Mon. Not. R. Astron. Soc. 000, 000-000 (0000) Printed 5 July 1999 (MN BTEX style file v1.4)

The response of a turbulent accretion disc to an imposed
epicyclic shearing motion

Ulf Torkelsson2, Gordon I. Ogilviel:®4, Axel Brandenburg®®6, James E. Pringle!?,
Ake Nordlund™8, Robert F. Stein?

L Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, United Kingdom

2 Chalmers University of Technology/Géteborg University, Department of Theoretical Physics, Astrophysics Group,

S-412 96 Gothenburg, Sweden

3Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CBS 0EH, United Kingdom

4 Maz-Planck-Institut fir Astrophysik, Karl-Schwarzschild-Strafie 1, Postfach 1523, D-85740 Garching bei Miinchen, Germany
5 Department of Mathematics, University of Newcastle upon Tyne, NE1 7RU, United Kingdom

8 Nordita, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark

T Theoretical Astrophysics Center, Juliane Maries Vej 30, DK-2100 Copenhagen &, Denmark

8 Copenhagen University Observatory, Juliane Maries Vej 30, DK-2100 Copenhagen &, Denmark

9 Department of Physics and Astronomy, Michigan State University, East Lansing, MT 48824, USA

5 July 1999

ABSTRACT

We excite an epicyclic motion, whose amplitude depends on the vertical position, z,
in a simulation of a turbulent accretion disc. An epicyclic motion of this kind can be
caused by a warping of the disc. By studying how the epicyclic motion freely decays as
a result of the turbulence, we estimate the effective viscosity parameter, o, pertaining
to such a vertical shear. We also gain new information on the properties of the disc
turbulence in general, and measure the usual viscosity parameter, oy, pertaining to a
horizontal (Keplerian) shear. We find that, as is often assumed in theoretical studies,
oy is approximately equal to oy and both are much less than unity. In view of the
smallness (~ 0.01) of oy and an we conclude that the time-scale for diffusion or
damping of a warp is much shorter than the usual viscous time-scale, and review the
astrophysical implications.
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1 INTRODUCTION

Warped accretion discs appear in many astrophysical sys-
tems. A well known case is the X-ray binary Her X-1, in
which a precessing warped disc is understood to be periodi-
cally covering our line of sight to the neutron star, resulting
in a 35-day periodicity in the X-ray emission (Tananbaum et
al. 1972; Katz 1973; Roberts 1974). A similar phenomenon
is believed to occur in a number of other X-ray binaries. In
recent years the active galaxy NGC 4258 has received much
attention as a warp in the accretion disc has been made
visible by a maser source (Miyoshi et al. 1995).

A warp may appear in an accretion disc in response to
an external perturber such as a binary companion, but it is
also possible that the disc can produce a warp on its own.
Pringle (1996) showed that the radiation pressure from the
central radiation source can produce a warp in the outer
disc. In a related mechanism the irradiation can drive an
outflow from the disc. The force of the wind can then in
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a similar way excite a warp in the disc (Schandl & Meyer
1994).

It was shown by Balbus & Hawley (1991) that there is
a magnetic shearing instability in Keplerian accretion discs.
This instability leads to the appearance of turbulence in
the accretion disc. Several numerical simulations (e.g. Haw-
ley, Gammie & Balbus 1995, Matsumoto & Tajima 1995,
Brandenburg et al. 1995, Stone et al. 1996) have demon-
strated that this turbulence produces Maxwell and Reynolds
stresses that transport angular momentum outwards, thus
driving the accretion. So far none of the simulations has
addressed the question of how the turbulence responds to
external perturbations or systematic motions that are more
complex than a Keplerian shear flow.

Locally, one of the effects of a warp is to induce an
epicyclic motion whose amplitude varies linearly with dis-
tance from the midplane of the disc. This motion is driven
near resonance in a Keplerian disc, and its amplitude and
phase are critical in determining the evolution of the warp
(Papaloizou & Pringle 1983; Papaloizou & Lin 1995). The
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epicyclic motion is itself a solution of the equations that de-
scribe the local hydrodynamics of the accretion disc, and
such motions may also be generated spontaneously by tur-
bulence in the accretion disc (e.g. Torkelsson et al. 1997).
Just as the turbulence drives accretion by producing a ‘vis-
cous’ stress in response to the Keplerian shear, the shear-
ing epicyclic motion (and thus the warp)- are expected to
be damped by the turbulence. However, the details of this
process require a numerical investigation.

We start this paper by describing the shearing-box
approximation of magnetohydrodynamics and summarizing
the properties of the epicyclic motion in a shearing box in
Sect. 2. Section 3 is then a description of our simulations of
an epicyclic motion. The results of the simulations are then
described in Sect. 4 and briefly summarized in Sect. 5.

2 MATHEMATICAL FORMULATION
2.1 The local structure of a steady disc

For the intentions of this paper it is sufficient to use a simple
model of the vertical structure of a geometrically thin accre-
tion disc. The disc is initially in hydrostatic equilibrium,

% = pg=, (1)
where p is the pressure, p the density, and g. = —GMz/R}
the vertical component of the gravity with G the gravita-
tional constant, M the mass of the accreting star, and Rp
the radial distance from the star. For simplicity we assume
that the disc material is initially isothermal, and is a perfect
gas, so that p = c2p, where ¢, is the isothermal sound speed,
which is initially constant. The density distribution is then

.22
P = poe 12 ’ (2)

where the Gaussian scale height, H, is given by

2 p3
ZCS Ro (3)

2 -
H-GM.

2.2 Epicyclic motion in the shearing box
approximation

In the shearing box approximation a small part of the accre-
tion disc is represented by a Cartesian box which is rotating
at the Keplerian angular velocity Qo = \/GM/R3. The box
uses the coordinates {z,y, z) for the radial, azimuthal and
vertical directions, respectively. The Keplerian shear flow
within the box is u_s,o) = —%Qoz, and we solve for the devi-
ations from the shear flow exclusively. The magnetohydro-
dynamic (MHD) equations can then be written

D
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— = —(u-V)Yu+t+g+f(u)—=Vp+=J x B4+-V-.(20p8),(5
Be = — (0 V) ubgHf (W)= 2Vp+oT x B2 (206S),(5)
g—f=vX(uxB)-onJ, ©)
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— =—{(u-V)e—=V . .ut+=-V-(xpVe)+205°+ —IJ“+Q,(7
B =~ (0 V)e=EY 029 (xoVe) Lo 24Q,(7)

where D/Dt = 8/t + u,{,"’a/ay includes the advection by
the shear flow, p is the density, u the deviation from the Ke-
plerian shear flow, p the pressure, f(u) = Q0(2uy, —3uz,0)
the inertial force, B the magnetic field, J = V x B/uo the
current, po the permeability of free space, v the viscosity,
Sij = 2(uij + uj,i — 2dijurx) the rate of strain tensor, n
the magnetic diffusivity, e the internal energy, x the thermal
conductivity, and @ is a cooling function. The radial compo-
nent of the gravity cancels against the centrifugal force, and
the remaining vertical component is g = —Q2z%. We adopt
the equation of state for an ideal gas, p = (v — 1)pe.

When the horizontal components of the momentum
equation (5) are averaged over horizontal layers (an oper-
ation denoted by angle brackets), we obtain

Fj o 2 [/ B:B;
3¢ (Pus) = 2{puy) — o= (pusus) + o < o > v (8

2 (o =~ n(o) = 2ty + 2 <§ui) )
The explicit viscosity, which is very small, has been ne-
glected here. These equations contain vertical derivatives of
components of the turbulent Reynolds and Maxwell stress
tensors, distinct from the ry-components that drive the ac-
cretion.

We initially neglect the turbulent stresses and obtain
the solution

(pu,) = po(z)‘ﬁo (z) COS(Qot), (10)
(ouy) = —5p0(2)io (=) sin(Qot), (11)

which describes an epicyclic motion. Here po(z) is the ini-
tial density profile. The initial velocity amplitude #o is an
arbitrary function of 2. For the simulations in this pa-
per we will take {ig(z) o< sin(kz), where k¥ = x/L., and
—3L, <z < -;—L, is the vertical extent of our shearing
box. This velocity profile is compatible with the stress-free
boundary conditions that we employ in our numerical sim-
ulations, and gives a fair representation of a linear profile
close to the midplane of the disc.

The kinetic energy of the epicyclic motion is not con-
served, but the square of the epicyclic momentum

E(2,8)= g {pue) +2{ouy)’, (12)

is conserved in the absence of turbulent stresses. By multi-
plying Eq. (8) by {puz), and Eq. (9) by 4{pu,) we obtain

oF

73?=Fu +FB, (13)
where

7] o
Fu = = (pus) - (puistiz) — 4 {puy) 5= {ouyuis) (14)
and

8 /BB o [/ ByB
Fp = (puz) — { —= 4 — (== 15
B (””)az< o >+ (pUy)az< ™ > (15)

represent the ‘rates of working’ of the Reynolds and Maxwell
stresses, respectively, on the epicyclic oscillator. We may ex-
pect that both Fy and Fp are negative, but by measuring
them in the simulation we can determine the relative impor-
tance of the Reynolds and Maxwell stresses in damping the
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Figure 1. Owing to the stratification there appear horizontal
pressure gradients in the warped disc. These gradients excite the
epicyclic motion (arrows indicate forces, not velocities)

epicyclic motion. We will also refer to an epicyclic velocity
amplitude

G =/ (uz)? +4(uy)2. (16)

2.3 Theoretical expectations

The detailed fluid dynamics of a warped accretion disc has
been discussed by, e.g., Papaloizou & Pringle (1983), Pa-
paloizou & Lin (1995) and Ogilvie (1999). The dominant
motion is circular Keplerian motion, but the orbital plane
varies continuously with radius r and time ¢. This may con-
veniently be described by the tilt vector £(r, ), which is a
unit vector parallel to the local angular momentum of the
disc annulus at radius r. A dimensionless measure of the
amplitude of the warp is then A = |8¢/8Inr|.

In the absence of a detailed understanding of the tur-
bulent stresses in an accretion disc, it is often assumed that
the turbulence acts as an isotropic effective viscosity in the
sense of the Navier-Stokes equation. The dynamic viscosity
may be parametrized as

H= ap/nﬂa (17)

where o is a dimensionless parameter (Shakura & Sunyaev
1973). In this paper we will allow, in a simple way, for
the possibility that the effective viscosity is anisotropic (cf.
Terquem 1998). The parameter ay pertaining to ‘horizontal’
shear (i.e. horizontal-horizontal components of the rate-of-
strain tensor, such as the Keplerian shear) may be different
from the parameter o pertaining to ‘vertical’ shear (i.e.
horizontal-vertical components of the rate-of-strain tensor,
such as the shearing epicyclic motion).

Owing to the stratification of pressure resulting from
vertical hydrostatic equilibrium, in a warped disc there are
also horizontal pressure gradients (Fig. 1). The horizontal
accelerations are of order AQZz and oscillate at the local
orbital frequency, as viewed in a frame co-rotating with the
fluid. They drive epicyclic motions of the type studied in
this paper, which are shearing in the vertical direction and
are therefore acted on by the effective turbulent viscosity.
In a Keplerian disc the driving frequency coincides with the
natural frequency of the epicyclic motion, and a resonance
occurs. In the case Hfr $ av € 1 (Papaloizou & Pringle
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1983) the resulting amplitude of the epicyclic motions is
determined by a simple balance between forcing and viscous
damping, and is given by

AQoz

Us OC thy O = (18)

The resulting hydrodynamic stresses pizu; and Pugu; (over-
bars denote averages over the orbital time-scale), which tend
to flatten out the disc, are also proportional to a;'A and
therefore dominate over the direct viscous stresses e ayA
which would have the same effect. It is for this reason that
the time-scale for flattening a warped disc is anomalously
short compared to the usual viscous time-scale, by a factor
of approximately 2anay. (For more details, see Papaloizou
& Pringle 1983 and Ogilvie 1999. In these papers it was
assumed that an = ay.)

In the formulation of Pringle (1992) there are two dif-
ferent effective kinematic viscosity coeflicients: v, describes
the radial transport of the aligned component of the an-
gular momentum vector, while 1 describes the transport
of the misaligned components. In this notation we should
have v2/1n & 1/(2anay). It is important to realize that,
even in the case of an isotropic underlying viscous process
(an = ay), 2 # 11, In particular 1 is greatly enhanced by
the resonant effects described above if ay < 1.

We aim to measure both oy, and @y in the simulations.
The first may be obtained through the relation

B:B
<,,,,,u,,_ > = ooy, (19)
b [, 2

which follows by identifying the total turbulent zy-stress
with the effective viscous zy-stress resulting from the vis-
cosity (17) acting on the Keplerian shear (note that the de-
finition of ay, differs from that of ass in Brandenburg et al.
1995 by a factor v/2). Here the average is over the entire
computational volume.

The coefficient a, may be obtained by measuring the
damping time of the epicyclic motion. In the shearing-box
approximation the horizontal components of the Navier-
Stokes equation for a free epicyclic motion decaying under
the action of viscosity are

Ouz _ 19 (aypBuy

_Bt——znouy-i-paz (Qo Bz)’ (20)
Ouy 1 19 (avpaug)

ot ZQOUI + pOz \ Qo 02/ (21)

Under the assumptions that ay and 8;u are independent of
z and that the disc is vertically in hydrostatic equilibrium,
these equations have the exact solution

uz = CQoze™'" cos(Qot), (22)
uy = —%C’Qoz e™/" sin(Qot), (23)
where C is a dimensionless constant and

1
T = o (24)

is the damping time. Admittedly it is already believed that
ay, is not independent of z (Brandenburg et al. 1996) and
therefore @y may not be either. Also our velocity profile
is not exactly proportional to z. However, it is in fact the
damping time that matters for the application to warped
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Table 1. Specification of numerical simulations: the number of
grid points are given by Ny X Ny X N:, and the amplitude of the
initial velocity perturbation is ug

Run Nz X Ny x N up
0 31 X 63 x 63 0.0

1 31 x63x63 0.011

1b 63 x 127 x 127 0.011

2 31 x63x63 0.095

3 63x127x127 0.095

discs, and the solution that we describe above is in a sense
the fundamental mode of the epicyclic shear flow in a warped
disc.

A further theoretical expectation is as follows. In an in-
viscid disc, the epicyclic motion can decay by exciting iner-
tial waves through a parametric instability (Gammie, Good-
man & Ogilvie 1999, in preparation). In the optimal case,
the signature of these waves is motion at 30° to the vertical,
while the wave vector is inclined at 60° to the vertical. The
characteristic local growth rate of the instability is
Y- 3v3 aﬁ,

16 |9z (23)

This instability can lead to a rapid damping of a warp,
but may be somewhat delicate as it relies on properties
of the inertial-wave spectrum. It is important to determine
whether it occurs in the presence of MHD turbulence.

3 NUMERICAL SIMULATIONS
3.1 <Computational method

We use the code by Nordlund & Stein (1990) with the
modifications that were described by Brandenburg et al.
(1995). The code solves the MHD equations for In g, u, ¢ and
the vector potential A, which gives the magnetic field via
B = V x A. For the (radial) azimuthal boundaries we use
{sliding-) periodic boundary conditions. The vertical bound-
aries are assumed to be impenetrable and stress-free. Unlike
our earlier studies, we now adopt perfectly conducting ver-
tical boundary conditions for the magnetic field. Thus we
have

Ouz; _ Ouy _ _

9z ~ Bz u: =0, (26)
and

0B, 9B,

S =t =B.=0 (27)

We choose units such that H = GM = 1. Density is
normalized so that initially p = 1 at the midplane, and we
measure the magnetic field strength in velocity units, which
allows us to set po = 1. The disc can be considered to be thin
by the assumptions of our model, and the results will thus
not depend on the value of Ry. We choose to set Bg = 10in
our units, which gives the orbital period Ty = 2x /{2 = 199,
and the mean internal energy 7.4 10™*. The size of the box
is Lz : Ly : Ly = 1 : 2r : 4, where z and z vary between
+1L. and :!:%Lz, respectively, and y goes from 0 to L. The
number of grid points is Nz x Ny x N,. To stop the box from
heating up during the simulation we introduce the cooling
function

T T T
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0.08F N\ e
T b LN 1,'.': -
- .. r 4
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Figure 2. % as a function of z at ¢ = 55.8 Ty (solid line), 57.1Tp
(dashed line), 58.4 Ty (dotted line), and 60.9Ty (dot-dashed line)
for Run 3

Q = —0cool (6 —€0), (28)

where ocool is the cooling rate, which typically corresponds
to a time-scale of 1.5 orbital periods, and ep is the internal
energy of an isothermal disc.

We start the simulations from a snapshot of a previous
simulation in which turbulence has already developed. For
every horizontal layer in the snapshot we subtract the mean
horizontal velocity and then add a net radial flow of the form

_ . [Tz
ty = ug sin (-I—;) . (29)
The number of grid points and o for the different runs are
given in Table 1. uo should be compared to the adiabatic
sound speed which is 0.029. We include one run, Run 0, in
which we do not excite an epicyclic motion, as a reference.

3.2 Results

We concentrate on Run 3, which has the highest resolution
and an epicyclic motion of large amplitude. We show the ver-
tical variation of @ at four different times in Fig. 2, and plot
it as a function of time on three planes, 2 = 1.52, z = 0.89
and z = 0.44, in Fig. 3. Figure 2 shows that the damping
sets in first at the surfaces, while for |2| < 1 there is essen-
tially no damping during the first two orbital periods (Fig.
3). There is then a brief period of rapid damping between
t = 587Tp and t = 60Ty throughout the box, especially for
small |z} where @& may drop by a factor 2. This is followed by
a period of exponential decay, but after ¢ = 7575 it becomes
difficult to follow the epicyclic motion, as the influence of the
random turbulence on @ becomes significant, in particular
close to the midplane, where # is anyway small. We estimate
the damping time, T = (dIn#&/dt)™" by fitting exponentials
to @ in the interval 607y < t < 75T;. Averaged over the
box we get T = 25 £ 875, which corresponds to ay = 0.006
according to Eq. (24).

We can determine the influence of the Maxwell and
Reynolds stresses on the shear flow, by plotting F, and Fg as
functions of time (Fig. 4). The surprising result is that the
epicyclic motion is damped by the Reynolds stress, while,
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Figure 3. The amplitude of the epicyclic motion in Run 3, 4,
as a function of ¢ on three horizontal planes: z = 1.52 (solid
line), z = 0.89 (dashed line) and z = 0.44 (dot-dashed line).
The straight lines are exponential functions that have been fitted
for the interval 60Ty < ¢t < 757p. The e-folding time scales of
the exponentials starting from the top are 19.4T, 22.1T; and
20.27%, respectively. The epicyclic motion was added to the box
at £t =55.7TTp

[
X
—
o
|
T

F

N
X
-
(=)

|

~
b
Dosaaanaeiday

-
X
—
(=]
|
T

70 75 80 85

t (orbital periods)

65

Figure 4. The moving averages (over one orbital period)of the
vertical averages of —Fy (solid line) and —Fp (dashed line)

as we will see below, the accretion is driven largely by the
Maxwell stress.

The accretion itself is driven by the {pusuy — Bz By)-
stresses. We plot the moving time-averages of the vertical
average of the accretion-driving stress of Run 3 in Fig. 5, and
as a comparison that of Run 0 in Fig. 6. In the beginning of
Run 3 the Reynolds stress is modulated on half of the orbital
period. This modulation is an artefact of the damping of the
epicyclic motion and dies out with time. The Maxwell stress
becomes significantly stronger than the Reynolds stress once
the epicyclic motion has vanished. Later the stresses vary in
phase which each other, like they do all the time in Run 0.
The main difference between Run 0 and the end of Run 3
is that the stresses are 2-3 times larger in Run 3. We calcu-
late an for Run 3 by dividing the stresses by 2(p)v (Fig. 7).
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Figure 5. The moving averages (over one orbital period) of the
vertical averages of —(BzBy) (solid line) and {puzuy) of Run 3
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Figure 6. The moving averages (over one orbital period) of the
vertical averages of —(BzBy) (solid line) and {pusuy) of Run 0

One should take note that the simulations in this paper are
too short to derive an with high statistical significance (cf.
Brandenburg et al. 1995), but our results do show that an
varies in phase with the stress. In other words the pressure
variations are smaller (the pressure increases with 50% dur-
ing the course of the simulation) than the stress variations,
which is not what we expect from Eq. (19). The lack of a
correlation between the stress and the pressure is even more
evident in Run 0, in which the pressure never varies with
more than 5%.

In our previous work (Brandenburg et al. 1995) we
found that the toroidal magnetic flux reversed its direction
about every 30 orbital periods. With the perfect conductor
boundary conditions that we have assumed in this paper
such field reversals are not allowed, since the boundary con-
ditions conserve the magnetic flux (e.g. Brandenburg 1999).
However the azimuthal magnetic field is organised in such a
way that it is antisymmetric with respect to the midplane.
We find one example of a reversal of the azimuthal magnetic
field in Run 3 (Fig. 8).
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Figure 7. ay, is calculated by dividing the moving averages (over
one orbital period) of the vertical averages of —(Bx By} (solid line)
and {puzuy) (dashed line) of Run 3 with the moving average of

{p)v

0.010f S
0.005 |
& 0.000f

-0.005}

-0.010}

65 70 75 80 85

t (orbital periods)

Figure 8. By averaged over the upper half (solid line) and lower
half (dotted line) of the box of Run 3

3.3 Dependence on ug and on the resolution

There is no clear dependence of the damping time-scale on
tp, but it is more difficult to study the damping of the
epicyclic motion for a smaller ug, as the turbulence can ex-
_ cite epicyclic motions on its own. These randomly excited
motions swamp the epicyclic motion that we are studying.
The quantitative results from Runs 1 and 1b are therefore
more uncertain, but qualitatively the damping behaves in
the same way as in Run 3, and within the uncertainties the
damping time-scale is the same. In other respects the tur-
bulent stresses of Runs 1 and 1b are more similar to those
of Run 0 than to those of Run 3.

On the other hand there are significant differences be-
tween Runs 2 and 3, which differ only in terms of the grid
resolution. The magnetic field decays rapidly in Run 2, and
only the toroidal field recovers towards the end of the sim-
ulation. In the absence of a poloidal magnetic field there
is no magnetic stress, and therefore the disc cannot derive

Maxwell stress

Reynolds stress

'l NETE P

Figure 9. The Maxwell (top) and Reynolds (bottom) stresses av-
eraged over one orbital period at 76.3 Tg of Run 3. The yz-stresses
are plotted with solid lines and the zx-stresses with dashed lines

energy from the shear flow. Consequently there is no tur-
bulent heating in Run 2, and the disc settles down to an
isothermal state. Apparently the turbulence is killed by the
numerical diffusion in Run 2. This demonstrates that the
minimal resolution, which is required in the simulation, de-
pends on the amplitude of #g. A simulation with an imposed
velocity tip with an amplitude significantly larger than that
of the turbulence requires a finer resolution than a simula-
tion of undisturbed turbulence. Run 2 failed because it did
not have sufficient resolution to resolve the imposed velocity
field. This was not a problem in Run 1, where the amplitude
of fip is much smaller.

4 DISCUSSION
4.1 Statistical properties of the turbulent stress

Figure 9 shows the Maxwell and Reynolds stresses at 76.3 To,
that is after that the epicyclic motion has been damped out.
The (ByB.)- and (B, B:)-stresses are clearly anti-correlated
at this moment. We define the correlations

J {pustz){puyus)dz

Xu = Z ’ (30)
S (fpusus) + (puyuz)?) az
and
_ _J(B:B:)(B,B:)dz (31)

I ((B,B,)2 +(B,B.)") dz

which are —0.5 if the stresses are completely anti-correlated,
and 0.5 if they are completely correlated, and plot them to-
gether with the stresses in Fig. 10. The Reynolds stresses
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Figure 10. The upper plot shows x g (solid line) and xu (dashed
line) as functions of time for Run 3. The lower plot shows

the vertical averages of (ByB:)? + (Bsz)’:/2 (solid line) and
(puyuz)? + (pu.zu,,-)zllz (dashed line)
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Figure 11. Same as Fig. 10, but for Rur 0. The upper plot
shows xp (solid line) and xu (dashed line) and the lower plot

the vertical averages of (ByB:)? + (BzB,,-)zll2 (solid line) and
(puyus)? + (Aﬂu.zu.z)zl/2 (dashed line)
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Figure 12. The upper plot shows the vertically averaged
cross correlations between the Maxwell and Reynolds stresses,
(puzuz)(ByB:) (solid line) and (puyu:}{B:B:) (dashed line)
for Run 0. The lower plot shows the vertical averages of
(ByB.)2 + (puzua)®” (solid line) and (B2B,)% + (pugun)? 1
{dashed line)

are much larger than the Maxwell stresses, and x, is fluc-
tuating around O while the epicyclic motion is damped.
Late in the simulation the Maxwell and Reynolds stresses
are of comparable magnitude, but the Maxwell stresses
are anti-correlated while the Reynolds stresses are weakly
correlated. The cross-correlation terms {puzu:){ByB.) and
{ptiyti:){BzB.) are essentially 0. It is a characteristic prop-
erty of the turbulence even in the absence of an epicyclic mo-
tion that the (By B;)- and (B, B:)-stresses are strongly anti-
correlated, while the {puyu.)- and (pu.u,)-stresses show a
weak correlation (Fig. 11). We note though that the cross-
correlations {pu.u,){B:B.) and {puyu.){ByB.) are not 0 in
Run 0, rather their correlation coeflicients differ by a sign
(Fig. 12).

The anti-correlation of the stresses is compatible with
an exponential damping of the epicyclic motion as we will
now show. Based on Egs. (10) and (11) we can write {pus) =
itop cos(Qot)e /™ and (pu,) = —3iiop sin(Qot)e™*/™, where
p has been assumed to be constant over horizontal layers.
These expressions can be substituted into Eqs. (8) and (9),
which are then multiplied together and averaged over an
orbital period

;] ]
3 {puzu; — BzB;) Fe {puyu. — ByB;) =

1 ﬂgP290 11— e—41r/(-rno)

T8 2 241/t
This equation shows that an anti-correlation of the zz-
and yz-stresses will lead to an exponential damping of the

epicyclic motion, while a correlation of the stresses will re-
sult in an exponential growth. We emphasize though that it

(32)
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Figure 13. The upper plot shows m the average of the mag-
netic energy as a function of z for Runs 3 at 66.3Tp (solid line)
and O at 66.1Tp (dashed line). The lower plot shows —(B:By)
plotted the same way

is not the Maxwell stress that is damping the epicyclic mo-
tion, but rather the Reynolds stress. The anti-correlation of
the Maxwell stresses rather explains why the turbulence on
its own does not excite a strong, long-lived epicyclic motion,
although such a motion is a solution of the MHD-equations
for the shearing box.

4.2 The vertical structure of the accretion disc

Our previous simulations of turbulence in a Keplerian shear-
ing box have shown that the turbulent zy-stresses are ap-
proximately constant with height (Brandenburg et al. 1996)
rather than proportional to the pressure as was predicted by
the a-prescription (Shakura & Sunyaev 1973). We modified
the vertical boundary conditions for this paper and have
added an epicyclic motion. The (B.By)-stress is still ap-
proximately independent of z or even increasing with |z| for
Iz| < H though, while at larger |z| we may see the effects of
the boundary conditions (Fig. 13). The effect of the epicyclic
motion is seemingly to limit the (B, By)-stress in the surface
layers to its value in the interior of the disc. The fact that
the stresses decrease with z more slowly than the density
results in a strong heating of the surface layers, which are
the hottest parts of the accretion disc in our simulations.

4.3 Application to warped accretion discs

In linear theory we can estimate the amplitude of the
epicyclic motion in a warped accretion disc as:(¢f. Eq. 18)

U A

Y A4 33
o= s (33)

This estimate is valid for a thin and sufficiently viscous disc,
that is for H/r £ ay € 1 (Papaloizou & Pringle 1983). For
observable warps in which the amplitude A exceeds the as-
pect ratio of the disc, the epicyclic flow can become tran-
sonic. One might then expect that shocks would appear,
which would enhance the dissipation rate. The analyses by
Papaloizou & Pringle (1983) and Ogilvie (1999) would then
not be applicable. However, we have found that even a tran-
sonic epicyclic motion, as in Run 3, is subject to a smooth
‘viscous’ damping without shocks.

The condition for a warp to appear in the accretion disc
is set by the balance between the torque that is exciting the
warp and the viscous torque, described by 1%, that is flat-
tening the disc. The warp-exciting torque may for instance
be a radiation torque from the central radiation source. As-
suming that accretion is responsible for all the radiation,
the radiation torque will depend on the viscosity v;. The
criterion for the warp to appear will then depend on the ra-
tio of viscosities n = 14/1,. Pringle (1996) showed that an
irradiation-driven warp will appear at radii

TR (—2\/37"7)2 Rsen, (34)

where Rscy, is the Schwarzschild radius, and € = L/ M is
the efficiency of the accretion process. We have shown that
on =2 ay € 1. However, we emphasize again that this does
not imply that &~ 1; on the contrary, we estimate that
n = 1/(2anav) > 1. The reason is that the effective kine-
matic viscosity vz, which parametrizes the stress that acts
to flatten out the disc, is in reality not a direct ‘viscous’
stress (which would be proportional to av) but a hydrody-
namic stress mediated by horizontal motions that are in-
versely proportional to ay. The high value for n will make it
difficult for a warp to appear unless the radiation torque can
be amplified by an additional physical mechanism. One way
to produce a stronger torque is if the irradiation is driving
an outflow from the disc (cf. Schandl & Meyer 1994).

A similar damping mechanism will work on the waves
that can be excited by Lense-Thirring precession in the in-
ner part of the accretion disc around a spinning black hole.
Numerical calculations by Markovic & Lamb (1998) and
Armitage & Natarajan (1999) show that these waves are
damped rapidly unless 12 <« 11, which we find is not the
case (however, we note that the resonant enhancement of
v; will be reduced near the innermost stable circular orbit,
because the epicyclic frequency deviates substantially from
the orbital frequency). Likewise a high value of v, will lead
to a rapid alignment of the angular momentum vectors of a
black hole and its surrounding accretion disc (cf. Natarajan
& Pringle 1998).

We suggest some caution in interpreting the results of
this paper. Although the shearing box simulations in general
have been successful in demonstrating the appearance of
turbulence with the right properties for driving accretion,
they are in general producing uncomfortably low values of
an to describe for instance outbursting dwarf nova discs (e.g.
Cannizzo, Wheeler & Polidan 1986). An underestimate of an
and oy would lead to an overestimate of n. In addition we
have studied a free-decay problem which differs somewhat
from the forced oscillations that occur in warped discs. We
postpone the study of forced oscillations to future work.

© 0000 RAS, MNRAS 000, 000-000
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4.4 Parametric decay to inertial waves

Gammie et al. (1999) have predicted the occurrence of a
parametric instability in the epicyclic shear flow. The shear
flow should excite inertial waves that are propagating at a
30° angle to the vertical. Individual inertial waves can be
identified by the pattern they form in the helicity, but the
parametric instability forms pairs of waves with opposite
helicities, which makes them difficult to identify.

To understand the dynamics of the parametric instabil-
ity we have run a two-dimensional hydrodynamic simulation
of the epicyclic shear flow. Qur two-dimensional zz-plane
has the same extension as in the previous three-dimensional
simulations, but we are now using 128 x 255 grid points. The
initial state is a stratified Keplerian accretion disc to which
we have added a radial motion with an amplitude of 0.095,
and a small random perturbation of the pressure. The most
characteristic property of the instability is that a vertical
velocity is generated (Fig. 14 top). A similar increase of the
vertical velocity appears in Run 3 during the damping of
the epicyclic motion (Fig. 14 bottom). The main difference
is that the vertical velocities appear faster in Run 3, which
can be explained by that the turbulence provides large initial
perturbations from which the instability can grow.

5 CONCLUSIONS

In this paper we have studied how the turbulence in an ac-
cretion disc will damp an epicyclic motion, whose amplitude
depends on the vertical coordinate z in the accretion disc.
Such a motion could be set up by a warp in the accretion
disc (Papaloizou & Pringle 1983). We find that the typical
damping time-scale of the epicyclic motion is about 25 or-
bital periods, which corresponds to ay, = 0.006. This value

© 0000 RAS, MNRAS 000, 000-000

Vertical shear flow and turbulence 9

is comparable to the traditional estimate of ay that one gets
from comparing the {pusuy, — B;By)-stress with the pres-
sure. Both alphas are of the order of 0.01, which implies that
the time-scale for damping a warp in the accretion disc is
much shorter than the usual viscous time-scale. That the two
alphas are within a factor of a few of each other is surprising
as the damping of the epicyclic motion can be attributed to
the Reynolds stresses, while the accretion is mostly driven
by the Maxwell stress.
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