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ABSTRACT

The more a priori knowledge we encode into a signal processing algorithm, the better performance we can expect.
In this paper, we overview several approaches to capturing the structure of singularities (edges, ridges, etc.) in
wavelet-based signal processing schemes. Leveraging results from approximation theory, we discuss nonlinear ap-
proximations on trees and point out that an optimal tree approximant exists and is easily computed. The optimal
tree approximation inspires a new hierarchical interpretation of the wavelet decomposition and a tree-based wavelet
denoising algorithm that suppresses spurious noise bumps.

Keywords: Wavelets, trees, nonlinear approximation, Besov space,optimization

1. INTRODUCTION

The wavelet transform provides a natural setting for developing new signal and image processing algorithms, especially
for signals and images rich in singularities (edges, ridges, and other transients). Since wavelets form a basis,'? they
can reproduce arbitrary functions, from highly structured real-world signals and images to completely unstructured
noise. In linguistic terms, the wavelet vocabulary can be too expressive.? * To better process real-world signals and
images, we must narrow this vocabulary’s scope by imposing a set of constraints  a grammar  that captures the
salient structures of singularities. While much research has concentrated on developing new wavelet vocabularies,
until recently relatively little effort has gone into grammatical modeling.

Clearly, the more knowledge we have about the structure of a signal class, the more accurate the model we can
construct and the better the performance of any signal processing algorithm derived from it. But what structure to
exploit in wavelet transforms?

The wavelet transform of a 1-d signal consists of the wavelet coefficients {w; 1}, indexed by a scale parameter j
and a space parameter k (higher dimensions are handled similarly).!> The wavelet coefficients form a pyramid or
tree that represents signal structure from coarse to fine scales. Singularities are particularly simply represented: the
energy from a singularity localizes along one branch of the tree (see Figure 1).! To best process singularity-rich data,
it is key that we match this persistence of singularity energy in the wavelet tree. Very roughly, we can delineate
between statistical and deterministic tree-based modeling approaches.!:7~15

In this paper, we will focus on an optimization-based approach to tree modeling in the wavelet domain that
extends the concept of nonlinear approzimation'®'7 to a kind of optimal tree approximation. Our results extend
those of Cohen et al'®1% somewhat but are closely related to those of Donoho et al?*?! and Engel.2? In a sense,
this paper is about different orderings of the terms in the wavelet series.

After quickly reviewing wavelets in Section 2 and linear and nonlinear approximation in Section 3, we turn to
tree approximation in Section 4. In Section 5 we demonstrate how our ideas (and those of Donoho et al?%?! and
Engel?2) can improve upon wavelet denoising by taking into account the persistency properties of singularities. We
close in Section 6 with a discussion and conclusions.

This work was commenced at the Isaac Newton Institute of Cambridge University and was supported by the Rosenbaum Fellowship
and by NSF grant MTP-9457438, DARPA/AFOSR grant F49620-97-1-0513, ONR grant N00014-99-1-0813, and the Texas Instruments
Leadership University Program.
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*While we will use these linguistic terms loosely, the analogy with signal modeling can be made formal; see refs* 6 for examples.
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Figure 1. (a) The coefficients of the wavelet transform naturally form a binary tree structure flowing from the
coarsest scale (root) to the finest scale (leaves). Each black node represents a wavelet coefficient. Image plots of
the wavelet coefficients {w; 1} for Donoho’s four test signals (b) Blocks, (¢) Bumps, (d) HeaviSine, and (e) Doppler
demonstrate the strong persistence across scale property of large and small wavelet coefficient values. Each
rectangular tile corresponds to one coefficient; its darkness corresponds to the size of |w; |, with white meaning
\wj,k =0.

2. WAVELET TRANSFORM

Given a lowpass scaling function ¢ and bandpass wavelet function v, define the multiscale atoms
Giu(t) =22 (Dt —k),  yie(t) =292t~ k), (1)

with j and k indexing their scale and position, respectively. For special choices of ¢ and 1, these atoms form an
orthonormal basis for L,,'2 and we have the following multiscale representation of a signal f

f= ujebior + D> wirthix, (2)
k j2jo k

with wj, & := (f, ¢jo.k) and w; . = (f,v; ). We will emphasize signals in L, ([0, 1]) but will not delve into the details

of the required boundary adapted wavelets.!»?> 1In this case, jo > 0, and there are 2/ wavelet atoms per scale j.

When convenient, we will use the short-hand notation I := (j, k) as a multi-index for the atoms; I corresponds to

the interval 279[k, k + 1), the support interval of the Haar wavelet ;. Images and higher-dimensional data can be
handled similarly using tensor products of ¢ and .

The multiscale nesting structure of the wavelet atoms  the support of each ¢; ;, contains the supports of ;41 2
and ;41 2841 induces a binary tree structure on the wavelet coefficients (see Figure 1(a)). We say that w;y is
the parent of its two children wjy1 2r and wjy1 2x4+1. For simplicity (but without loss of generality, see Section 4.4),
we will assume in most of the sequel that j, = 0, which leads to a single wavelet tree with root at the coarsest-scale
wavelet coefficient wg ¢ (as in Figure 1(a)). The single scaling coefficient ug o crowns the tree. Define a subtree as
any connected set of nodes in the tree; define a rooted subtree as a subtree that includes the main tree root.

Wavelets act as multiscale edge detectors: Large/small wavelet coefficients indicate the presence of an edge/smooth
region in the support of the wavelet. Due to the nesting property of child wavelets inside their parents, edges and
other singularities manifest themselves in the wavelet domain as chains of large wavelet coefficients along the branches
of the tree (recall Figure 1).

Many of the remarkable properties of wavelets stem from the fact that they form unconditional bases for a plethora
of function spaces, including the L,, 1 < p < oo, Sobolev, Besov, and Triebel spaces.1617:19:23  Unconditionality



gives wavelet bases optimal energy compaction properties: For signals in these spaces, the wavelet representation
packs more energy into a fixed number of coefficients than any other basis.

Roughly speaking, the Besov space BZ(LP) contains functions with s > 0 derivatives as measured in L,, p > 0
(the ¢ parameter makes finer distinctions in smoothness). For wavelets with r > s vanishing moments, the Besov
norm is equivalent to a simple sequence norm on the wavelet coefficients!®:17:19:23;

1/p a\1/4a
Wl = ooty + | T (2 (S]] ) ®
Jj2Jjo k
with s’ = s — 1/p + 1/2 and the obvious modifications if p or ¢ = co. This norm comprises an [, norm within

each scale j and then a weighted [, norm across scale. Clearly a signal lies in a given Besov space if and only
if its wavelet coeflicients decay sufficiently rapidly (with the decay constraints becoming more stringent as s and
p increase). Special cases of Besov spaces include the homogeneous Besov spaces B;(L,) and the Sobolev spaces
W?#(Ly) := B3(L2). When s =1/p—1/2, the B;(L,) norm has a particularly simple form:

1l sz, = Mot + s el (1)

3. LINEAR VS. NONLINEAR APPROXIMATION

Wavelet approximation deals with the following problem: approximate a function f using n terms of its wavelet
series representation (2). (We will employ all of the scaling coefficient terms >, wj, x¢;,,, in our approximations
without including them in the total n.)

3.1. Linear approximation

In linear approximation, we construct the approximant ]?L" by projecting f onto a fixed n-dimensional subspace of
L, defined by n fixed wavelets. Typically, we employ the first n terms in the double sum of (2):

=) wibion + Y. D wistik. (5)
k

Jo<j<dJ k

n terms

That is, we use wavelets up to some fixed scale J < co. Each signal is approximated by the same n wavelet terms,
which makes the process linear: (fi + f2)' = (fi){* + (f2);". Linear approximation is hierarchical in the sense that
as n — oo, we add resolution to the approximation one scale band at a time.

For any function f € W#(Ls), the Ly error of approximation can be bounded as!617:191

If— Fll2 < CLn™™. (6)

3.2. Nonlinear approximation

In nonlinear approximation  also known as n-term or greedy approximation  we order the terms in the approximant,
not according to wavelet scale j but according to wavelet coefficient size |w;|>. That is, for j > jo we order the
wavelet coefficients such that

|w11‘2 > |wI2|2 >, |wli ? > |w1i+1|2 > .. (7)

and form the approximant using the first n (largest) elements in this list:

n
o= e dion + > wr b, (8)
k i=1
In general, different signals will be represented using different wavelet terms, which makes the process nonlinear:

1/+\ I Al v+ Ag Y. Nonlinear approximation is hierarchical in the sense that wavelet terms are included in
J2)N N J2)N pp
order of size, with large coefficients first and small coefficients later.

tSimilar results hold when we measure the error in other L, norms.'6



Since we use the largest n terms in the representation (2), ||f — f,{}”z <|f- ﬁle Furthermore, for any function
f € By(Ly), s > 1/p—1/2, the nonlinear approximation error can be bounded as'6-'7-1?

1f = flls < Cnn s, (9)

with Cy < CL. This might not seem much of an improvement over linear approximation (see (6)); however this is not
the case, for two reasons. First, for a given s, the space B;(L,) is considerably larger than W?(Ly), meaning that
the nonlinear scheme can approximate more functions at rate n—*. Second, if f € W?*(Lsy) then also f € By (Ls),
a=1/b—1/2, with a > s, meaning that f has greater smoothness in Bj (L) (and hence faster error decay with
nonlinear approximation) than in W#(L,) (with linear approximation).!”

Relation to thresholding: Given N total wavelet terms in (2) (as we would have in the representation of a
discrete-time signal), assembling the n-term approximation requires that we sort the wavelet coefficients. The cost

3

of sorting  O(NlogN) in general  exceeds the O(N) cost of the forward and inverse wavelet transforms.

Applying a (hard) threshold 7 to the wavelet coefficients?

_ {wz, lwr[* > 7 (keep)

wry = . 10
0, lwr]? <7 (kill) 10

also generates the coefficients a nonlinear approximation. And, in contrast to sorting, thresholding is an O(N)
operation.

Note, however, that the exact relationship between the threshold 7 and the number of terms n in the approxi-
mation is signal dependent, and hitting a prespecified n terms using thresholding will require multiple thresholding
passes in general. If more than log N thresholdings are required, then sorting is a more efficient option. Nevertheless,
for signal estimation (denoising)??® and certain compression applications,!®19:24:25 it is more natural to use T as a
control parameter than n.

4. TREE APPROXIMATION

Nonlinear approximation, while optimal in a squared error sense, does not explicitly exploit the structure of the n
largest wavelet terms it employs. There are several justifications for taking this structure into account. In coding
applications, for example, we must encode not only the n coefficients we wish to transmit, but also their locations
in the wavelet tree. Clearly if the n coefficients lie on an unstructured set in the wavelet domain, then the cost of
position encoding could exceed value encoding.'® We will see another example involving wavelet denoising below
in Section 5.20 22

In tree approximation, we seek a nonlinear approximation possessing both a small error and substantial struc-
ture.!®¥  But what structure to exploit? Large signal classes are known to exhibit considerable structure in the
wavelet domain. Wavelet coefficients of smooth signals (those in Besov spaces, for example) must decay as scale
j — oo. Wavelet coefficients of singularities have large wavelet, coefficients that persist along the branches of the
wavelet tree.l11:24 Both of these types of signal behaviors (smooth regions and singularities) lead to wavelet coeffi-
cients that are large on rooted subtrees of the main wavelet tree. The configuration of such a tree is easily encoded
(most simply by the locations of its leaves, for example).!8:19,24.25

A tree approximation represents a function by the largest wavelet coefficients in a connected, rooted subtree of
the main wavelet tree. That is, a wavelet coefficient is not included in the approximant before any of its ancestors.
Depending on how we define “largest” we obtain different approximations. Surprisingly, the performance of tree
approximation comes very close to that of n-term nonlinear approximation for a large class of signals.

4.1. Greedy tree approximation

To be clear in the sequel, we will add the qualifier “scalar” when referring to n-term nonlinear approximation a la
Section 3.2. Define T as a connected rooted subtree of wavelet coefficients containing | 7| wavelet coefficients.

In n-term greedy tree approzimation’ we simply perform the usual scalar nonlinear approximation of Section 3.2
and then form a rooted tree from the selected (largest) coefficients. More specifically, we (1) find the m, m < n,

¥Soft thresholding (where we shrink all w; > 7 by 7 after thresholding) is advantageous in certain problems.?3

§Called simply “tree approximation” by Cohen et al.'8



largest wavelet coefficient terms; (2) form the smallest connected, rooted subtree 7 that contains all of these m
coefficients; and then (3) increase m until | 7| = n.Y See Figure 2(a)—(c) for a simple example.

Only when the wavelet coefficients decay monotonically along the tree branches toward the leaves will the greedy
tree and the scalar nonlinear approximants coincide. In general, the error of the tree approximant will exceed that
of the scalar approximant, since the tree approximant can include isolated large coefficients far from the tree root
only by including all ancestor coefficients, which may be small (see Figure 2(c)).

Amazingly, for signals in Besov space, tree approximation has essentially the same power as scalar nonlinear
approximation. That is, for any function f € B;(L,), s > 1/p — 1/2 (note the only slightly weakened, strict
inequality), the error of greedy tree approximation can be bounded as'®

If — fella < Cen™, (11)

with Cg > Cy. Tree approximation works well for signals in Besov spaces, because the wavelet coefficients of such
signals must decay rapidly with scale, making the likelihood of an isolated large coefficient tree less and less likely
as n — oo.1819

4.2. Optimal tree approximation

While greedy tree approximation provides asymptotically near optimal approximation for signals in Besov spaces,
it offers no performance guarantees at finite tree sizes n < oc. We now discuss an approximation algorithm that
provides optimal performance at all tree sizes.

Define the optimal tree (in the Lo error sense) 7o as the connected rooted tree T of size n that maximizes the
sum of squares of the wavelet coefficients:!!

To = arg max Z lwr|?. (12)
T fer

Define the optimal tree approximant fg as the sum of the wavelet terms with w; € To. This optimization reduces
to a linear programming problem; it can be easily solved in one of two ways.

Solution 1: The direct constrained optimization (12) can be solved for a tree of exactly n terms using the
“condensing sort and select algorithm” (CSSA).26:27 Recall that tree approximation coincides with greedy n-term
approximation (and hence can be solved by simply sorting the wavelet coefficients) when the wavelet data is mono-
tonically nonincreasing along the tree branches out from the root. The CSSA solves (12) in the case of general data
by condensing the nonmonotonic segments of the tree branches using an iterative sort-and-average routine. In26-27
the condensed nodes are called “supernodes” (see Figure 2(e)). Condensing a large coefficient far down the tree
accounts for the (potentially large) cost of growing the tree to that point.

Since the first step of the CSSA involves sorting all coefficients, overall it requires O(N log N) computations.
However, once the CSSA grows the optimal tree of size n, it is extremely cost-effective to grow the optimal trees of
sizes > n.

While greedy tree approximation provides a tree that is admissible under the constraint |7| = n, it only approx-
imately maximizes the performance measure (12), as Figure 2 shows. It is not enough to choose the largest wavelet
coefficient values, because a large value far out in the tree could waste precious tree mass over small coefficients that
contribute little to the performance measure.

Solution 2: The constrained optimization (12) can be rewritten as an unconstrained problem by introducing
the Lagrange multiplier A\?!

2
max — A —n). 13
12 > fwi = A(T| = n) (13)
IeT
Here, T can be any size. Except for the inconsequential An term, this optimization coincides with Doncho’s “com-
plexity penalized sum of squares”,2%2! which can be solved in only O(N) computations using coarse-to-fine dynamic

programming on the tree.

TNote that as we increase m by one, the tree size n will in general grow by some number > 1.
IThis problem was originally posed in the context of designing optimal kernels for time-frequency analysis, but it applies here mutatis
mutandis. Donoho et al?921 have posed this problem directly as a statistical estimation problem.
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Figure 2. Nonlinear approximation illustrated for n = 4 (SE denotes squared error). (a) Wavelet coefficient values
lw|* of the signal f placed on the binary wavelet tree. Nodes not labeled carry value zero. (b) The n-term nonlinear
approximant fN (Section 3. 2) employs the largest n = 4 wavelet terms, regardless of their position in the tree. (c) The
greedy tree approximant fG (Section 3.2) forms the connected, rooted subtree with 4 nodes containing fN , for the
largest possible m < 4. In this case, m = 2. (d) The optimal tree approximant fo (Section 4.2) forms the connected,
rooted subtree with 4 nodes that maximizes the sum of the |w;|* in the subtree. (e) It is not optimal to include the
\wr|? = 8 term in the approximation, because this would waste valuable tree area (two nodes) over zero coefficients

For the purpose of selecting terms in the optimal tree approximation, it is convenient to average the |w;|*> = 8 term
towards the root, forming a “supernode” of value 8/3.26:27
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Figure 3. Nonlinear approximation of the doppler test signal by (o) scalar nonlinear, (dash) greedy tree, and (solid)
optimal tree approximation. We plot the L, approximation error on a log scale as a function of the number of
terms in the approximation n. After n = 60, all curves coincide. We transformed the 128-point signal using the
Daubechies-4 wavelet'? and 7 scales.

Solutions 1 and 2 play roles analogous to the “sort” and “threshold” approaches to scalar nonlinear approximation
from Section 3.2: The more costly Solution 1 hits the |7| = n constraint exactly, whereas the more cost-effective
Solution 2 exhibits a more complicated, signal-dependent relationship between A and n.

Regardless of the solution method, optimal tree approximation outperforms greedy tree approximation in general.
Thus, for a function f € B;(Ly), s > 1/p — 1/2, the error of approximation can be bounded as

Ilf — fA3||2 < Con™*® (14)

with Cg > Co > Cn. The constant Cp is optimal for this problem.

Figure 3 plots ||f — }?"||2 for the scalar, greedy tree, and optimal tree approximations to the Doppler test signal.
We see from the Figure that the optimal tree error curve forms a lower envelope for the greedy tree error curve. The
less monotonic the wavelet coefficients along the tree branches, the greater will be the deviation between the greedy
and optimal tree errors. However, for signals in Besov space, this effect will be limited by the swift decay of the
coefficients across scale.

4.3. Hierarchical wavelet representations

Like the linear and scalar nonlinear approximants, tree approximants induce (tree-based) hierarchical wavelet repre-
sentations.

4.3.1. Greedy tree representation

Following ref,'® normalize the maximum wavelet coefficient to magnitude 1 and define 7, to be the smallest tree
containing all wavelet coefficients of magnitude > 2-"+!, r > 1, with 75 containing the scaling coefficients. Define

S0:= > Wjo ko ks (15)
k

Y=g+ Z’IUI’I/J[, r=1,2,... (16)
IET,

3, corresponds to the greedy tree approximant f(.; built from all wavelet terms w;1); whose coefficients |w;| > 27";
T is the corresponding greedy tree.

Detfine the difference tree approximants
AU = 20, (17)

AT = Er - erl- (18)



(a)

Figure 4. Examples of more general tree structures for use with (a) longer wavelets than the Haar and (b) redundant
wavelet transforms.

Each A, contains the wavelet terms wyt; whose coefficients lie in the range 27" < |wy| < 2 (r=1),

Using these definitions, Cohen et al rewrite (2) as!'®

=3 A, (19)

r>0

This decomposition is hierarchical in three different ways: (space) the basis atoms of the wavelet transform are
multiscale in space; (coefficients) the A, group wavelet coefficients of roughly similar size, with this size decreasing
exponentially with r; and (geometry) when terminated at any finite 7, the resulting representation lives on a connected
rooted wavelet subtree. In fact, the terminated decomposition is a valid greedy tree approximation of f. This natural
way to group wavelet coefficients has proven very useful for image compression.!8:19,24.25

4.3.2. Optimal tree representation

Optimal tree approximation induces a new hierarchical wavelet representation. We merely redefine the .., r > 1, to
be an optimal tree approximant with Ly error between 27 "1/ f]|2 and 27"||f||3 (corresponding to the performance
measure (12) lying between (1 —277)||f||3 and (1 — 2= ""1D)||f]|3). Then, with A, as in (17), (18), we have the
representation (19).

Now, rather than grouping wavelet coefficients of roughly similar size, the A, group coefficients in terms of those
that contribute most to decreasing the tree approximation error. Furthermore, when terminated at any finite r, the
resulting representation is an optimal tree approximation of f. This is also a very natural way to write the wavelet
decomposition.

4.4. Extensions

When jo > 0, we have several coarsest-scale wavelet coefficients, with each rooting one of a forest of trees. While we
could build optimal tree approximations for each tree separately, it is more natural to form one tree by tying the root
wavelet coefficients together at a “super root.” The same approach applies to higher-dimensional wavelet transforms.
For instance, tensor image wavelet transforms have separate forests for each of the three subbands corresponding to
the three wavelet orientations (vertical, horizontal, and diagonal).!

Less obviously, there is no reason to insist on a binary tree structure for modeling the persistence of large and small
wavelet coefficient values. While the binary tree is matched to the Haar wavelet, for longer overlapping wavelets,
trees with more than two children could prove useful (see Figure 4(a), for example). In this case, each tree node will
have more than one parent. The key to all of this, of course, is to make the tree general enough that it can capture
the time-frequency structure of the singularities in the data under consideration. It is not clear whether the O(N)
Solution 2 of Section 4.2 is applicable to approximation on such trees, since it assumes a nonoverlapping partitioning
of the data. Solution 1 remains valid provided we take into account the multiplicity of parents.

Tree structures can also be placed on redundant wavelet transforms,"»2 which retain the same number of wavelet
coefficients at each scale (see Figure 4(b), for example), complex wavelet transforms,?® and steerable pyramid
transforms.??



5. APPLICATION TO SIGNAL AND IMAGE ESTIMATION

While optimal tree approximations could potentially have application in data compression (where they could help
minimize the encoding distortion), they are immediately applicable to noise removal problems in signal and image
processing.2® 22 In denoising we observe data f that consists of a desired signal g corrupted by additive white
Gaussian noise. Translated into the wavelet domain, the problem reads:

given w; =d; +mn; VI, estimate dj, (20)

with {w;} and {d;} the wavelet transforms of f and g, respectively, and {r;} a white Gaussian noise process.
Traditionally we work to minimize the mean-square-error of the estimate.

A wavelet thresholding approach to denoising is simple to motivate. Assuming that most of the energy in the
desired signal g compacts into n (large) wavelet coefficients, thresholding the noisy wavelet coefficients {w;} (that is,
computing the n-term approximation {w;}) will “keep” the signal and “kill” most of the noise (which is distributed
uniformly in the wavelet domain). That is, {w;} should be a good estimator for the noise-free wavelet coeflicients

{dr}.

Let S denote a (not necessarily connected) set of wavelet indices I and set

R wr, I€S (keep)
wy = (21)
0, ¢S (kill).
Define the best S as that solving the regularized optimization
max 37 [ [” — S (22)

Ies

with ¢ > 0. The parameter p balances minimization of bias (by matching {@;} to {w;}) with minimization of
variance (by penalizing the complexity of the estimate §).2320:21** Different u lead to different |S| and thus different
thresholds. Donoho has derived threshold values that yield asymptotically optimal estimators for signals in Besov
spaces.?? See Figure 5(a) (c) for an example with a simple test signal.

One problem with threshold-based denoising is that occasionally the random fluctuations of the noise can cause
“small” wavelet coefficients far down the wavelet tree to jump above the threshold, becoming “large.” These spurious
values are passed into the signal estimate as out-of-place wavelet atoms (see Figure 5(c)). This begs the question
“which bumps are real bumps?”?23

For many signals (in particular those fitting a piecewise smooth signal model), we can answer that the “real”
bumps are those that arise from coherent persistence structures across scale. Tree approximation allows us to factor
these structures into a wavelet thresholding denoising algorithm.

In tree denoising, we constrain the set S in (22) to be a connected, rooted subtree T (just as in tree approxima-
tion)..?% #2 This provides an extra regularization in addition to the complexity penalty: With the tree constraint, a
wavelet coefficient cannot be considered “large” and included in the estimate unless all of its ancestors are “large.”
Such a thresholding pattern is fully capable of capturing both smooth signal structures and edges, but not spurious
noise bumps (see Figure 5(e)). The tree approximation can of course be computed using either algorithm from Sec-
tion 4.2. Donoho has derived thresholds for use with the Haar wavelet and certain smoothness spaces that provide
asymptotic error optimality.?:2!

Note that a signal estimate based on the greedy tree approximation of Section 4.1 does not have the same power
to suppress spurious noise bumps, since it is implicitly based on scalar thresholding (see Figure 5(d)).

In Figure 6 we conduct a quantitative performance comparison of scalar, greedy tree, and optimal tree thresholding
for denoising the test signal. Two features are evident: (1) both tree estimates boast a lower mean-square-error than
the scalar estimate; and (2) the minima of both tree estimates occur to the right of the minimum of the scalar estimate,
which indicates that at their optimal operating points, the tree estimates will contain more signal structure.

**Seel” for a derivation of soft threshold denoising as a least squares problem with a Besov norm regularization penalty.



(a) HeaviSine test signal (b) Noisy HeaviSine

N

(c) Hard threshold estimate (d) Greedy tree threshold estimate (e) Optimal tree threshold estimate

Figure 5. Signal denoising using approximation concepts. (a) HeaviSine test signal, (b) noisy test signal. Both the
(c) scalar hard threshold estimate (mean-squared-error, MSE=39) and (d) greedy tree estimate (MSE=25) contain
a large noise bump caused by a fine-scale wavelet coefficient creeping above the threshold. In contrast, since the
(d) optimal tree estimate (MSE=21) naturally matches the structure of the singularities in this signal (recall Figure
1(d)), it completely suppresses this and other bumps. Details: 1024-point signal with maximum value=4, additive
white Gaussian noise o:%, Daubechies-6 wavelet, 6 scales, n = 18 terms in estimates.

0 10 20 30 40
number of terms in estimate (n)

Figure 6. MSEs for the experiment of Figure 5 for various n: (o) scalar nonlinear, (dash) greedy tree, and (solid)
optimal tree estimates.



6. CONCLUSIONS

This paper has aimed to elucidate the links between greedy tree'® and optimal tree approximation.?%2!  While
Dohono’s fast O(N) algorithm for solving the tree approximation problem should be sufficient for most applica-
tions, there could be situations where the O(N log N) CSSA is more appropriate. Regardless of the computational
algorithms involved, tree approximation can impart considerable useful structure into wavelet signal processing al-
gorithms. For example, by incorporating a priori knowledge on the structure of singularities in the wavelet domain,
tree-based denoising suppresses spurious noise bumps. This scheme can thus be interpreted as a deterministic coun-
terpart to the Bayesian statistical estimation scheme of ref.!!

It is not clear that the optimal tree approach is directly applicable in the tree encoding scheme of Cohen et al,'®
because supernodes containing many small wavelet coefficient values can hide large values that eventually need to
be coded (see Figure 2(e), for example). Moreover, given the rapid decay of the wavelet coeflicients and the shallow
depths of the wavelet trees used in practice, the difference between the greedy and optimal tree approximations may
be only slight (recall Figure 3). An optimal tree encoder could potentially outperform a greedy tree in a perceptual
metric, however (recall Figure 5).

Acknowledgements: Thanks to Ron DeVore for exposing me to greedy tree approximation and for many fruitful
discussions. Thanks to David Donoho for pointing me to refs.2? 22
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