in the optimal tree approximation, it is convenient to average the jwI j2 = 8 termtowards the root, forming a \supernode" of value 8=3.26,27
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Figure 3. Nonlinear approximation of the doppler test signal by (�) scalar nonlinear, (dash) greedy tree, and (solid)optimal tree approximation. We plot the L2 approximation error on a log scale as a function of the number ofterms in the approximation n. After n = 60, all curves coincide. We transformed the 128-point signal using theDaubechies-4 wavelet1,2 and 7 scales.Solutions 1 and 2 play rôles analogous to the \sort" and \threshold" approaches to scalar nonlinear approximationfrom Section 3.2: The more costly Solution 1 hits the jT j = n constraint exactly, whereas the more cost-e�ectiveSolution 2 exhibits a more complicated, signal-dependent relationship between � and n.Regardless of the solution method, optimal tree approximation outperforms greedy tree approximation in general.Thus, for a function f 2 Bsp(Lp), s > 1=p� 1=2, the error of approximation can be bounded askf � bfnOk2 � COn�s (14)with CG � CO � CN. The constant CO is optimal for this problem.Figure 3 plots kf � bfnk2 for the scalar, greedy tree, and optimal tree approximations to the Doppler test signal.We see from the Figure that the optimal tree error curve forms a lower envelope for the greedy tree error curve. Theless monotonic the wavelet coe�cients along the tree branches, the greater will be the deviation between the greedyand optimal tree errors. However, for signals in Besov space, this e�ect will be limited by the swift decay of thecoe�cients across scale.4.3. Hierarchical wavelet representationsLike the linear and scalar nonlinear approximants, tree approximants induce (tree-based) hierarchical wavelet repre-sentations.4.3.1. Greedy tree representationFollowing ref,18 normalize the maximum wavelet coe�cient to magnitude 1 and de�ne Tr to be the smallest treecontaining all wavelet coe�cients of magnitude � 2�r+1, r � 1, with T0 containing the scaling coe�cients. De�ne�0 :=Xk uj0;k�j0;k; (15)�r := �0 + XI2Tr wI I ; r = 1; 2; : : : (16)�r corresponds to the greedy tree approximant bfG built from all wavelet terms wI I whose coe�cients jwI j � 2�r;Tr is the corresponding greedy tree.De�ne the di�erence tree approximants �0 := �0; (17)�r := �r ��r�1: (18)



(a) (b)Figure 4. Examples of more general tree structures for use with (a) longer wavelets than the Haar and (b) redundantwavelet transforms.Each �r contains the wavelet terms wI I whose coe�cients lie in the range 2�r � jwI j < 2�(r�1).Using these de�nitions, Cohen et al rewrite (2) as18f =Xr�0�r: (19)This decomposition is hierarchical in three di�erent ways: (space) the basis atoms of the wavelet transform aremultiscale in space; (coe�cients) the �r group wavelet coe�cients of roughly similar size, with this size decreasingexponentially with r; and (geometry) when terminated at any �nite r, the resulting representation lives on a connectedrooted wavelet subtree. In fact, the terminated decomposition is a valid greedy tree approximation of f . This naturalway to group wavelet coe�cients has proven very useful for image compression.18,19,24,254.3.2. Optimal tree representationOptimal tree approximation induces a new hierarchical wavelet representation. We merely rede�ne the �r, r � 1, tobe an optimal tree approximant with L2 error between 2�r+1kfk22 and 2�rkfk22 (corresponding to the performancemeasure (12) lying between (1 � 2�r)kfk22 and (1 � 2�(r�1))kfk22). Then, with �r as in (17), (18), we have therepresentation (19).Now, rather than grouping wavelet coe�cients of roughly similar size, the �r group coe�cients in terms of thosethat contribute most to decreasing the tree approximation error. Furthermore, when terminated at any �nite r, theresulting representation is an optimal tree approximation of f . This is also a very natural way to write the waveletdecomposition.4.4. ExtensionsWhen j0 > 0, we have several coarsest-scale wavelet coe�cients, with each rooting one of a forest of trees. While wecould build optimal tree approximations for each tree separately, it is more natural to form one tree by tying the rootwavelet coe�cients together at a \super root." The same approach applies to higher-dimensional wavelet transforms.For instance, tensor image wavelet transforms have separate forests for each of the three subbands corresponding tothe three wavelet orientations (vertical, horizontal, and diagonal).1Less obviously, there is no reason to insist on a binary tree structure for modeling the persistence of large and smallwavelet coe�cient values. While the binary tree is matched to the Haar wavelet, for longer overlapping wavelets,trees with more than two children could prove useful (see Figure 4(a), for example). In this case, each tree node willhave more than one parent. The key to all of this, of course, is to make the tree general enough that it can capturethe time-frequency structure of the singularities in the data under consideration. It is not clear whether the O(N)Solution 2 of Section 4.2 is applicable to approximation on such trees, since it assumes a nonoverlapping partitioningof the data. Solution 1 remains valid provided we take into account the multiplicity of parents.Tree structures can also be placed on redundant wavelet transforms,1,2 which retain the same number of waveletcoe�cients at each scale (see Figure 4(b), for example), complex wavelet transforms,28 and steerable pyramidtransforms.29



5. APPLICATION TO SIGNAL AND IMAGE ESTIMATIONWhile optimal tree approximations could potentially have application in data compression (where they could helpminimize the encoding distortion), they are immediately applicable to noise removal problems in signal and imageprocessing.20{22 In denoising we observe data f that consists of a desired signal g corrupted by additive whiteGaussian noise. Translated into the wavelet domain, the problem reads:given wI = dI + �I 8 I; estimate dI ; (20)with fwIg and fdIg the wavelet transforms of f and g, respectively, and f�Ig a white Gaussian noise process.Traditionally we work to minimize the mean-square-error of the estimate.A wavelet thresholding approach to denoising is simple to motivate. Assuming that most of the energy in thedesired signal g compacts into n (large) wavelet coe�cients, thresholding the noisy wavelet coe�cients fwIg (that is,computing the n-term approximation f bwIg) will \keep" the signal and \kill" most of the noise (which is distributeduniformly in the wavelet domain). That is, f bwIg should be a good estimator for the noise-free wavelet coe�cientsfdIg.Let S denote a (not necessarily connected) set of wavelet indices I and setbwI = ( wI ; I 2 S (keep)0; I =2 S (kill): (21)De�ne the best S as that solving the regularized optimizationmaxS XI2S j bwI j2 � �jSj (22)with � > 0. The parameter � balances minimization of bias (by matching f bwIg to fwIg) with minimization ofvariance (by penalizing the complexity of the estimate S).23,20,21�� Di�erent � lead to di�erent jSj and thus di�erentthresholds. Donoho has derived threshold values that yield asymptotically optimal estimators for signals in Besovspaces.23 See Figure 5(a){(c) for an example with a simple test signal.One problem with threshold-based denoising is that occasionally the random 
uctuations of the noise can cause\small" wavelet coe�cients far down the wavelet tree to jump above the threshold, becoming \large." These spuriousvalues are passed into the signal estimate as out-of-place wavelet atoms (see Figure 5(c)). This begs the question\which bumps are real bumps?"23For many signals (in particular those �tting a piecewise smooth signal model), we can answer that the \real"bumps are those that arise from coherent persistence structures across scale. Tree approximation allows us to factorthese structures into a wavelet thresholding denoising algorithm.In tree denoising, we constrain the set S in (22) to be a connected, rooted subtree T (just as in tree approxima-tion)..20{22 This provides an extra regularization in addition to the complexity penalty: With the tree constraint, awavelet coe�cient cannot be considered \large" and included in the estimate unless all of its ancestors are \large."Such a thresholding pattern is fully capable of capturing both smooth signal structures and edges, but not spuriousnoise bumps (see Figure 5(e)). The tree approximation can of course be computed using either algorithm from Sec-tion 4.2. Donoho has derived thresholds for use with the Haar wavelet and certain smoothness spaces that provideasymptotic error optimality.20,21Note that a signal estimate based on the greedy tree approximation of Section 4.1 does not have the same powerto suppress spurious noise bumps, since it is implicitly based on scalar thresholding (see Figure 5(d)).In Figure 6 we conduct a quantitative performance comparison of scalar, greedy tree, and optimal tree thresholdingfor denoising the test signal. Two features are evident: (1) both tree estimates boast a lower mean-square-error thanthe scalar estimate; and (2) the minima of both tree estimates occur to the right of the minimum of the scalar estimate,which indicates that at their optimal operating points, the tree estimates will contain more signal structure.��See17 for a derivation of soft threshold denoising as a least squares problem with a Besov norm regularization penalty.



(a) HeaviSine test signal (b) Noisy HeaviSine
(c) Hard threshold estimate (d) Greedy tree threshold estimate (e) Optimal tree threshold estimateFigure 5. Signal denoising using approximation concepts. (a) HeaviSine test signal, (b) noisy test signal. Both the(c) scalar hard threshold estimate (mean-squared-error, MSE=39) and (d) greedy tree estimate (MSE=25) containa large noise bump caused by a �ne-scale wavelet coe�cient creeping above the threshold. In contrast, since the(d) optimal tree estimate (MSE=21) naturally matches the structure of the singularities in this signal (recall Figure1(d)), it completely suppresses this and other bumps. Details: 1024-point signal with maximum value=4, additivewhite Gaussian noise �= 12 , Daubechies-6 wavelet, 6 scales, n = 18 terms in estimates.
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Figure 6. MSEs for the experiment of Figure 5 for various n: (�) scalar nonlinear, (dash) greedy tree, and (solid)optimal tree estimates.
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