INCONCLUSIVE RATE WITH A POSITIVE OPERATOR
VALUED MEASURE

HOWARD E. BRANDT

ABSTRACT. Analysis is performed of explict optical implementations of both
a positive operator valued measure (POVM) and an ordinary von Neumann
projective measure. The POVM is demonstrated to have the lower inconclusive
rate. Also, the effect of a general unitary disturbance on the inconclusive rate
of the POVM implementation is calculated explicitly.

1. INTRODUCTION

A positive operator valued measure (POVM) [1-7] can be usefully implemented
in a quantum key receiver [8-14]. The following set of POVM operators represents
the possible measurements performed by the receiver:

(1) Ay = (14 (uf)) ™t (1= Jv) (2]),
(2) Ay = (14 (ufo)) ™ (1 = [u) (u]),
(3) Ar=1- Ay —A,.

Here, the kets |u) and |v) represent the two possible nonorthogonal normalized
polarization states of a carrier photon with linear polarizations designated by u
and v, respectively. The angle between the corresponding polarization vectors is 8.
The photon is a spin-one representation of the Lorentz group, and it follows that
the Dirac bracket between the two states is {11]

(4) (ulv) = sin2a,
where
1l /7

(The use of the angle « instead of 6 is convenient in the following.) The states |u)
and |v) may encode bit values 0 and 1, respectively. The POVM operators, Eqgs. (1)-
(3), are nonnegative and their sum is unity. The operators 4, and A, measure
the probability of outcomes u and v, respectively. The operator A» measures the
probability of an inconclusive measurement.

The advantage of a POVM over an ordinary von Neumann projective measure-
ment is that, for the POVM, the probability of getting an inconclusive result can
be lower [8,14,15]. To see this, first consider, for comparison of a projective valued
(PV) receiver with the POVM receiver, the simple all-optical PV receiver depicted
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in Figure 1. (The all-optical POVM receiver is already exposited elsewhere [9-13].)
The PV receiver consists of an incoming carrier photon in polarization state

(6) [¥) = & lu)+ B Jv)

for complex numbers & and ,5, a 50-50 beam splitter BS, two Wollaston prisms W,
and W, and four photodetectors D, D, , D, , and D,. The Wollaston prism W,
is aligned so that a photon in state |u) would take the path labeled by the state

|ts) and polarization vector @u, and not the path labeled by the state |14) and
polarization vector éu .. Here, Qu denotes a unit polarization vector corresponding

to the polarization state |u) and is perpendicular to the polarization vector Qu L
corresponding to the polarization state |u) orthogonal to |u). Analogously, the
Wollaston prism W, is aligned so that a photon in state |v) would take the path

labeled by the state |1s) and polarization vector ’e\,,, and not the path labeled by

the state |i5) and polarization vector QU . (perpendicular to /e\,,). It is immediately
evident from Figure 1 that

(7) [va) =272 (& |u) + B [0))
(®) Ia) =272 (& u) + B 1)),
(9) [h3) = 271/% (a + B sinza) Qu>,

(10) [1h4) = 2722 B cos 2

A

€u, ),
A

€, )
A
eU )

(11) [s) =271/ & cos 2a

(12) is) = 27/2 (G sin2ar+ 5)

8>

FIGURE 1. PV receiver.
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tion vectors eu, /e\u €y, and ev ., respectively. It then follows that the probability
Py, that the photon in state |¢)) is detected by ideal detector D,, is given by

A
eu>, and

€, ¢> represent unit kets corresponding to polariza-

where |e

2
(13) = |¢sl® = 1a+ ﬁsm2a|

Analogously, for detectors D,,, D, , and D,, one has

1:-)2
(14) P¢uJ_ = |¢4|2 = 5 iﬁl cos’ 20,
9o 1,_2 4
(15) Py, =s|” = §|a| cos” 2a,
2 _ 1. 2|2
(16) Pyy = |t6|” = 3 |a sin 2o+ ,6| :

From Egs. (13)—(16), it follows that
- - - 2
(17)  Pyu+ Pyu, + Pyy + Pyy, =& + &*Bsin2a+ Gf sin2a + }ﬁ| =1,

as must be the case, provided that the state |¢), Eq. (6), is normalized to unity,
and probability is conserved.

2. INCONCLUSIVE RATES COMPARISON

If the incoming photon state is lzp) |u), one has {a, ﬁ} {1 0} and Egs. (13)-
(16) yield Puy = 3, Puw, =0, Py, = 5c05°2a, Pyy = § sin’ 2a. Analogously, in
the case where the incoming photon state is |4)) = |v), one has {&, 8} = {0,1} and
P, = Lsin®20, P,,, = }cos?2a, Py, =0, Py, = ;. If states |u) and |v) are
equiprobably incident on the receiver, then since detector D,, or D,, can be triggered
by both states |u) and [v), it follows that the probability PFV of an inconclusive
measurement is given by

(18) PPV = Pyy + Py = % (1 +sin?2a) ,
or equivalently,
(19) PPV = Puy+ Poy = 5 (14510 20)

One can conclude that for the two-state quantum key distribution protocol, in
which a photon is incident equiprobably in state |u) or |v), the inconclusive rate
PFV for the projective receiver is

(20) PV = % (1 +sin? 2a) .

One can also obtain Eq. (20) by reasoning that the inconclusive rate for the PV
measure is given by

(21) 7Y =1-Poy,
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where PEV is the probability of obtaining a conclusive result. From Fig. 1, it is

evident that

1 1
Pon = Pu, =35 (ul(ve) v =35 [uloL)®
(22) e %sin2 g = % (1 —sin®2a).

Equation {22) follows, since the ideal detector D,, cannot have been excited by
the state |v), and therefore can only have been excited by the state [u), and the
measurement operator for the state |vy) is [uy) (v1| [11]. (The overall factor of 3
appears in Eq. (22), because the probability is 1; that the photon takes the path
from the beamsplitter leading to the Wollaston prism W,. Also note that Eq. (22)
is consistent with Eq. (15) for & = 1.) If one substitutes Eq. (22) in Eq. (21), then
Eq. (20) again follows. Of course, Eq. (22) also follows analogously from

1 1
Pon = Pu, =5 @(lua) () =3 [(vlus)?
(23) 2 %sin2 6= % (1 -sin®2a).

It has been demonstrated in previous work that the inconclusive rate Py ¥™ of
the POVM receiver for the arbitrary incoming state, Eq. (6), is given by [9,11-13]
- _12
(24) PEOVM = (y| rly) = |& + ,3] sin 2a.

(The second equality in Eq. (24) is also consistent with the first, as can be seen by
substituting Egs. (3) and (6) in the first.)
For incoming state {¢/) = |u), one then has {a,8} = {1,0}, and Eq. (24) becomes

(25) PEPVM — gin2q.
For incoming state |1) = |v), one has {a,8} = {0,1}, and
(26) PEOVM _ pPOVM _ iy 2ar,

It follows that the inconclusive rate PYOVM of the ideal POVM receiver for the
equiprobable two-state protocol is given by

(27) PFOVM — gin 20,
Using Egs. (20) and (27), one then obtains
POVM 92sin 2
(28) BT _ 2enie g
F; 1 + sin® 2a

as depicted in Figure 2. Thus, in fact, the inconclusive rate for the POVM receiver
is less than that of the PV receiver, and the rate ratio is determined by the angle
between the two polarization states (see Eq. (5)).

3. DISTURBED INCONCLUSIVE RATE

The Fuchs-Peres model of eavesdropping on the two-state key-distribution proto-
col represents the most general possible unitary disturbance of each encoded photon
incident on the receiver [16]. In this model, an incoming carrier state |u) and the
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Fi1GURE 2. Inconclusive rate comparison for POVM and PV receivers.

state jw) of a disturbing probe undergo joint unitary evolution represented by a
unitary operator U, resulting in the entangled state [10,16,17]:

. 1
Uu@w) = 3 [(1 + sec2a) |®go) + tan 2a |B10) — tan 2a [Py )

1
+ (1 — sec2a) [®11) | ® |u) - 5[tan2a|<1>oo) — (1 — sec2a) |P10)

(29) — (1 + sec2a) | 1) — tan2a|®11) | @ [v).

Here |®,,,) are states in the Hilbert space of the disturbing probe, and are neither
normalized nor orthogonal. Equation (29) follows from Eqs. (1) and (2) of Slutsky
et al [17]. Similarly, for an incoming state |v), one has

Upow) = %[tan2a |®00) + (1 + sec2¢) |®10) + (1 — sec 2a) |Poz)

1
— tan2a|®11) ] ® |u) + 3 [(1 — sec2a) |®oo) — tan 2c|®10)
(30) + tan2c|®o1) + (1 + sec2e) |®11) ] ® ).

The probe states |®,,,) have certain symmetry properties that arise from the ran-
dom equiprobable selection of carrier states |u) and |v) by the key transmitter, and
the resulting symmetry of the probe under interchange of |u) and |v) . Specifically,
one has [16,17]

(31) |@o0| = |®11],

(32) |@o1| = |®10],

(33) {@o0|Po1) = (211|210} ,
(34) (®o0|®10) = (®11|P01)
(35) (@01]®10) = (®10/P02)
(36) (@o1]|®00) = (®10/P11)
(37) (®01]|®11) = (P10/P00) »
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(38) (@11]®00) = (®oo|®11) -

According to Eq. (24), the inconclusive rate Ry induced by the disturbing probe in
the POVM receiver is given by

(39) Rr=Py=(u®uw U 4U[uew),

where P, is the probability that if a photon in polarization state |u) is transmitted,

then the measurement by the POVM receiver is inconclusive. Alternatively, one
also has

(40) Ry =Py =(wow| UtAUjyew),

because of the symmetry of the two-state protocol. Equivalently, using Eq. (3) in
Eq. (39), one also has for the induced inconclusive rate:

(41) R?=1_Pu.u_Pu1n

where P,, and P,, are the probabilities that if the carrier is a |u) state, then the
detectors D, and D,, respectively, respond. Here, one has

(42) Py = (u®@uwlUTAU lu®w),
(43) Pow=w@w U AUlow).
Substituting Egs. (2), (29) and (31)-(38) in Eq. (43), one obtains
P, = (1+sin2a)7! [ (1 - sin® @ — cos* a) [@o|® + (1 - %sinz 2a) |®01|% .
1. 1. 1,
+ 5 sin 2¢ (leéu) + 5 sin 2a (Qoo Q;o) - 5 sin 2c (‘Pool@ol)
1 1 1
(44) = 5 sin® 20 (®0g|®11) — 5 8in 2 (®01|@o0) — 5 sin? 2a (®g1|P10) ]

The probe states |®,,,), expanded in terms of orthonormal basis vectors |wg), are
given by Eqgs. (3a), (3b), and (4) of Slutsky et al [17], namely,

(45) [®00) = Xo |wo) + X1 [w1) + Xz |wz) + X3 |ws),
(46) |®11) = X3 |wo) + Xz |w1) + X1 |we) + Xo |ws)
(47) |®01) = X5 |w1) + Xo |wa),
(48) |®10) = Xg |w1) + X5 |wa) .

Here the real coefficients {Xo, X1, X2, X3, X5, X6}, expressed in terms of the probe
parameters {A, i, 6, ¢}, are [16,17]

(49) Xo = sin A cos y,
(50) X, = cos A cosfcos ¢,
(51) X5 = cos Acosfsin ¢,

(52) X3 = sin Asin p,
(53) X5 = cos Asinf cos ¢,
)

(54 Xg = —cos Asinfsin ¢,
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consistent with the assumed unitarity of the disturbing probe.
Next, substituting Eqs. (45)—(48) in Eq. (44), one gets

P, = (1+sin2a)7! [(1 —sin*a —cost @) (X& + X7 + X7 + X3)

+ (1 _ %sinz 2a) (X2 + X2) + sin 20 (X1 X6 + X2 X5)

— sin2a (X1X5 + Xsz)

(55) — sin® 20 (Xo X3 + X1 Xz + X5 Xs) ]
Then if one substitutes Eqs. (49)-(54) in Eq. (55), the latter becomes
P, = %(1 + sin2a) ™! [1 — cos4a + 2(1 + cos 4a) cos® Asin® 6
— 25in 20 cos® A sin 26 cos 2¢ — 2 sin® 2asin? Asin 2u
(56) — 2sin® 2c cos® ) cos 20 sin 2¢] .
Analogously, it can be shown that Eq. (42) becomes
P = % (1 - sin2c) [2 sin® A + 2 cos® X cos® 0 + tan® 20

— tan 2a sec 2a cos? ) sin 20 cos 2¢

(57) — tan® 2o (sin® Asin 2u + cos® ) cos 20 sin 2¢) ] .

Next, substituting Egs. (56) and (57) in Eq. (41), one obtains, after extensive
algebraic reduction, the following expression for the inconclusive rate induced by
the disturbing probe:

(58) R sin2a (1 + ¢+ asin2a)
? —

l

1 4-sin2a
where (in the notation of Slutsky et al [17]),
(59) a = sin® A sin 2p + cos? X cos 20 sin 2¢,
(60) ¢ = cos Asin 26 cos 2¢,

expressed in terms of the probe parameters A, 1,8, and ¢.

4. CONSISTENCY

It is well to check the consistency of Eq. (58) with the analogue of the second
equality of Eq. (24) in which & and f correspond to the correlated probe states of
Eq. (29). Specifically, if

(61) [¥) = |Cu) ® [u) +|Cy) ® |v)

for generic correlated states |C,) and |C,), then it can be shown, by using the first
equality of Eq. (24) together with Eq. (3), that

(62) Py?V™ = ((Cul +{Cul)(|Cu) +Cy)) sin 20
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Comparing Egs. (61) and (29), and using Eq. (62), one then also has

(63) Ry = Pyy = (3,]®,,) sin 20,
where
1B,) = %[(1 + sec 2a) [Boo) + tan 20 |@10) — tan 2a [ o)
+ (1 —sec2a)|®11) — tan2a |Pgp) + (1 — sec2a) |®10)
(64) + (1 + sec2a) |®o1) +tan2a|<I>u)].

Using Eqgs. (45)—(48) in Eq. (63), the latter becomes
Ry = sin2a(sec2a — tan2a) [sec2a (X3 + X2+ X2+ X32)

+ 2tan 20 (X1 Xg + X2X5) + 2sec2a (X1 X5 + X2Xs)

+ 2tan 20 (Xo X3 + X1X2) + sec2a (XZ + X?)
(65) + 2tan 20.’X5X6].
Next, substituting Eqs. (49)—(64) in Eq. (65), and using trigonometric identities,
one obtains

R; = sin2a(l+sin2a)™" [1 + cos? Asin 26 cos 2¢

(66) + (sin® Asin 2 + cos® X cos 26 sin 2¢) sin 2¢],

which agrees with Egs. (58)—(60).
Equivalently, one also has, using Eqgs. (62) and (30),

(67) Ry = Py = (9,|®,)sin 2a,
where
1
|®,) = 3 [ta.n 2a |Bgo) + (1 + sec2a) |®10) + (1 — sec2a) {®o1)
— tan2a|®q1) + (1 —sec2a)|®go) — tan2a |P1g)
(68) + tan2a|®g1) + (1 + sec2a) |<I>11],

and if one substitutes Eqs. (45)-(54) in Eq. (67), it can be shown that Eq. (67) also
reduces to Eqgs. (58)—(60).

Equation (58) can be used in optimizing the disturbing probe parameters for
maximum Renyi information gain by the probe with both a fixed induced inconclu-
sive rate and a fixed induced error rate on corrected bits [18]. This is a challenging
nonlinear optimization problem.

5. CONCLUSION

For an optical implementation of a projective measure and the POVM imple-
mentation of other works [9-13], the unperturbed inconclusive rates are calculated,
and the POVM is shown explicitly to have the lower inconclusive rate. The ratio
of the two rates is given by Eq. (28). Also, the disturbed inconclusive rate of the
POVM receiver due to a general unitary disturbance of the carrier by a probe is
calculated in three different ways, and is shown to be given by Eqgs. (58)—(60).
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